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Abstract

Intratumoural heterogeneity is known to contribute to poor therapeutic response.
Variations in oxygen tension in particular have been correlated with changes in radiation
response in vitro and at the clinical scale with overall survival. Heterogeneity at the
microscopic scale in tumour blood vessel architecture has been described, and is one
source of the underlying variations in oxygen tension. We endeavour to determine
whether histologic scale measures of the erratic distribution of blood vessels within a
tumour can be used to predict differing radiation response. Using a two-dimensional
hybrid cellular automaton model of tumour growth, we evaluate the effect of vessel
distribution on cell survival outcomes of simulated radiation therapy. Using the standard
equations for the oxygen enhancement ratio for cell survival probability under differing
oxygen tensions, we calculate average radiation effect over a range of different vessel
densities and organisations. We go on to quantify the vessel distribution heterogeneity
and measure spatial organization using Ripley’s L function, a measure designed to
detect deviations from spatial homogeneity. We find that under differing regimes of
vessel density the correlation coefficient between the measure of spatial organization
and radiation effect changes sign. This provides not only a useful way to understand
the differences seen in radiation effect for tissues based on vessel architecture, but also
an alternate explanation for the vessel normalization hypothesis.

Author Summary

In this paper we use a mathematical model, called a hybrid cellular automaton, to study
the effect of different vessel distributions on radiation therapy outcomes at the cellular
level. We show that the correlation between radiation outcome and spatial organization
of vessels changes signs between relatively low and high vessel density. Specifically,
that for relatively low vessel density, radiation efficacy is decreased when vessels are
more homogeneously distributed, and the opposite is true, that radiation efficacy is
improved, when vessel organisation is normalised in high densities. This result
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suggests an alteration to the vessel normalization hypothesis which states that
normalisation of vascular beds should improve radio- and chemo-therapeutic response,
but has failed to be validated in clinical studies. In this alteration, we provide a metric
that differentiates between vascular architectures in different density regimes in which
the hypothesis holds and does not and that could be used for quantitative histologic
analysis of tumours, and for radiation dose personalisation.
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Introduction 1

It is increasingly recognised that an important aspect of cancers is their 2

heterogeneity [1]. This heterogeneity exists between patients, between different 3

tumours within a single patient [2], within the differing cellular populations in a single 4

tumour and even at the genetic scale between cancer cells originating from the same 5

ancestor [3]. In particular, microenvironmental heterogeneity is becoming widely 6

accepted as a key factor in tumour progression and response to therapy [1]. Nutrients, 7

growth factors, extracellular matrix and other cell types are all part of the normal tissue 8

that surrounds and pervades a solid tumour and has been shown to vary widely across 9

different tumour stages and types. This is, in part, due to the dynamic and 10

heterogeneous interplay between the tumour and its microenvironment. 11

Radiation biologists have, for many years, understood the importance of cell 12

biological and microenvironmental factors on radiation response. Current radiation 13

therapy dose planning, however, largely neglects this information and is, instead, based 14

on years of clinical experience using intuition and trial and error. As such, there remains 15

limited tailoring of dose planning to an individual patient’s tumour. With the advent of 16

modern quantitative histologic [4] and biological imaging methods [5], however, this 17

paradigm is poised to change. 18

Research in this area over the last decade [6] has sought to understand the 19

macroscopic spatial distribution of hypoxia within tumours using non-invasive imaging. 20

This information has then been utilised to develop spatially heterogeneous dose plans 21

to improve tumour control. For example, Malinen et al. [7] inferred average oxygen 22

concentrations from radiocontrast concentrations measured by Dynamic Contrast 23

Enhanced (DCE) Magnetic Resonance Imaging (MRI) in a dog sarcoma. Other work to 24

understand the effects of radiation in individual patients has utilized MRI scans in 25

combination with mathematical models of tumour growth. These models have 26

incorporated heterogeneity in cell type by considering a two compartment spatial partial 27

differential equation (PDE) model, separately considering proliferation and motility, 28

without consideration of oxygen effects [8] to explain different radiation responses 29

measured by changes in tumour size over time. More recently, cellular automaton 30

models of stem cell driven tumours, comprised of populations with differences in 31

proliferative phenotype [9] were used to compare tumour response to a range of 32

spatially heterogeneous radiation dose plans or to different orders of radio- and 33

chemo-therapeutic strategies [10]. What is lacking to date, however, is research into 34

how tissue level microenvironmental heterogeneity can affect radiation response, and 35
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how this could be inferred from patient data. 36

Heterogeneity in tumour oxygenation, in particular the occurrence of hypoxia, is a 37

well-known cause of radiation therapy failure [11, 12]. Work done in vitro to understand 38

differences in radiation effect due to oxygenation differences have been valuable, and 39

have established an empiric relationship called the Oxygen Enhancement Ratio 40

(OER) [13] to understand how radiation efficacy varies with oxygen concentration. 41

These studies do not, however, allow us to understand the effects of radiation in vivo, as 42

they do not consider the heterogeneity of oxygenation at the microscopic, cellular scale. 43

Beyond the macroscopic changes in oxygenation, vessel and cellular density and 44

metabolism, a number of theoretical studies have suggested that the local microscopic 45

heterogeneity in oxygenation can vary widely in space and time in tumours [14, 15, 16] 46

and healthy tissues [17] alike. In addition a large body of work has sought to 47

understand an apparent paradox of therapy directed at angiogenesis, the process of 48

new vessel creation [18]. In short, it was thought that by blocking a cancer’s ability to 49

create new vessels, it would be possible to starve the cancer of nutrients and oxygen, 50

quickly leading to its demise. While effective anti-angiogenesis drugs have been 51

developed, this promise never came to fruition. The leading hypothesis to explain this 52

failure is termed the ’vascular normalization hypothesis’ [19], which suggests that these 53

drugs, which block vascular endothelial growth factor (VEGF), do not simply inhibit new 54

vessel production, but instead work by normalizing the vascular bed in question by 55

pruning out ineffective vessels. This hypothesis, while well supported by experimental 56

work, has not yet been able to fully explain results at the clinical scale [20]. These 57

studies highlight an opportunity to improve our understanding of how spatio-temporal 58

oxygen dynamics at the cellular scale affect tissue-level response to therapy. To this 59

end, we develop a computational, hybrid cellular automaton model of a tumour growing 60

within a surrounding normal tissue in a vascularized domain which we use to investigate 61

whether spatial statistics gleaned from measures of vascular organisation can be used 62

to predict radiation efficacy. By identifying broad relationships between in silico tissue 63

architecture and radiation response, we aim to progress toward a translatable method 64

of radiation plan optimization using information extracted from biopsies. 65

The remainder of this paper is structured as follows. We first elucidate our methods 66

by describing the underlying rules and parameters governing the cellular automaton as 67

well as the method of calculating oxygen transport and uptake. In the results section we 68

describe simulation results concerning healthy tissue growth in regularly arranged and 69

then heterogeneous vascular architectures. We then describe tumour growth and 70

invasion in regular architectures and follow this with observations concerning the 71

distribution of oxygen tension in different possible vascular organisations. We then 72

develop a metric, based on Ripley’s L function [21], which allows us to quantify and 73

correlate these patterns with radiation response. We end with a discussion of how this 74

metric reconciles some of the difficulties with the vascular normalisation hypothesis, 75

and suggest how the metric might be used in the clinic to personalise radiation dose 76

planning. 77

Methods 78

We consider the effect of a heterogeneous microenvironment through the inclusion of 79

en face blood vessels modeled as point sources of oxygen, and through competition of 80

tumour cells with an initial field of healthy cells. We begin by creating a hybrid cellular 81

automaton (HCA) model [22] in which we describe cells by individual agents whose 82

states are updated over synchronous discrete time steps of fixed duration on the 83

timescale of the cell cycle (automaton time steps), and which occupy sites on a 84

