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ABSTRACT: 47 

Research on the genetics of natural populations was revolutionized in the 1990’s 48 

by methods for genotyping non-invasively collected samples. However, these methods 49 

have remained largely unchanged for the past 20 years and lag far behind the genomics 50 

era. To close this gap, here we report an optimized laboratory protocol for genome-wide 51 

capture of endogenous DNA from non-invasively collected samples, coupled with a 52 

novel computational approach to reconstruct pedigree links from the resulting low-53 

coverage data. We validated both methods using fecal samples from 62 wild baboons, 54 

including 48 from an independently constructed extended pedigree. We enriched fecal-55 

derived DNA samples up to 40-fold for endogenous baboon DNA, and reconstructed 56 

near-perfect pedigree relationships even with extremely low-coverage sequencing. We 57 

anticipate that these methods will be broadly applicable to the many research systems 58 

for which only non-invasive samples are available. The lab protocol and software 59 

(“WHODAD”) are freely available at www.tung-lab.org/protocols and 60 

www.xzlab.org/software, respectively. 61 

 62 

63 
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 The capacity to generate genetic data from low-quality or non-invasively 64 

collected samples, first developed in the 1990’s1,2, revolutionized the study of genetics, 65 

evolution, behavior, and ecology in natural populations. These methodological 66 

advances facilitated phylogenetic and phylogeographic analyses of difficult-to-sample 67 

taxa3–5; helped define the role of admixture in mammalian evolution6–8; and enabled 68 

theoretical expectations about paternal investment, kin recognition, and reproductive 69 

skew to be empirically tested, sometimes for the first time9–12. They also yielded 70 

important insights into the genetic viability and future prospects of threatened or 71 

endangered populations from which invasive samples are impossible to obtain13–17. 72 

Non-invasive genetic analysis has thus changed the ways we study population, 73 

ecological, and conservation genetics. Indeed, these fields would look very different 74 

today—and we would know far less about many species—without it. 75 

 However, techniques for non-invasive genetic analysis have changed little in the 76 

past twenty years. Collection of genetic data from non-invasively collected tissues (e.g., 77 

feces, hair, urine) continues to be labor-intensive, time-intensive, and vulnerable to 78 

technical artifacts such as allelic dropout and cross-contamination18,19. Further, current 79 

methods ultimately yield very small amounts of data by today’s standards. Typical 80 

studies genotype only a dozen to several dozen microsatellite loci per individual – a 81 

trivial amount compared to the data sets now routinely generated using standard high-82 

throughput sequencing approaches. Thus, while existing methods are sufficient for 83 

basic pedigree construction and estimating some population genetic parameters 84 

(although usually with substantial uncertainty), they are severely underpowered for 85 

many other types of analyses, such as identifying signatures of natural selection, 86 
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reconstructing population history and demography, and testing for genetic associations 87 

with phenotypic variation20–22. Similarly, analyses that require local (i.e., gene- or region-88 

specific) information on genetic diversity, structure, or ancestry instead of genome-wide 89 

averages cannot be conducted23–27. Finally, because non-invasively collected genotype 90 

data are most often based on microsatellites, they cannot take advantage of new tools 91 

designed specifically for single nucleotide variants28–30. 92 

 Generating genome-scale data sets from non-invasive samples is challenging for 93 

two reasons. First, in many cases, the DNA extracted from these samples is low quality 94 

and highly fragmented. Second, it contains large proportions of non-host DNA. For 95 

example, only about 1% of DNA extracted from fecal-derived samples is endogenous to 96 

the donor animal (most is microbial)31. Sequence capture methods, in which 97 

synthesized baits are used to enrich for pre-specified target sequences from a larger 98 

DNA pool32, present a potential solution to both of these problems. Because shearing is 99 

a required step in library preparation, the problem of working with highly fragmented 100 

samples is obviated. Indeed, Perry and colleagues31 were able to target and sequence 101 

1.5 megabases of the chimpanzee genome from fecal-derived DNA, using a modified 102 

version of sequence capture, with very low genotyping error rates relative to blood-103 

derived DNA. More recently, Carpenter et al.33 reported a method for performing 104 

genome-wide sequence capture from low-quality ancient DNA samples, which 105 

recapitulate many of the challenges posed by non-invasive samples (e.g., highly-106 

fragmented DNA and low proportions of endogenous DNA).  107 

 However, while considerable investment in single samples often makes sense in 108 

ancient DNA studies, the low levels of post-capture enrichment associated with 109 
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currently available protocols are not cost-effective for population studies of non-invasive 110 

samples. Substantially higher rates of enrichment, particularly in non-repetitive regions 111 

of the genome, will be essential to overcome this limitation. In addition, computational 112 

methods for analyzing the resulting data are also required, especially given that 113 

genome-scale sequencing efforts for such samples are likely to produce low coverage 114 

data. For example, current paternity assignment approaches34–36 were not designed to 115 

deal with uncertain genotypes, an inevitable component of analyzing low coverage 116 

sequencing data. Thus, for capture-based methods to become broadly accessible, the 117 

development of appropriate new computational approaches is also essential. 118 

Here, we report an optimized laboratory protocol for genome-wide capture of 119 

endogenous DNA from non-invasively collected samples, combined with a novel 120 

computational approach to reconstruct pedigree links from the resulting data 121 

(implemented in the program WHODAD). We validate both our lab methods and 122 

computational tools using non-invasively collected samples from 54 members of an 123 

intensively studied wild baboon population in the Amboseli basin of Kenya37. We also 124 

demonstrate the generalizability of our methods to non-invasive samples collected using 125 

different methods from a different baboon species from West Africa. Our protocol is cost 126 

effective, has manageable sample input requirements, yields good capture efficiency for 127 

high complexity, non-repetitive elements, and minimizes the need for extensive PCR 128 

amplification. Importantly, we find that genotype data generated from fecal samples 129 

closely match data from high quality blood-derived DNA samples from the same 130 

individuals, and provide near-perfect information on pedigree relationships even with 131 

extremely low per-sample sequencing coverage (mean = 0.49x genome coverage). 132 
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Together, these methods will enable population, conservation, and ecological genetic 133 

analyses of natural populations to again take a major leap forward, into the genomic 134 

era. At the same time, they will also introduce valuable new systems to the genomics 135 

community. 136 

 137 

RESULTS 138 

 139 

DSN digestion during bait construction increases library complexity 140 

 Our protocol relies on in vitro transcription of biotinylated RNA baits to capture 141 

host-specific DNA from the mixed pool of host, environmental, and microbial DNA 142 

extracted from non-invasive samples. Similar to Carpenter et al33, RNA baits are 143 

generated from DNA templates obtained from a high quality DNA sample (here, DNA 144 

extracted from blood). This approach avoids the high cost of custom bait synthesis (as 145 

in Gnirke et al.32 and Perry et al.31), but can also produce a bait set that includes a large 146 

proportion of low complexity, repetitive regions. Consequently, reads generated from 147 

captured DNA cannot be uniquely mapped, lowering the protocol’s efficiency relative to 148 

using a more diverse bait set. To address this concern, we incorporated a novel duplex 149 

specific nuclease (DSN) digestion in the bait construction step (Fig. S1A; see Methods). 150 

Sequencing the DNA bait templates prior to in vitro amplification demonstrates that 151 

including the digestion step reduces the percentage of baits synthesized from low 152 

complexity/highly duplicated regions. Specifically, a 4 hour incubation of sheared DNA 153 

at 68°C followed by a 20 minute DSN digestion in the presence of human Cot-1 greatly 154 

improved the efficiency of capture, producing the highest complexity bait library of the 155 
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five conditions we tested. Compared to DNA templates from a non-DSN-digested 156 

library, bait templates produced using these conditions reduced the number of reads 157 

mapping to multiple locations by 2.6-fold (from 19.2% to 7.5%; Fig. S2).  158 

 159 

Capture-based enrichment  160 

 We validated our full capture protocol (bait construction followed by capture of 161 

endogenous DNA and sequencing of captured fragments) using fecal-derived DNA 162 

(fDNA) samples collected from 54 individually recognized yellow baboons (36 males 163 

and 18 females; Fig. 1) from the Amboseli baboon population, an intensively studied 164 

population in which maternal and paternal pedigree relationships are known for a large 165 

set of individuals9,37,38. We produced data for 52 of the samples in two successive 166 

capture efforts: “Capture 1” was conducted on fDNA from 24 baboons, and “Capture 2” 167 

was conducted on fDNA from 28 additional baboons after making multiple 168 

improvements to our initial protocol (changes to the protocol between capture efforts are 169 

described in detail in Table S1; Table S2 provides detailed information on sequencing 170 

coverage and mapping statistics). Data from the remaining two individuals, “LIT” and 171 