PLOS 3/30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2015. ; https://doi.org/10.1101/029595doi: bioRxiv preprint 

https://doi.org/10.1101/029595
http://creativecommons.org/licenses/by/4.0/


two-dimensional square lattice representing a slice of tissue. The size of the lattice 85

spacing is chosen such that each automaton element is approximately the size of a 86

single cell. A second, identical lattice is created on which we approximate the 87

continuous concentration of a freely diffusible molecule, representing oxygen which is 88

updated on a finer timescale (oxygen timestep - see supplemental information for 89

further description of the relationship between these timescales). While the cells and 90

oxygen distribution are updated on separate lattices, each influences the other. The 91

feedback between the cells and the microenvironment is captured through a partial 92

differential equation (PDE) governing oxygen transport and consumption. Although the 93

parameter values in our model are drawn from data on a particular cancer type, the 94

primary brain tumour glioblastoma, most of the underlying model assumptions are likely 95

to apply to many other vascularized solid tumours. 96

Cellular automaton model of cell behaviour 97

Cell fate decisions in our model are determined by a number of microenvironmental and 98

cell state-specific thresholds and values. The order in which cells are chosen to decide 99

their fate is computed in a random fashion so as to avoid any order bias. To determine 100

the position of cells within our domain, we tessellate the continuous domain on which 101

the PDE is defined into squares of size ∆x ×∆x to arrive at a regular lattice occupied 102

by both cells and vessels. While all cells are assumed to be the same size and shape 103

(a single lattice site), we model two cell types, cancerous and healthy cells, each of 104

which can divide to produce two identical daughters. The probabilities and thresholds 105

for these cell fate decisions are listed in Table 1 and Fig. 1, respectively, and will be 106

discussed individually in the coming sections. 107

Oxygen consumption and transport. With the advent of single-cell techniques for 108

measuring oxygen consumption rates, quantitative data concerning the differential 109

oxygen consumption rates of different types of cancer cells are now available. It is 110

widely accepted that, in general, cancer cells are more metabolically active than healthy 111

cells because of the Warburg shift [23] or other metabolic abnormalities, and we thus 112

use a modification of normal consumption. 113

The continuous component of our model describes the distribution and consumption 114

of nutrients. While it is clear that many nutrients are of biological importance, in this 115

model we focus on oxygen as it is central to the DNA-damaging effects of photon 116

radiation therapy [24]. Blood vessels, which are each modeled as point sources of 117

oxygen, occupying one lattice site, are placed randomly throughout the lattice at the 118

start of a given simulation, at a specified spatial density Θ. While in reality, vessels can 119

be different sizes, they tend to be normally distributed around a mean size, and a 120

variety of metrics including number of vessels, total vessel area and vascular fraction 121

have been used interchangeably [25, 26]. As we are interested in the dynamics over 122

the time scale of radiation treatment (order days), in all simulations we neglect vascular 123

remodeling and angiogenesis, processes which are triggered by hypoxia and mediated 124

by hypoxia inducible factor-1α (HIF-1α) and VEGF, among other molecules, and have 125

been well studied [27, 28]. Each vessel is assumed to carry an amount of oxygen equal 126

to that carried in the arterial blood [29]. This oxygen is then assumed to diffuse into the 127

surrounding tissue and be consumed by normal and tumour cells. 128

The spatiotemporal evolution of the oxygen field is described by the 129

reaction-diffusion PDE 130

∂c(x, t)
∂t

= Dc∇2c(x, t)− fc(x, t), (1)
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where c(x, t) is the concentration of oxygen at a given time t ≥ 0 and position 131

x ∈ (0, N∆x)2\V , where ∆x is the length of a typical cell, N is the number of lattice 132

sites on a side of the N × N domain and V = {x1, x2, ... , xv} denotes the set of points 133

occupied by blood vessels, which are v in number. We define Dc to be the diffusion 134

coefficient of oxygen, which for simplicity we assume to be constant, corresponding to 135

linear, isotropic diffusion. The function fc(x, t) denotes the cellular uptake of oxygen, 136

whose form is given by 137

fc(x, t) =

{
µi r (c(x, t)) if a cell of type i occupies a CA lattice site at position x at time t ,
0 otherwise,

(2)
where i ∈ {H, T} signifying Health (H) and Tumour (T ) cells, respectively. Here µi is 138

defined as the cell type-specific oxygen consumption rate constant which modulates 139

r (c), the oxygen-dependent consumption rate, which we assume to have 140

Michaelis-Menten form 141

r (c) = rc

(
c

c + Km

)
, (3)

where rc and Km denote the maximal uptake rate and effective Michaelis-Menten 142

constant, respectively. We supplement equation (1) with the following initial and 143

boundary conditions. We begin with a spatially uniform oxygen distribution c(x, 0) = c0, 144

a positive constant, with the entire domain, (0, N∆x)2\V , occupied by normal cells. To 145

simulate carcinogenesis, we replace the cell in the central lattice site with a tumour cell. 146

Vessels are placed throughout the domain at a prescribed density and pattern, 147

depending on the situation being simulated. To approximate the constant value of the 148

oxygen concentration in the arterial blood we impose c(x, t) = cmax at each point, x ∈ V , 149

where there is a vessel. We further impose no-flux boundary conditions at the edge of 150

the domain, 151

n · ∇c = 0, (4)

where n is the unit normal outward vector to the domain boundary. 152

Proliferation. Cell proliferation is governed by a complicated set of subcellular 153

processes, and has been modelled in great detail [30, 31]. The cell cycle has many 154

levels of complexity including checkpoints, specific temporal sequences and many 155

biophysical processes that alter the cell shape and response to microenvironmental 156

cues and stresses at different times in the cycle [32]. As we are interested in a 157

phenomenon occurring at the much larger, tissue, scale, we will encapsulate this 158

complexity into a simple rule set and threshold values on microenvironmental (oxygen) 159

conditions and neighbourhood occupation. 160

For cells to progress through the cell cycle and divide, we require their local oxygen 161

concentration to exceed a fixed threshold value cp, and that the neighbourhood (in this 162

case utilizing a Moore neighbourhood) contains at least one empty space. If these 163

constraints are met, then we allow the cell to divide with type-specific probability pj 164

(where j ∈ {H, T}) at each automaton time step, and place the resultant daughter in a 165

randomly chosen empty neighbouring space. If no empty neighbouring space exists, 166

then the cell becomes quiescent (see below). In the case of cancer cells, we relax this 167

requirement to allow proliferation into healthy tissue, that is that normal cells are 168

considered empty spaces when assaying for empty space for division. 169

Cell death. The main mechanisms of cancer cell death considered in this study occur 170

due to severe hypoxia and radiation therapy. Healthy cells can also die through if they 171

are selected for replacement by dividing cancer cells, a situation which would normally 172
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be ascribed to a cancer cell’s greater fitness, allowing it to out-compete healthy cells for 173

space or nutrients locally, or possibly secondary to an acid-mediated event [23, 33]. 174