“HAP”, were generated to compare the captured fDNA sample with data derived from 172 

sequencing high-quality genomic DNA samples (gDNA) extracted from blood for the 173 

same individuals. 174 
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Figure 1. Pedigree of a subset of baboons monitored by the Amboseli Baboon 
Research Project. Samples from both males (squares) and females (circles) were 
enriched in Capture 1 (green) or Capture 2 (purple). Unfilled circles/squares represent 
baboons that connect individuals in our pedigree, but who were not sequenced as part 
of this study. Each sequenced individual is represented by a unique number (below the 
circle/squares); note that some individuals are repeated in the figure because baboons 
often produce offspring with multiple mates. The paired fDNA and gDNA samples came 
from two individuals, HAP (blue) and LIT (orange), who were members of the study 
population but are not connected to this pedigree.  
 175 

 Our protocol (Fig. S1) resulted in substantial enrichment of baboon DNA in the 176 

post-capture versus pre-capture samples (see Table S2 for sample-specific details). A 177 

mean of 44.56% (range: 10.28-83.17%) of post-capture fragments mapped to the 178 

baboon genome, despite starting with pre-capture samples that contained a mean of 179 

only 2.04% endogenous baboon DNA, as estimated by qPCR (range 0.19-8.37%). 180 

However, in Capture 1 a large proportion of the mapped fragments were identified as 181 

PCR duplicates (meancapture1=71.97% of mapped fragments, rangecapture1: 51.43-182 

88.46%; Fig. 2A). After removing PCR duplicates, a mean of 9.16% of the post-capture 183 

reads in Capture 1 were non-duplicate mappable fragments (rangecapture1=2.23%-184 

23.75%), producing a mean coverage of 0.20x per sample relative to the mappable 185 

baboon genome (mean sequencing depth of 5.8 Gb per sample; rangecapture1 = 0.04-186 

0.49x; Fig. 2B). These numbers translated to an overall mean fold enrichment of 39.8-187 
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fold for mapped reads (rangecapture1: 8.0-111.8-fold, s.d.=25.2), and 9.6x enrichment of 188 

non-PCR duplicate mapped reads (rangecapture1:3.9-22.4-fold, s.d.=5.0; Fig. 2C).  189 

 Based on our results for Capture 1, we made multiple protocol improvements 190 

prior to conducting Capture 2 (Table S1). The improved protocol was twice as effective 191 

on average, resulting in a mean 18-fold enrichment of high quality, analysis-ready reads 192 

and a maximum fold enrichment of close to 40-fold (rangecapture2 = 8.0-39.2-fold; Fig. 2C; 193 

by comparison, methods optimized for ancient DNA achieved a mean of 5.5-fold 194 

enrichment of non-PCR duplicate fragments33; Fig. 2A). Specifically, the protocol 195 

changes improved the proportion of non-duplicate mapped fragments by more than 196 

four-fold, from a mean proportion of 9.16% in Capture 1 to a mean proportion of 37.74% 197 

in Capture 2 (rangecapture2=6.16-68.61%) and reduced the proportion of PCR duplicates 198 

among mapped reads two-fold (from 71.97% in Capture 1 to 36.97% in Capture 2). This 199 

improvement translated to an increase in overall genomic coverage from a mean of 200 

0.20x in Capture 1 to 0.73x in Capture 2 (mean total sequencing of 5.7Gb per sample; 201 

rangecapture2 = 0.19-1.24x; Fig. 2B). This improvement in coverage was not explained by 202 

increased sequencing depth in Capture 2 (Table S2). Thus, while we would need to 203 

sequence a pre-capture fDNA sample 50-100 times as deeply as a blood or tissue-204 

derived sample to produce the same level of coverage, our capture method reduces this 205 

difference to approximately 2 times the sequencing effort. Importantly, our method was 206 

also successful in enriching fDNA samples (n=8) from independent samples collected 207 

from Guinea baboons (P. papio; Fig. 2A, Table S2), suggesting that our results are 208 

highly generalizable across different species and storage and extraction methods. 209 
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Figure 2. fDNA enrichment results. (A) Percent of sequencing reads that mapped to 
the baboon genome and were not PCR duplicates (“Mapped:” dark blue); mapped and 
were PCR duplicates (“PCR Duplicate:” blue); or did not map and likely represent 
environmental or bacterial DNA in the case of fDNA/aDNA and unmappable fragments 
in the case of gDNA (“Other:” light blue). “gDNA” represents genomic DNA derived from 
the blood samples for LIT and HAP; “aDNA” represents ancient DNA data from capture-
based enrichment reported in Carpenter et al33. Numbers above each bar show the total 
number of PCR cycles used in each protocol. (B) Capture 2 produced significantly 
greater genome coverage than Capture 1, despite similar number of overall reads 
generated per sample (two-sample t-test, T=9.7, p=3.0x10-12). On average in Capture 2, 
we obtained ~0.73x coverage of the genome with 5.76Gb of sequencing. If all 5.76Gb 
mapped to the baboon genome as non-PCR duplicates, we would have produced ~2.2x 
genome-wide coverage. (C) Capture 2 also produced significantly greater fold 
enrichment of baboon DNA (fold enrichment is measured as % non-duplicate baboon 
DNA post-capture divided by % baboon DNA pre-capture: two-sample t-test, T=4.4, 
p=7.3x10-5). (D) The amount of baboon DNA in the sample pre-capture (% baboon DNA 
pre-capture, based on qPCR of the single copy c-myc gene39) is strongly correlated with 
the percentage of baboon fragments obtained in post-enrichment sequencing 
(Pearson’s r=0.80, p=1.0x10-11). However, even samples with low amounts of 
endogenous DNA (<2%) exhibit substantial fold enrichment using our protocol 
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(meancapture1=10.60x, meancapture2=24.82x). 
 210 

Sample attributes influencing capture efficiency 211 

The amount of baboon DNA in the pre-capture fDNA sample was the strongest 212 

predictor of enrichment success. Specifically, the percent of baboon DNA pre-capture, 213 

as assessed via qPCR, was positively correlated with the percentage of non-duplicate 214 

fragments mapped post-capture (Fig. 2D; T=6.88, p=1.72x10-8). Samples from Capture 215 

2 had more pre-capture baboon DNA than samples used in Capture 1 because we 216 

attempted to optimize the input samples based on our initial analyses in Capture 1 217 

(Capture 1 mean = 1.21%, range = 0.19-4.90%; Capture 2 mean = 2.80%, range = 218 

0.25-8.37%). However, even when controlling for this difference, enrichment of samples 219 

from Capture 2 was improved over Capture 1. This pattern is observable whether 220 

assessed using the percent of baboon DNA fragments sequenced post-capture 221 

(Tcapture2=10.00, p=6.76x10-13) or fold enrichment relative to pre-capture amounts 222 

(Tcapture2=6.89, p=1.69x10-8), and could not be explained by differences in the length of 223 

sequence fragments or overall sequencing depth (Fig. S3; Table S2). The amount of 224 

fDNA library used in the capture reaction was also weakly positively correlated with the 225 

percent of baboon DNA fragments sequenced post-capture, after controlling for the 226 

amount of baboon DNA in the pre-capture sample (Tng_fDNA_library=2.09, p=0.042; Table 227 

S2). 228 

 229 

Library complexity, distribution of reads, and GC content 230 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2015. ; https://doi.org/10.1101/029520doi: bioRxiv preprint 

https://doi.org/10.1101/029520
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 The post-capture libraries included a higher proportion of PCR duplicates relative 231 

to reads generated from high-quality genomic DNA samples, for which fewer rounds of 232 