Cells under extreme hypoxic conditions are often found to undergo autophagy 175

(directly translated as ‘self-eating’), a state in which they become resistant to nutrient 176

starvation [34], and cells are known to die over different time scales and by different 177

mechanisms (apoptosis versus necrosis) depending on the magnitude and duration of 178

the hypoxic insult. While these differences have been shown to affect tumour 179

growth [35], as this is not the main focus of this model, we will simplify this scenario by 180

assigning a rate, pd, for cell death at each cellular automaton update, when under 181

extreme hypoxia (i.e. c < cap where cap ∈ (0, cmax] is a fixed, model-specific positive 182

constant). 183

To model the effect of radiation on heterogeneously oxygenated tissues, we begin 184

with the linear-quadratic model of cell survival: 185

SF = e−n(αd+βd2), (5)

where α and β are radiobiologic parameters associated phenomenologically with cell 186

kill resulting from ‘single hit’ events (α) and ‘double hit’ events (β) respectively, and n 187

represents the number of doses of d Gy of radiation.This metric, while originally derived 188

to fit in vitro data [36], has since been widely used to also describe the clinical efficacy 189

of radiation [37, 38]. 190

The basic interaction driving DNA damage from radiation is mediated either by free 191

electrons or by free radicals formed by the interaction of photons with water. The DNA 192

damage instantiated by these mechanisms can be repaired by reduction by locally 193

available biomolecules containing sulfhydryl groups [24]. This damage can be made 194

more permanent, however, by the presence of molecular oxygen, which binds with the 195

DNA radical, forming a ‘non-restorable’ organic peroxide. This damage ‘fixation’ by 196

oxygen creates a situation in which the damage now requires enzymatic repair, which 197

occurs on a much longer timescale [24]. Regardless of the mechanism of radiation 198

sensitisation by oxygen, the effect is well documented, and has been modelled by 199

replacing the parameters α and β in equation (5) with functions of the oxygen 200

concentration using the oxygen enhancement ratio (OER): 201

α(c) =
αmax

OERα(c)
, β(c) =

βmax

OERβ(c)2 , (6)

where αmax and βmax are the values of α and β under fully physiologically oxygenated 202

conditions and α(c), β(c) are, respectively, the values of α, β at oxygen concentration c. 203

We define the OER as a function of the oxygen concentration by using the empirically 204

established relation [13, 39] 205

OER(c) =
(OERmax −OERmin)KOER

c + KOER
+ OERmin, (7)

which is solved individually for α and β (see Table 1 for parameters). 206

Quiescence. In response to a lack of oxygen or other nutrients or external 207

mechanical cues indicating overcrowding, cells enter a temporary state of quiescence 208

during which no division occurs [40]. We model this process through an oxygen 209

threshold (c < cp where cp ∈ [cap, cmax] is a fixed, model-specific positive constant) 210

below which cellular division is not possible and by the spatial constraint that the cell is 211

quiescent if there are no empty neighbouring lattice sites (using a Moore 212

neighbourhood). In the case of a cancer cell, we require that at least one space be 213

empty or inhabited by a normal cell, a situation in which we assume that the cancer cell 214

will replace the normal cell if chosen for division. When the conditions for quiescense 215

are no longer present, the cell’s state of quiescence is reversed. 216
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Normal tissue approximation. The invasion of cancer cells into healthy tissue has 217

been modelled extensively [41, 42, 43, 44]. While this process is not the focus of our 218

study, we nevertheless must consider the healthy tissue surrounding our growing 219

tumour, as it plays an important role in modulating the local oxygen concentration. 220

Previous investigations have modelled tumour spheroid growth [45], or assumed a 221

constant influx of oxygen from the boundary of the tissue, but as we endeavour to 222

understand how heterogeneous vascularisation affects the growth of a tumour, we must 223

also incorporate normal tissue effects [14]. To do this, we assume that the entire tissue 224

is initially comprised of normal cells, which can divide if they have sufficient space, 225

which consume oxygen at a rate of µH r (c) and are subject to hypoxic cell death. In 226

addition, normal cells can die through competition with cancer cells. 227

Cell competition. The ability to invade into normal tissue is one of the ‘Hallmarks of 228

Cancer’ [46]. Several mechanisms for this have been proposed and modelled, including 229

degradation of extracellular matrix by secreted proteases [41, 47] and mediated by 230

excreted lactic acid [42, 43]. As this specific interaction is not our focus, we make the 231

simplifying assumption that normal cells do not spatially inhibit cancer cell proliferation, 232

and a cancer cell can freely proliferate and place a daughter onto a lattice location 233

where a normal cell is located, causing the normal cell to die, either through an 234

acid-mediated or simple fitness based competition mechanism [48]. Normal cells, 235

however, are spatially inhibited by cancer cells and other normal cells. 236

Vascular dynamics. While in healthy tissue vessels are normally patent, as tumours 237

grow the vasculature can experience significant spatio-temporal changes. There 238

continues to be significant theoretical work to describe angiogenesis, the process of 239

new vessel formation [22, 27], as well as the biophysical processes governing vascular 240

occlusion [49, 50]. In this study, we seek only to understand the effect of 241

heterogeneous oxygen concentrations on tumour growth and progression [14]. 242

Therefore, we consider only the simplest scenario, in which there is no feedback from 243

the environment to the vessels. 244

Coupling models in the hybrid cellular automaton 245

Having described each of the constituent parts of the model, we now describe how they 246

are coupled to form the HCA. We consider a two-dimensional lattice of size N × N, with 247

each lattice element identified by coordinates (i∆x , j∆x) where i , j ∈ {1, 2, ... , N}. 248

As schematised in Fig. 1, at each automaton time step every cell (chosen in random 249

order) in the domain is subject to a series of decisions based on the current automaton 250

state and local oxygen concentration, c(x, t). The specific checks that each cell 251

undergoes, regardless of its phenotype, are: 252

1. compare c(x, t) to cap and cp; 253

2. consume oxygen at rate µi rc , die, or remain quiescent; 254

3. check number of free neighbouring lattice sites; 255

4. determine proliferative behaviour: if proliferative constraints are met (space and 256

oxygen), then consume additional oxygen for proliferation [51] and place daughter 257

cell in randomly chosen empty neighboring lattice site, otherwise become 258

quiescent. 259
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Figure 1. Schematic of discrete time updating algorithm for the HCA. At each cellular automaton update, each cell in
the domain undergoes a series of fate decisions based on intrinsic cell parameters and microenvironmental cues.

Cell-microenvironment interaction. As we endeavour to understand the effects of a 260

heterogeneous oxygen distribution on healthy tissues and tumours, we must consider a 261

number of parameters that govern a cell’s behaviour in response to these 262

environmental cues. Specifically, we consider the hypoxia threshold, cap, below which 263

cells will die, and be removed from the system. As cell fate decisions are made on a 264

much slower time scale than oxygen diffusion, there is a potential for update bias which 265

would entail cell fate decisions made long after the conditions for these decisions were 266

met. To reduce this, we will ascribe a probability per automaton update, pd, to this death 267

and removal, and update the HCA more frequently than the cell cycle time. We further 268

consider a baseline oxygen consumption required for cellular processes, rc, and a 269

threshold for cells to be proliferatively active, cp [51]. 270

Non-dimensionalisation and parameter estimation. In order to place the model in 271

an appropriate spatial and temporal scale, we non-dimensionalise the system. We 272

rescale time by a typical cell cycle time, τ = 16h [52], and lengths by a typical diameter 273

∆x = 50µm for a glioma cell [53]. We choose to rescale the oxygen concentration to 274

reflect the average oxygen concentration in the arterial blood, estimated at about 275

80mmHg (5.14× 10−13 mol−1 cell−1) [54], so that the non-dimensional oxygen 276

concentration at a vessel takes the value 1. 277

Introducing the non-dimensional variables x̃ = x/∆x , t̃ = t/τ and c̃ = c/cmax, we 278

define the new non-dimensional parameters 279

D̃c =
Dcτ

∆x2 , r̃c =
τ rc

cmax
, ˜cap =

cap

cmax
, K̃m =

Km

cmax
. (8)
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For notational convenience, we henceforth refer to the non-dimensional parameters 280

only and drop the tildes for the aforementioned parameters. See Table 1 for a full list of 281

dimensional parameter estimates and corresponding non-dimensional values. 282

Table 1. Dimensional model parameters and their estimates.