PCR amplification were required (PCR duplicate proportion: meanfDNA_capture1=69.6%, 233 

meanfDNA_capture2=36.8%, meangDNA=11.3% of mapped reads; 18 rounds of PCR in the 234 

capture protocol versus 6 for the high-quality samples). For comparison, this proportion 235 

is much lower than reported for aDNA samples, which go through more rounds of PCR 236 

amplification (meanaDNA=94.6%; Fig. 2A and Fig. S433). Despite increases in clonality, 237 

the number of non-duplicate reads continued to increase with increasing sequencing 238 

depth, with the slope of this relationship especially favorable for Capture 2 (Fig. 3). 239 

Thus, deeper sequencing of post-capture libraries should continue to increase genome-240 

wide coverage, albeit not as efficiently as sequencing blood-derived gDNA samples.  241 

 242 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2015. ; https://doi.org/10.1101/029520doi: bioRxiv preprint 

https://doi.org/10.1101/029520
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
Mapped reads (Millions)

N
on

-d
up

lic
at

e 
re

ad
s 

(M
illi

on
s)

aDNA (n=12)
Carpenter et al, 2013

fDNA (n=22)
 Capture 1

fDNA (n=26)
 Capture 2

gDNA (n=2)

 
Figure 3. Increased sequencing effort produces increased numbers of non-
duplicate reads. The number of mapped reads plotted against the number of non-
duplicate reads mapped (mean ± SD; plotted using the program “preseq”40). More 
complex libraries (i.e., those containing more non-duplicate fragments) have a slope 
closer to 1 (as in the case of the gDNA libraries), while less complex libraries have a 
shallower slope and asymptote at a smaller value. The main plot shows the first ten 
million mapped reads for each sample. The inset shows the same plot for the first 
million mapped reads. 

As with other capture-based methods33,41, a modest fraction of the mapped 243 

fragments mapped to the mitochondrial genome (mtDNA). When we included all 244 

mapped reads, this fraction was similar in libraries from Capture 1 and Capture 2 245 

(meancapture1=6.55%; meancapture2=6.73%; Fig. S5A). However, Capture 2 resulted in 246 

significantly more unambiguously non-duplicate mtDNA-mapped reads than Capture 1, 247 

largely due to the paired-end sequencing used in Capture 2 (meancapture1=0.47% of all 248 

mapped reads; meancapture2=6.46%; Fig. S5B). The higher number of non-duplicate 249 
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mtDNA reads in Capture 2 thus produced much deeper overall coverage of the 250 

mitochondrial genome (Fig. S5C), despite the fact that the ratio of mtDNA to nuclear 251 

DNA mapped reads was comparable between the two captures (Fig. S5D). Finally, the 252 

distributions of read GC content for post-capture reads using our protocol, the DNA 253 

template for the RNA baits, and aDNA libraries were highly similar (Fig. S6). This 254 

observation suggests that any GC bias relative to the genome appears during bait 255 

construction and/or sequencing, not during the hybridization step.  256 

 257 

Post-capture fDNA-derived genotype data are consistent with individual identity and 258 

independently established pedigree relationships 259 

To assess the accuracy of genotypes called from post-capture fDNA libraries, we 260 

compared genotype data from paired blood-derived gDNA (without capture) and post-261 

capture fDNA libraries for two individuals, LIT and HAP. Using genotypes for sites that 262 

were called with a genotype quality (GQ) > 20 in both the fDNA and gDNA data sets for 263 

either LIT or HAP, we found that the majority of the genotypes called in both data sets 264 

were concordant (86.5%, or 270,724 of 312,739 sites for the LIT paired samples; 77%, 265 

or 30,948 of 40,132 sites for the HAP paired samples; note that we had lower coverage 266 

for the HAP fecal-derived sample than for the LIT fecal-derived sample). As expected, 267 

the majority of the discordant sites occurred when the low coverage fDNA sample was 268 

called as homozygous and the high coverage gDNA sample was called as 269 

heterozygous (77.7% of discordant LITgDNA heterozygous sites; 74.4% of discordant 270 

HAPgDNA heterozygous sites). Importantly, the fDNA genotype captured at least one of 271 

the alleles from the gDNA genotype in 99.8% (LIT) and 99.6% (HAP) of these 272 
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discordant sites. Thus, even when genotypes called in fDNA and gDNA samples from 273 

the same individual were discordant, they were almost always compatible. 274 

Further, we found that genotypes called from the post-capture fDNA libraries 275 

were more similar to the genotypes called from their high-quality gDNA counterparts 276 

than they were to other post-capture fDNA libraries. Specifically, k0 values from 277 

lcMLkin42, which estimate the probability that two samples share no alleles that are 278 

identical by descent, were much smaller for the LITfDNA-LITgDNA paired samples (0.487) 279 

and HAPfDNA-HAPgDNA paired samples (0.243) than for k0 values calculated for the two 280 

blood-derived samples when compared to any other fDNA sample (k0 range LITfdna 281 

versus other fDNA samples = 0.996 – 1.000; Z=849.2, p < 10-20; k0 range HAPfdna 282 

versus other fDNA samples = 0.786 – 0.999; Z=10.6, p < 10-20; Fig. 4A).  283 

 For the 48 extended pedigree individuals (Fig. 1, including 8 Amboseli baboons 284 

with no known relatives in the pedigree), we then tested if estimated relatedness values 285 

from lcMLkin42 in the post-capture data were correlated with relatedness values 286 

obtained from the independently constructed pedigree (based on known mother-287 

offspring relationships and microsatellite-based paternity assignments: see Methods). 288 

Using a filtered set of 127,654 single nucleotide variants (see Methods for filtering 289 

parameters), we found a strong correlation between the two measures (Pearson’s 290 

r=0.73, p<10-16; Fig. 4B). This correlation improved further if we imposed thresholds for 291 

the minimum number of sites genotyped in both individuals (“shared sites”) in a dyad 292 

(Fig. S7). For example, if we removed all dyads with fewer than 2,000 shared sites (84 293 

of 1,128 dyads, or 7.4%), the correlation between pedigree relatedness and genotype 294 

similarity reached r=0.86 (p<10-16). 295 
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Figure 4. Post-capture genotype data are consistent with individual identity and 
pedigree relationships. (A) The k0 values for the HAP and LIT fDNA-gDNA paired 
samples (arrows) were significantly lower than the range of k0 values for LITfDNA and 
HAPfDNA versus any other fDNA sample (gray distribution). Lower k0 values reflect 
increased relatedness (i.e., decreased probability of no IBD sharing). (B) Estimated 
dyadic relatedness values were correlated with independently obtained pedigree 
relatedness values calculated using the R package kinship2 (Sinnwell et al. 2014; 
r=0.73, p<10-16). Both k0 and the estimated relatedness values were calculated with 
lcMLkin42. 
 296 

Paternity inference using WHODAD 297 

 Current methods for assigning paternity (e.g., CERVUS34,35 and exclusion36) 298 

assume genotype certainty, such that individuals are assigned a deterministic genotype 299 

at each locus (i.e., 0, 1, or 2, or a microsatellite repeat number; while a low level of 300 

measurement error, i.e., due to lab handling, can be modeled, this error rate is held 301 

constant across genotype calls). This assumption is violated in low coverage 302 

sequencing data, in which genotypes are not known with certainty and this uncertainty 303 

varies across genotype calls. However, the relative probabilities of each genotype can 304 

be estimated, given estimated population allele frequencies and sequencing coverage 305 
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information. To conduct paternity inference and pedigree reconstruction in this context, 306 

we therefore developed a novel approach to integrate information across low coverage 307 

sites, implemented in the program WHODAD. Our method has two components. The 308 

first component identifies a top candidate male and tests whether he is significantly 309 

more related to the offspring than any other candidate male, using a p-value criterion. 310 

The second component tests whether the dyadic similarity between the top candidate 311 

and offspring is consistent with a parent-offspring dyad, using posterior probabilities 312 

obtained from a mixture model (see Methods and Fig. S8). 313 

Using WHODAD, we assigned paternity to all father-offspring pairs (n = 27) 314 

represented in the independently established extended pedigree in Fig. 1. Note that our 315 

approach represents a particularly conservative test because it departs from the usual 316 

practice of first identifying a likely set of candidate fathers based on demographic and 317 

prior pedigree information (the approach used in producing the pedigree in Fig. 1). For 318 