Parameter Meaning Value
(original units)

Value
(non-dimensionalised) Reference

Dc
Oxygen diffusion

coefficient 1.0× 10−5 cm2 s−1 2.304× 104 cell cycle−1 [55]

rc
Maximal oxygen
consumption rate 4.6× 10−16 mol cell−1 s−1 51.54 cell cycle−1 [51]

rp
Proliferative oxygen

consumption 5× rc [51]

∆x Average cell
diameter 50 µm 1 cell diameter [53]

∆t Oxygen update
time step 0.25 s 1 cell cycle / 230,400 —

τ
Average cell
cycle time 16 h 1 cell cycle [52]

cap
Hypoxic

threshold 5.14× 10−14 mol−1 cell−1 0.1 [54]

Km
Effective Michaelis-

Menten constant 5.14× 10−15 mol−1 cell−1 0.01 [56]

cmax
Arterial oxygen
concentration 5.14× 10−13 mol−1 cell−1 1 [57]

µH
Healthy tissue

metabolic constant 1 1 —

µcancer/µH
Cancer metabolic

ratio 2 2 [58]

pd
Probability of death

when c < cap
0.25 cell cycle−1 0.25 cell cycle−1 —

KOER
Effective OER

constant 3.28 3.28 [13, 39, 59]

OERα,min =OERβ,min
OER min
constant 1 1 [13, 39, 59]

OERα,max
OERα max

constant 1.75 1.75 [13, 39, 59]

OERβ,max
OERα max

constant 3.25 3.25 [13, 39, 59]

Numerical solution. To solve equation (1) numerically, we discretize space and time 283

by letting tk = k∆t , where k ∈ N, and xi = i∆x and yj = j∆x where i , j ∈ {1, ... , N} 284

encode a square lattice of size N × N, and ∆t is the oxygen update time step. We 285

approximate the oxygen concentration at time tk and position xi , yj by ck
i ,j ≈ c(xi , yj , tk ). 286

We use a central difference approximation for the Laplacian and thus approximate 287

equation (1) by 288

ck+1
i ,j − ck

i ,j

∆t
=

DC

∆x2

[
ck

i+1,j + ck
i−1,j + ck

i ,j+1 + ck
i ,j−1 − 4ck

i ,j

]
−
(
fc
)k

i ,j , (9)
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where
(
fc
)k

i ,j is the cell-specific oxygen consumption rate defined in equation (2). 289

Rearranging equation (9) to obtain a solution for ck+1
i ,j gives 290

ck+1
i ,j = ck

i ,j

(
1− 4

DC∆t
∆x2

)
+

DC∆t
∆x2

(
ck

i+1,j + ck
i−1,j + ck

i ,j+1 + ck
i ,j−1

)
−∆t(fc)k

i ,j . (10)

At each oxygen time step, the oxygen concentration in a given lattice site is updated 291

using equation 10. To impose the zero-flux boundary conditions we modify equation 292

(10) in the cases where i , j ∈ {1, N}. For example, to calculate the oxygen 293

concentration experienced by a cell at the left-hand boundary (i.e. i = 1) from outside 294

the domain (i.e. i = 0) we discretize the no-flux boundary condition to obtain ck
0,j = ck

2,j , 295

which we substitute into equation (10). Note that lattice sites occupied by vessels have 296

fixed oxygen values (1 in the non-dimensional system), so we do not update them. 297

Tumour control probability. The tumour control probability (TCP) is a measure that 298

approximates the probability of eradicating all cells within a tumour and thereby 299

controlling (in this case ‘curing’) it. While a number of methods, both deterministic and 300

stochastic, have been proposed to define such a measure [60], the most commonly 301

used formulation assumes that the number of surviving cells capable of proliferation 302

after radiation follows Poisson statistics and that the TCP is calculated by 303

TCP = e−N0SF, (11)

where N0 is the number of cells in the tissue before radiation therapy and SF is the 304

surviving fraction defined by (5). 305

To compare the effect of radiation on different populations of cells in our model, we 306

calculate the total number of cells surviving a given therapeutic intervention. To this 307

end, we consider the individual survival probability of cells experiencing a given oxygen 308

concentration. Let Nk
i be the number of cells in the tissue that experience a oxygen 309

concentration in the interval [i∆c, (i + 1)∆c) at time tk = k∆t , for i ∈ {0, ... , M}. Here we 310

define ∆c = 0.01, and M∆c = 1, reflecting the fact that the oxygen concentration is 311

bounded by its non-dimensional value in the arterial blood, which is 1. We assume that 312

radiation effect is instantaneous, and represent the time after radiation as tk+1. The 313

number of cells experiencing an oxygen concentration in the interval [i∆c, (i + 1)∆c) 314

immediately following a single radiation dose d is given by 315

Nk+1
i = Nk

i e−(αi d+βi d2). (12)

Thus the total number of surviving cells at time tk+1 is given by 316

Nk+1 =
M∑
i=0

Nk+1
i . (13)

To calculate the number of surviving cells in a given domain after simulated radiation, 317

we first calculate the individual values of αi and βi for each interval of oxygen 318

concentration using equations (6) - (7). We can then compute the surviving fraction 319

after a simulated single 2Gy dose of radiation (d = 2Gy, n = 1) by utilising equations 320

(12) and (13) and assuming initial distribution of cellular-oxygen given by the 321

simulations represented in Fig. 5. 322
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Results 323

Oxygenation of healthy tissue 324

Regular vascular patterning preserves oxygen distribution shape but not mean. 325

We first model a domain seeded with only healthy cells, and regular spatial distributions 326

of vessels of varying density. Estimates in the literature for ‘normal’ vascular density 327

span several orders of magnitude and are reported using a number of different 328

measures [25, 61, 62], so we choose to calculate the actual physiological vascular 329

density of this model by exploring regular vessel spacing and healthy tissue only. For 330

each vessel spacing, the domain size is changed to accommodate the full complement 331

of 40 vessels. In each of these cases, the pattern of the vascular distribution will remain 332

constant, but the vascular density (number of vessels / domain size) will change. For 333

ease of visualisation, we have chosen to plot the domains as equivalent sizes (see 334

Fig. 2), and report the changing density. 335

Figure 2. Varying the vascular density with regular spacing affects the carrying capacity and cellular-oxygen
distribution in normal tissue. We plot healthy tissue growth and maintenance as we vary the vessel density (decreasing
density from top to bottom Θ = 0.0031, 0.0027 and 0.0024). We plot cellular distributions (left) with associated spatial oxygen
concentration (middle) and non-spatial distribution of cells versus oxygen concentration (right). These plots represent the
system at dynamic equilibrium, in which cell death and birth is balanced across the tissue. The mean of the cellular-oxygen
distribution decreases with vessel density (0.26, 0.18 and 0.16, top to bottom) while the standard deviation and skewness
stay approximately constant (std = 0.09, 0.1 and 0.1, skewness = 3.18, 3.23 and 3.32). Domains are visualised as the same
size for ease of comparison, but increase in size from top to bottom (domains are of size N × N where from top to bottom
N = 114, 122, 130).