15 of the 27 offspring, we produced genotype data from the known mother with our 319 

enrichment protocol. WHODAD identified the same father as shown in the pedigree in 320 

12 of  these 15 trios (80%); in the other 3 trios (20%), no candidate male satisfied 321 

WHODAD’s paternity assignment criteria (in all three of these cases, sequencing 322 

coverage was very low for either the pedigree-identified father or offspring: 0.04-0.17x). 323 

For the remaining 12 offspring, we did not generate genotype data using our enrichment 324 

protocol for their mothers (i.e., their mothers were not among the samples run in 325 

Capture 1 or 2). To test all 27 father-offspring dyads together, we therefore re-ran 326 

WHODAD excluding maternal genotype information. In this setting, WHODAD’s 327 

paternity assignments agreed with the pedigree data in 22 of 27 (81%) cases (Fig. 5). 328 
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Notably, when the pedigree-identified father was included in the data set, WHODAD 329 

never assigned paternity to a different male, whether or not maternal genotype data 330 

were available. Because our method is highly robust to exclusion of maternal genotype 331 

data, we therefore performed all subsequent analyses assuming maternal genotype 332 

data were not available. This approach allowed us to evaluate all father-offspring dyads, 333 

and also captures a scenario that may often occur in studies of natural populations. 334 

 

4) Father excluded and close relatives 
included in candidate pool

3) Father and close relatives 
 excluded from candidate pool

2) Father included and close relatives
 excluded from candidate pool

1) All males included
in candidate pool

0% 25% 50% 75% 100%

Agrees
with pedigree       No Assignment         Mismatch

with pedigree
 

Figure 5. Paternity inference with WHODAD using low coverage genotype calls. 
1) When all males (n=34) were included in the pool of candidate fathers (top bar), 
WHODAD assigned paternity to the same father identified in the pedigree for 22 of 27 
(81%) of offspring (see assignment criterion in Methods; dark blue). The remaining 
offspring were not assigned a father based on WHODAD’s assignment criteria (5 of 
27; light blue). 2) WHODAD’s accuracy was identical when we removed all close male 
relatives of the offspring (r ≥ 0.25) from the pool of candidate fathers. 3) When we 
removed all close relatives, including fathers, from the candidate pool, no fathers were 
assigned, as expected. 4) Finally, when we removed the father from the candidate 
pool but retained close relatives, our method incorrectly assigned paternity to 11% of 
offspring (3 of 27; bottom bar). All three incorrectly assigned fathers were closely 
related to the offspring (in two cases the assigned father was the half-brother of the 
offspring and in one case the assigned father was the son of the offspring).  

 

The presence of close relatives, such as full or half-siblings, can influence the 335 

accuracy of paternity assignment if these close relatives are also included as candidate 336 

fathers35,44–46. Thus, to examine how the presence of close male kin influenced the 337 
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accuracy and confidence of WHODAD’s paternity assignments, we conducted three 338 

additional analyses. First, when all close male kin were removed from the candidate list 339 

of potential fathers (r ≥ 0.25), but the father was retained, our method performed 340 

equivalently to the case when both father and close relatives were in the candidate pool. 341 

Second, when we removed all close male kin including the father, none of the best 342 

candidate fathers from the conditional probability analysis (0%) were assigned as 343 

fathers based on WHODAD’s assignment criteria (Fig. 5). Third, when we removed the 344 

father from the pool of candidate fathers, but included close male kin, 11% of the best 345 

remaining candidates (3 of 27 cases) were incorrectly assigned as fathers, based on 346 

comparison to the pedigree (Fig. 5). All 3 of these false positives were close male 347 

relatives: in two cases WHODAD assigned the half-brother of the offspring as the likely 348 

father, and in one case WHODAD assigned the son of the offspring as the likely father. 349 

The best balance between maximizing the number of true positives while minimizing the 350 

number of false positives was achieved by combining both the p-value and mixture 351 

model criteria (see Methods). This approach outperformed either component used alone 352 