As expected, the closer the vascular packing in the domain, the more cells can be 336
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supported and the higher the mean oxygen tension (Fig. 2). There is a critical value for 337

vessel density below which cells begin to die, and therefore the proportion of the 338

domain inhabited by cells (termed carrying capacity henceforth) drops below unity. This 339

value is between 2.7× 10−3 vessels per lattice site and 3.1× 10−3 vessels per lattice 340

site for the parameters modeled (Table 1), which is well within an order of magnitude to 341

the vascular area to tumour area ratio reported by Zhang et al. [63]. 342

In addition to the carrying capacity, we investigate the distribution of cellular-oxygen 343

concentration. This distribution provides a non-spatial summary statistic of an otherwise 344

spatial entity: we can understand how many (or what proportion) of cells within the 345

domain exist at certain oxygen concentrations, a measure which will become important 346

later when we consider the effect of radiation. In Fig. 2 we note that, while the mean 347

cellular oxygen concentration (mean of the cell-oxygen distribution) varies considerably 348

(from a non-dimensional value of 0.16 to 0.45), the second and third moments of the 349

distribution vary little, with the standard deviation staying between 0.08− 0.11 and the 350

skewness between 3.18− 3.3. That is, the distribution of cellular oxygen concentration 351

maintains its variance about its mean as well as its level of symmetry while the vascular 352

patterning is regular. 353

Irregular vascular patterning results in variation in oxygen distribution shape. 354

We next explore how the oxygen concentration that the population of healthy tissue 355

supported experiences based on changes in density and patterning of vessels in 356

irregularly vascularized domains. While this is a situation that would not likely be seen 357

in the healthy state, understanding the behaviour of the model in this simple situation is 358

valuable before progressing to more complex states. To this end we simulate the 359

resulting healthy tissue growth and maintenance in a variety of randomly generated 360

vascular patterns of the same density (Fig. 3). We plot the final, stable distribution of 361

healthy cells for a random placement of vessels for a given density (Θ = 0.001, top; 362

Θ = 0.0025, middle; and Θ = 0.004, bottom) in the left and middle columns. In the right 363

column, we plot the average distribution of cells at specific oxygen concentrations over 364

ten simulations with different vascular patterns. 365

As expected, we see an increase in carrying capacity with increasing vascular 366

density, similar to the regularly vascularized scenario, with mean cellularity (cells / 367

domain size) increasing from 0.3445 to 0.9424, with standard deviations from 0.0208 to 368

0.0312. Over ten simulations in the irregularly vascularised cases, however, we find 369

striking differences in the distribution of cell-specific oxygen concentration (Fig. 3, right). 370

While in the regular case (Fig. 2) we find conserved cellular-oxygen distribution shapes 371

(second and third moments), in the irregularly vascularized case we find two changes. 372

First, even in the highest vessel density case there is a large peak at cap and second, 373

the distribution becomes more and more skewed (to the left) as the vessel density 374

decreases (skewness ranging from 0.2878− 1.895). 375

Vascularised tumour growth and invasion 376

Tumour invasion speed changes with, and can be constrained by, vessel 377

spacing in regular vascular architectures. As a tumour initially invades into 378

healthy tissue, the vasculature that it would encounter would be that of the healthy 379

tissue. While we are ignoring the effects of cell crowding, vascular deformation and 380

angiogenesis, it is of value to understand how the growth rate and the pattern of cancer 381

spread would change given differing vascular spacing in an otherwise regular 382

vasculature. To this end, we seed a series of regularly patterned vascularised domains 383

with increasing regular vessel spacings with a single initiating cancer cell and observe 384

the growth. Note that, to ensure initial tumour growth, we have placed an extra vessel at 385
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Figure 3. Varying vascular density affects the carrying capacity of normal tissue and the cell-oxygen
concentration distribution. We show the results of normal tissue growth and maintenance as we increase the number of
randomly seeded vessels from 10 (top) to 25 (middle) to 40 (bottom) on a fixed domain (100× 100). Cells (left) and oxygen
concentration (centre) are visualized. We plot the average distribution of healthy cells by oxygen concentration (right) over ten
runs of the simulation with different vascular distributions but constant number of vessels. Every simulation ends in a dynamic
equilibrium.

the centre of the computational domain with the initial cancer cell as in certain regular 386

spacing patterns, the centre would be an area of necrosis and the simulation would end 387

with no cancer cells. 388

We plot the results of these simulations in Fig. 4 along with the individual simulation 389

growth rates. We find four qualitatively different patterns/rates of growth for different 390

vascular densities. First, when there is high vessel density (box 1, green trace, Fig. 4), 391

the tumour undergoes rapid growth. This approximates contact inhibited tumour growth 392

with proliferation at the edge only. Even in this growth regime, we begin to see necrotic 393

areas in the bulk of the tumour (box 2, blue trace, Fig. 4). The second qualitatively 394

different regime is when the vessel density decreases to Θ = 0.0033, and the spacing 395

of the vasculature is such that it has lost its ability to maintain continuous populations of 396

cancer cells (box 3, red trace, Fig. 4). In this regime, we find that the cancer’s growth 397

rate begins to slow, and further, that the boundary begins to become irregularly shaped 398

as the cancer cells have to persist in regions of hypoxia long enough to place daughters 399

in the new, adjacent, areas of increased oxygen, an event that occurs stochastically. 400

Further reduction in vessel density to Θ = 0.0025 results in areas of necrosis forming in 401
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Figure 4. Increasing spacing between vessels slows tumour growth and creates areas of necrosis. Tumours are
grown in equally sized, regularly vascularised domains with decreasing vessel density from boxes 1 to 5 (from top left:
Θ = 0.0072, 0.0041, 0.0033, 0.0025, 0.0013). All plots show the automaton state at the final time point at time t ≈ 190 days.
Only the smallest vessel density (0.0013 in this figure) entirely constrains growth. Growth rate over the first ≈ 190 days is
summarized in the lower right.

the healthy tissue and a sharp reduction in tumour growth rate (box 4, cyan trace, 402

Fig. 4). The final scenario is defined by tissue that is so poorly vascularized that the 403

healthy tissue cannot maintain contiguous populations, and the cancer cannot continue 404

growing beyond the area of initial vessel oxygenation (box 5, black trace, Fig. 4), and 405

would need to produce its own vessels to grow further. 406

Tissue carrying capacity and vessel density. We next investigate in further detail 407

the effect of vessel density on the carrying capacity and cellular-oxygen distribution. We 408

consider a domain of size N = 73 (chosen for ease of comparison for normal vessel 409

spacing) and vary vessel number from very low until we reach saturation of cells (in this 410

case from 3 to 236 vessels). In each simulation, we initialize the domain full of cancer 411

cells and then allow the tissue to experience oxygen dependent birth and death until a 412

dynamic equilibrium is reached, defined as experiencing less than a 1% change in cell 413

number for 50 time steps. We choose this initial condition, instead of seeding the 414

domain with a single cell, because, in this section, we are not interested in growth 415

kinetics, but instead focus on tumour bulk equilibrium characteristics. From this point, 416

we then record and average 100 time steps of cell and oxygen concentration data. For 417

each vessel number, we run 500 simulations, as detailed above, with random vessel 418

configuration and plot the result of each set of simulations and the associated standard 419
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deviation (inset) in Fig. 5. 420
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Figure 5. Equilibrium cancer cell density versus vessel density. We plot the results of several families of simulations
seeded with equal numbers of randomly placed vessels on a fixed domain of size 73× 73. Each data point is represented by
a box which is centered on the median of 500 simulations, each of which is the average of 100 time points after dynamic
equilibrium is reached. The edges of the boxes represent the 25th and 75th percentiles, the whiskers extend to the most
extreme data points not considered outliers. Outliers are defined as any simulation outside approximately 2.7 standard
deviations, and they are plotted as red crosses. Inset we plot the standard deviations at each vessel density.

As expected, we see a monotonic approach to cellular saturation as vessel number 421

increases. When we plot the standard deviation, we find that it is significantly higher in 422

the region that is most physiologically relevant, and that these differences can reach as 423

high as 10% (Fig. 5), making cellularity estimates based on vascular density difficult 424

and unreliable. Further, how the different patterns represented in these families of 425

simulations can affect the heterogeneity of oxygen within the domain, and the resultant 426

cellular-oxygen distributions, is unknown. 427

Effect on cellular-oxygen distribution in heterogeneous domains. To begin to 428

understand how the patterning of the vasculature affects the cellular-oxygen distribution 429

within our simulations, we consider two cases from the sample of our simulations for 430

two separate vessel densities (24 and 54 vessels). We plot and compare the vascular 431

patterns which support the maximum and minimum cellular populations from two given 432

vascular densities (Fig. 6). We plot the minimum cellular population represented in the 433

left column at low (top) and high (bottom) relative vascular densities and the maximum 434

populations in the right column. 435

In both minimum population cases, there is a large peak of cells near to the hypoxic 436

minimum (cap) as well as a smaller peak around an oxygen concentration of 0.5. In the 437

maximum cellularity examples, however, these similarities disappear. In the low vessel 438

density, we see that the hypoxic population is maintained, but we have lost the central, 439

well oxygenated fraction, while in the high vessel density maximum population this is 440

reversed, and we lose the hypoxic population and the entire population is centered 441

PLOS 15/30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2015. ; https://doi.org/10.1101/029595doi: bioRxiv preprint 

https://doi.org/10.1101/029595
http://creativecommons.org/licenses/by/4.0/


around normoxia. This opposite effect (losing the hypoxic fraction in one case and 442

increasing it in the other) would drastically change radiation efficacy, suggesting that 443

vascular organization, not just density, could play an important role in clinical radiation 444

therapy. 445

Further, we see that in each case, the maximum population is supported by more 446

homogeneous vascular patterns, but that in the two cases the distributions are quite 447

different, and indeed the skewness reflects this. 448
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Figure 6. Homogeneous and heterogeneous vessel patterns with same density have very different carrying
capacity and cellular oxygen distributions. We plot the equilibrium cellular-oxygen distributions and spatial oxygen
distributions from the minimum and maximum cellularity examples from two representative families (24 and 54 vessels per
domain) of simulations. We see nearly 20% changes in carrying capacity in favor of the more homogeneous distributions in
both cases, and while the second and third moments of the distributions of oxygen distribution, the changes are highly varied
from the low to high density cases.

The effect of heterogeneous vascular patterns on surviving cell 449

number 450

As discussed in the previous section, the organisation of vessels in our model can have 451

a significant effect on both the carrying capacity of a domain and also the resulting 452

cellular-oxygen distribution of the cells inhabiting the domain. It is exactly these two 453

values (cell number and surviving fraction) which influence our computation of total 454

surviving cells, a measure critical for comparison across heterogeneous samples, and 455

PLOS 16/30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2015. ; https://doi.org/10.1101/029595doi: bioRxiv preprint 

https://doi.org/10.1101/029595
http://creativecommons.org/licenses/by/4.0/


to understanding radiation efficacy at larger scales, like TCP. How these effects are 456

governed by vessel organisation however, we have not yet elucidated. In this section 457

we will investigate the effects of differing vascular patterns on radiation efficacy. 458

Surviving cell number after radiation varies widely with vessel pattern. To 459

begin to understand the variability inherent in radiation effect, we calculate the number 460

of cells surviving after a single simulated dose of 2 Gy of radiation in each simulation 461

and plot the results as a function of vessel density (Fig. 7). We previously found that as 462

the vessel density increases, the mean number of cells supported by the domain 463

increases in regular domains, and this holds in irregular domains as well (Figure 10). All 464

else being equal, this should translate into an increase in the number of surviving cells 465

after radiation. We see that this relation holds for the low vessel density simulation 466

families, but as the vessel density increases above 0.01, the mean number of surviving 467

cells begins to decrease. Further, we observe, near this transition point, that the 468

standard deviation of surviving cells within each family of simulations peaks (Fig. 7, 469

inset). This highlights the fact that vessel density, and mean oxygen, are insufficient to 470

predict surviving cells, therefore, in order to better predict the number of surviving cells 471

in a domain, we require a measure of vascular organisation. 472
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Figure 7. Surviving cells versus vessel density for all simulations. We plot the number of surviving cells after 2Gy of
simulated radiation in each simulation as calculated using equation (5) modified by the OER from equations (6) and (7)
versus the number of vessels in each case for each of the 500 simulations with constant vessel number, but random
placement, on domain size 73× 73 at dynamic equilibrium. The edges of the boxes represent the 25th and 75th percentile,
the whiskers extend to the most extreme data points not considered outliers. Outliers are defined as any simulation outside
approximately 2.7 standard deviations, and they are plotted as red crosses. Inset we plot the standard deviation for each
family of simulations versus the vessel number.
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Vessel density is insufficient to predict radiation effect. We have previously 473

shown that vascular density is a strong predictor for the carrying capacity of the tissue 474

in our model (Fig. 5). This is intuitive and, for regularly vascularized domains, as we 475

expect in healthy tissue, is sufficient to explain not only the carrying capacity, but also 476

other measures of the cellular distribution (e.g. the shape of the cellular-oxygen 477

distribution). We have now shown that this measure is not sufficient when we begin to 478

consider heterogeneously vascularized domains, as we know exist in cancer [64], 479

where many possible spatial patterns can exhibit the same density. The mapping from 480

cellular-oxygen distribution to surviving cells is straightforward in the simulations we 481

have presented, as the cellular-oxygen distribution can be measured directly, and the 482

subsequent surviving cells can be calculated using equation (13). In routinely obtained 483

tissue biopsy specimens however, it is not possible to measuring oxygen concentrations 484

at the cellular resolution. It would therefore be of translational value to define a metric 485

by which cellular-oxygen distribution, or the subsequent radiation efficacy, could be 486

inferred from a readily measurable surrogate, such as the distribution (and density) of 487

microvessels within these samples. 488

Spatial metrics of vessel organisation correlate with radiation 489

effect 490

The vascular normalisation hypothesis [65] suggests that radiotherapy should be more 491

efficacious when applied to tissues with normalised vascular beds. To test this in our 492

model, we introduce a spatial metric by which to understand the overall level of spatial 493

heterogeneity in our simulations. 494

We will utilise the variance stabilized Ripley’s L function [21] to measure the 495

deviation from homogeneity in our vessel distributions. This measure, which is a 496

function of distance, describes the average number of points within a given distance of 497

any other point. For a complete description of this measure, see the supplemental 498

information. 499

Spatial metrics correlate directly with carrying capacity and with radiation 500

response if vessel density is known. In order to allow for easy correlation, we first 501

distill this metric (which is a function of distance) into a single number by taking the 502

mean value from 0− 19 cell diameters (from adjacent to a distance beyond the ability to 503

affect one another). We calculate the mean Ripley’s L function for all of the 500 504

simulations in each vessel number case and plot it against the associated carrying 505

capacity (Supplemental Fig. 10). We find a significant negative correlation for the lower 506

vessel densities which loses statistical significance (p-values not shown) as the 507

domains begin to reach confluence for all but the minority of vessel arrangements. 508

Fig. 8 shows scatter plots of Ripley’s L function and surviving cells after radiation in 509

6 representative families of the 500 simulations with increasing vessel numbers. We 510

find that at low vessel densities there is a strong negative correlation between Ripley’s L 511

function and surviving cells, but this correlation changes sign at high vessel densities, 512

explaining the counter-intuitive change in surviving fraction after Θ = 0.01 in Fig. 7. This 513

suggests that in situations where the vessels are more rarefied, normalising existing 514

vasculature could actually make radiation less effective, in contrast to the vessel 515

normalisation hypothesis. 516
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Figure 8. Ripley’s L function versus surviving cells after radiation. We plot six scatter plots showing the relationship in
each of the 500 simulations represented in Fig. 5 for a given initial vessel density between cell number surviving after 2 Gy of
radiation (x-axis) and the mean of Ripley’s L function (y-axis). We find that there is a positive correlation in the low vessel
densities, and a negative correlation in the high vessel densities. All correlations are significant (p <<0.05), see Figure 11.

Discussion 517

We have used an HCA model of vascular tumour growth in a planar domain to 518

investigate the dependence of cellular oxygenation and radiotherapy efficacy on 519

vascular density and patterning. Our results indicate that simple spatial summary 520

statistics such as Ripley’s L function, which could be easily obtained from biopsy 521

images, may predict, together with more standard measures like vessel density, 522

radiation therapy efficacy and the effect of vascular normalisation on this. While our 523

model is parameterised from glioblastoma data, we anticipate these results to be more 524

widely applicable to other cancer types. 525

Our results corroborate those of Alarcón et al. [14], who also used a HCA approach 526

to studying vascular tumour growth. However, our work differs in several key ways. 527

Specifically, the vasculature in their model lies in plane rather than en face, a choice 528

which was made consciously in our model to ease future translational validation with 529

patient tissue samples. Further, we have ignored several mechanisms of competition in 530

order to focus on defining summary measures of cellular-oxygenation status. These 531
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differences aside, Alarcón et al. found, as we did, that heterogeneity on the scale of 532

oxygen concentration affects cell growth, both in overall speed of tumour growth and 533

also in shape of resulting tissue. Further, they reported significant heterogeneity in 534

steady state oxygen concentration across their domains which was dependent on 535

vascular organisation, but this was never explored in terms of radiation effect. A similar 536

finding was reported by Al-Shammari et al. in a biophysical model of healthy muscle 537

tissue [17], this time in a system utilizing en face oxygen sources, as in our work. We 538

have observed similar changes in cellular-oxygen distributions at equilibrium, and 539

indeed, it is these changes that drive our findings concerning radiation effect. 540

We have seen that the assumption that mean vessel density, and subsequently 541

mean oxygenation, can be used as a surrogate for the number of surviving cells after 542

radiation is insufficient. Further, we found that the relationship between each of our 543

vessel pattern measures and the surviving cells after radiation exhibits a sign change in 544

the mid vessel density range. This change of sign in correlation means that the 545

patterns, within a given vessel density, that take the extreme values of each measure of 546

vascular organization can represent opposite extremes of radiation response. This 547

suggests that if one were to perturb the vasculature, for example toward a more 548

homogeneous distribution, one could induce opposite effects on radiation response, 549

depending on the vessel density. 550

With Folkman’s discovery, in 1971, of a master tumour angiogenesis regulating 551

factor [18], the world thought that the suggested method of blocking this factor, by 552

which it was promised that we could ‘starve’ tumours of their oxygen supply, would 553

dominate cancer research. It was thought that a cure for cancer would occur in a short 554

time period. However, early trials of single agent anti-angiogenic drugs failed to 555

produce results [20]. Later trials, with combinations of chemotherapy and 556

anti-angiogenic drugs, however, showed promise, but even this was discordant with the 557

leading hypothesis describing the mechanism of anti-angiogenic therapy, which was 558

thought to entirely starve tumours of blood supply. 559

It was not until 2001, when Jain suggested the ‘vascular normalisation 560

hypothesis’ [19], that these results could be understood under a single rubric. Jain 561

suggested that anti-angiogenic drugs, instead of entirely blocking new vessel formation, 562

worked to normalise vasculature, pruning inefficient vessels and creating a more 563

regular lattice, thereby improving drug and oxygen delivery. More recent iterations of 564

this hypothesis also include improvement of the efficiency of existing vessels (reviewed 565

by Jain [65, 66]). 566

While this advance in our thinking has provided a way to explain the counter-intuitive 567

results of many trials, it still does not explain why these combinations of anti-angiogenic 568

drugs with chemotherapeutics (or radiation therapy) do not help all patients. Using our 569

simple model system, we have observed a changing correlation with spatial measures 570

and radiation response. This suggests that in certain cases, ‘improving’ the 571

homogeneity of vascularisation would hurt the radiation effect, whilst in other cases it 572

would help: a heterogeneous response to ‘normalisation’ of vascular patterning. We 573

show that for certain cases, vessel density held constant, normal vascular patterning 574

can respond either better or worse to radiation therapy (Fig. 8). 575

To translate these conclusions to the clinic would first require biological validation of 576

these hypotheses, as well as overcoming a number of model limitations. Specifically, 577

the assumption that all vessels are en face and all vessels are the same in terms of 578

size and efficiency. Validation could be achieved either through in vivo window chamber 579

experiments, or indirectly through examination of post-radiation surgical specimens. 580

Model development, to include the addition of angiogenesis, biologically derived vessel 581

geometries and vessel heterogeneity, could be used to extend these predictions to 582

more realistic situations. 583

PLOS 20/30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2015. ; https://doi.org/10.1101/029595doi: bioRxiv preprint 

https://doi.org/10.1101/029595
http://creativecommons.org/licenses/by/4.0/


If these limitations were addressed, and validation was achieved, the technology 584

exists currently to take advantage of this new idea. Specifically, macroscopic oxygen 585

concentrations could be inferred from DCE MRI (or other advanced imaging) to create 586

optimised dose plans, as suggested by Malinen et al. [7]. This information about 587

putative vessel density could then be coupled with histologic measurements using 588

automated localisation of vessels [26] and an algorithm to calculate Ripley’s L. These 589

two pieces of information could then be incorporated by creating a temporally and a 590

spatially optimised radiation plan whereby the appropriate radiation dose would be 591

delivered before VNT to the area that would suffer after normalisation, and then the 592

final radiation could be delivered after VNT to the area that would benefit from it. 593
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Supporting Information 600

S1 Text 601

In the following supplementary material, we check our parameter choices using 602

dimensional analysis and the some simple physical arguments, describe in greater 603

detail our choice of oxygen update time step and stability requirements, perform a 604

sensitivity analysis of our model parameters, provide more detail on the spatial statistics 605

used in the paper and its correlation to carrying capacity and show the correlation and 606

p-values for the plots in Figure 8. 607

Parameter estimation We assume that normal (brain) tissue has an approximate 608

oxygen concentration of 35mmHg [54]. This value also agrees well with an estimate of 609

background tissue oxygen concentration of c0 = 1.7× 10−8 mol cm−2 (4.25× 10−13
610

mol cell−1) taken from Anderson and colleagues [47] after using the ideal gas law, 611

assuming body temperature of 310K, oxygen tension of 5300Pa [54] and cell volume of 612

125, 000µm3. 613

As each of these parameters has been estimated from different sources, we will fine 614

tune the basal oxygen consumption and physiologic vascular density for our specific 615

case using a well-studied tumour spheroid example. We utilize the observation that the 616

diffusion distance of oxygen to support cancer cells is approximately 10 cell 617

diameters [67] and the information from the literature concerning the ratio of cancer to 618

normal oxygen consumption. To estimate the baseline oxygen consumption rate then, 619

we begin with the value rc = 2.3× 10−16 mol cell−1 s−1 taken from an in vitro study of 620

tumour spheroid growth [51] and then perform a virtual tumour spheroid assay (Fig. 9) 621

to fine tune the value for our model system. 622

Time scales and updates. The difference in time scales between the diffusion of 623

oxygen and the proliferation of cells is managed by updating the continuous part of the 624

model many times per cellular time step. This can become computationally expensive 625

in this explicit scheme, and therefore, we seek to minimize this number. However, for 626
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Figure 9. Tumour growth in an avascular domain with oxygen diffusion from the
outside displays characteristics of tumour ‘spheroid’ growth. Here, an otherwise
empty domain is initiated with a single cancer cell. The oxygen at the edge of the
domain is set to c = 1. Cells (left) and oxygen concentration (right) are plotted at three
time points: before the onset of central necrosis (top), initiation of central necrosis
(middle) and later in progression (bottom) when a nearly constant sized proliferative
‘rim’ is observed. From this calibration, we find that the maximal oxygen uptake rate
most appropriate for our model is rc = 7.5× 10−4 s−1 which correlated with an
approximate 10 cell diameter thickness.

stability, we require ∆tDc /∆x2 < 0.25 [68]. We therefore choose ∆tDc /∆2 = 0.1. In 627

non-dimensional parameters, we then calculate 628

∆t =
0.1(50× 10−4 cm)2

1× 10−5 cm2 s−1 = 0.25 s, (14)

or equivalently in non-dimensional parameters 629

∆t =
0.1(1 cell diameter)2

23, 040 cell cycle−1 =
1 cell cycle
230, 400

, (15)

which equates to updating oxygen every 0.25 seconds, or approximately 230, 400 times 630

per cell cycle based on the parameters chosen (see Table 1). While we assume the 631

average cell cycle time to be τ = 16 hours, it is well known that cells in tissues are not 632

synchronized, and also that cell fate decisions such as apoptosis are made on shorter 633

time scales. To model this heterogeneity in cell cycle time and to more accurately 634

match the finer time scale associated with cell death due to microenvironmental 635

PLOS 22/30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2015. ; https://doi.org/10.1101/029595doi: bioRxiv preprint 

https://doi.org/10.1101/029595
http://creativecommons.org/licenses/by/4.0/


cues [69], we choose to update the cellular portion of our model 100 times per cell 636

cycle and scale the rates for cell behaviour accordingly (reduced by a factor of 100), 637

thereby reducing the oxygen calculations to 2, 304 updates per cellular update. 638

Sensitivity analysis To assay the model for sensitivity to parameters, we measure 639

the cellularity and cellular-oxygen distribution distributions for the regular vascularity 640

example reported in the center panel of Figure 2, with Θ = 0.0027 (or a regular spacing 641

of 14 cell diameters). From the parameter set modeled in Figure 2 642

(Dc = 0.1, rc = 1, Km = 0.01and cap = 0.1) we vary each parameter by ≈ three orders of 643

magnitude and report the ranges for each mode of cellular oxygen distribution and 644

cellularity in Table 2. 645

Table 2. Sensitivity analysis.

Parameter Value Cellularity Mean cellular-
oxygen

Std cellular-
oxygen

Skewness cellular-
oxygen

Dc

0.001 0.0015 0.5198 0.0286 -0.333
0.01 0.0449 0.4623 0.0916 0.0197
0.1 0.4336 0.2346 0.1029 1.5947
0.2 0.8489 0.1931 0.0917 2.2165

rc

0.01 0.9969 0.9796 0.0023 2.2728
0.1 0.9969 0.7969 0.0227 2.273
1 0.4336 0.2346 0.1029 1.5947

10 0.0517 0.3398 0.1296 0.0338
20 0.0265 0.3716 0.1458 -0.3105

Km

0.001 0.398 0.2705 0.1018 1.4904
0.01 0.4338 0.2346 0.1029 1.5947
0.1 0.6862 0.1817 0.0926 2.2194
0.2 0.9448 0.1702 1.0872 2.494
0.5 0.9969 0.2816 0.0772 2.3861

cap

0.001 0.8674 0.054 0.0924 2.8366
0.01 0.6088 0.0849 0.1016 2.3506
0.1 0.4336 0.2346 0.1029 1.5847
0.2 0.3495 0.3668 0.0952 1.495
0.5 0.1883 0.6399 0.0617 1.634

As expected, increasing cellular oxygen consumption (rc) strongly influences the 646

ability for a given vascular architecture to support cells, with greater consumption 647

correlating with decreased cellularity. The mean oxygen experienced by cells goes 648

down and then up slightly as the number of cells decreases drastically. Variation in the 649

diffusion coefficient, Dc , strongly affects the ability for a domain to support cells, and 650

also the mean and skewness of the resulting oxygen distribution, but affects the 651

standard deviation relatively little. Our choice of threshold for apoptosis, cap, intuitively 652

has a strong effect on the cellularity, and then inversely on mean cellular oxygen as 653

fewer and fewer cells are competing for the same oxygen. The standard deviation is 654

affected little, and the skewness decreases at first and then increases as the number of 655

cells becomes smaller and smaller. 656
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Spatial statistics To measure the variation away from homogeneity, we utilise a 657

measure derived from Ripley’s K function. To begin, we have 658

K̂ (r ) = λ−1
∑
i 6=j

I(dij < r )
n

, (16)

where λ is the average density of points in the domain, I is the indicator function which 659

yields 660

I(dij < r ) =

{
1 if the Euclidian distance between vessels i and j is less than r ,
0 otherwise.

(17)

We utilize the variance stabilized version of this measure, L̂(r ) which is given by 661

L̂(r ) =
K̂ (r )
π

1/2

, (18)

which has an expected value of L̂(r ) = 1 for homogeneous data. To correct for edge 662

effects, we implement the correction suggested by Ripley [21], which changes the value 663

of the indicator function, for points assayed within r of the edge, to the reciprocal of the 664

proportion of the circle (of radius r ) which falls outside the study area. 665
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Figure 10. Ripley’s L function versus carrying capacity. We plot nine scatter plots showing the relationship in each of the
500 simulations represented in Fig. 5 for a given initial vessel density between cell number at equilibrium (x-axis) and
Ripley’s L (y -axis). We find that there is a significant negative correlation in the low vessel densities which loses predictive
capability as the domain becomes entirely filled and all of the data points align at the full carrying capacity.
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Figure 11. Correlation and p-value for Ripley’s L function vs. surviving cells after radiation. Here we plot the
correlation coefficient (Left) vs. vessel density for all families of simulations and the corresponding p-value (Right). We notice
that the correlation coefficient changes sign at 70 vessels, and the p-value briefly rises to insignificant (≈ 0.5) at the time of
the sign change.
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imaging of vessel diameter, size, and density: a comparative study between MRI
and histology. Magn Reson Med. 2013;69(1):18–26.

62. Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am

PLOS 29/30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2015. ; https://doi.org/10.1101/029595doi: bioRxiv preprint 

https://doi.org/10.1101/029595
http://creativecommons.org/licenses/by/4.0/


J Pathol. 1995;147(1):9.
63. Zhang L, Yankelevitz DF, Henschke CI, Reeves AP, Vazquez MF, Carter D.

Variation in vascular distribution in small lung cancers. Lung Cancer.
2010;68(3):389–393.

64. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG.
Heterogeneity of angiogenesis and blood vessel maturation in human tumors:
implications for antiangiogenic tumor therapies. Cancer Res.
2000;60(5):1388–1393.

65. Jain RK. Normalization of tumor vasculature: an emerging concept in
antiangiogenic therapy. Science. 2005;307(5706):58–62.

66. Jain RK. Normalizing tumor microenvironment to treat cancer: bench to bedside
to biomarkers. J Clin Oncol. 2013;31(17):2205–2218.

67. Frieboes HB, Edgerton ME, Fruehauf JP, Rose FRAJ, Worrall LK, Gatenby RA,
et al. Prediction of drug response in breast cancer using integrative
experimental/computational modeling. Cancer Res. 2009;69(10):4484–4492.

68. Mitchell AR, Griffiths DF. The finite difference method in partial differential
equations. A Wiley-Interscience Publication, Chichester: Wiley, 1980. 1980;1.

69. Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis.
Cardiovasc Res. 2000;45(3):528–537.

PLOS 30/30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2015. ; https://doi.org/10.1101/029595doi: bioRxiv preprint 

https://doi.org/10.1101/029595
http://creativecommons.org/licenses/by/4.0/