(Fig. S9). For example, when all males were included in the candidate pool, the 353 

combined approach resulted in an 81% true positive rate and a 0% false positive rate, 354 

while just using the k0 values in a mixture model resulted in the same true positive rate 355 

(81%), but an additional 11% false positive rate (Fig. S9).  356 

 357 

DISCUSSION 358 

 Our capture-based method strongly enriches the proportion of host DNA in low-359 

quality DNA extracted from feces (fDNA). Our method is the first use of genome-wide 360 
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enrichment-based capture methods33,47,48 for non-invasively collected samples, which 361 

represent a major resource for behavioral, conservation, and evolutionary genetic 362 

studies in natural populations. Importantly, our protocol increases efficiency and lowers 363 

cost by reducing the input requirements and number of PCR cycles relative to previous 364 

methods31 and, in our final protocol, achieves up to 40-fold enrichment of post-capture 365 

endogenous DNA relative to pre-capture levels. We also show, for the first time since 366 

Perry et al31, that capture libraries from low-quality samples produce genotype data that 367 

are highly concordant with genotype data derived from high-quality, non-captured 368 

samples from the same individuals.  369 

We anticipate that data generated through this protocol could be leveraged for a 370 

wide variety of applications. To illustrate this point for paternity analysis, one of the most 371 

central components of genetic studies in natural populations, we present an 372 

accompanying method, WHODAD, that produces results in near-perfect concordance 373 

with an independently constructed pedigree, using low-coverage data generated with 374 

our enrichment protocol (note that the few cases in which assignments could not be 375 

confidently made could readily be addressed with slightly deeper sequencing coverage, 376 

similar to typing more markers in conventional microsatellite analysis). By incorporating 377 

demographic and behavioral data often used to constrain pedigree reconstruction, as 378 

well as prior information about other pedigree links, its performance would be improved 379 

even further. For instance, in reconstructing pedigree links in the Amboseli population, 380 

we generally include only plausible candidates (e.g., we exclude males who were 381 

immature or not yet born at the offspring’s conception), not all males with genotype 382 

data, as we did here. 383 
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Together, these results provide valuable, accessible wet lab and computational 384 

tools for moving studies of difficult-to-sample natural populations forward into the 385 

genomics era. Importantly, our methods can be generalized to produce low complexity 386 

DNA-depleted RNA baits for any species in which at least one high-quality DNA sample 387 

is available (or potentially a closely related species48). 388 

 389 

Costs of performing the protocol 390 

 At the time of publication, using the same reagents as we used here and sourced 391 

from the same locations, the cost of generating these data is ~$60/sample (including 392 

sequencing costs). Importantly, our method does not require the commercial synthesis 393 

of targeted capture probes, which is a relatively expensive step for many capture-based 394 

approaches31,32. Thus, the majority of the costs are accounted for by the streptavidin-395 

coated Dynalbeads ($11/prep), RNA baits ($5/sample) and High Sensitivity Bioanalyzer 396 

chips for quality control ($9/sample). Replacing Ampure XP beads with homemade 397 

SPRI beads would reduce the per-sample costs considerably, as would pooling 398 

adapter-ligated fDNA samples prior to hybridization (instead of post-hybridization, as 399 

reported here). For a multiplexed pool of 10 samples, we estimate that using these two 400 

strategies would result in a per-sample cost of ~$29. Indeed, we have verified that 401 

multiplexing samples prior to hybridization does not result in loss of capture efficiency, 402 

and actually resulted in improved yield of mapped, non-PCR duplicate reads (~61% of 403 

reads; mean of 117-fold enrichment, range = 54.8 – 257.2-fold; Fig. S10A), although it 404 

did result in more uneven coverage of samples sequenced within a pool (Fig. S10B). 405 

Multiplexing also has the advantage of reducing the amounts of input DNA per sample 406 
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and the number of PCR cycles required for the initial library preparation step. We are 407 

currently pursuing improvements to the protocol along these lines. 408 

Based on achieving 40% non-PCR duplicate, mapped reads after capture (the 409 

mean result for Capture 2 samples), we estimate that the sequencing costs of a 1x 410 

genome for baboon (~2.9 Gb) would be about $200 (based on paired-end, 125-bp 411 

sequencing at $2,000 per lane and exclusion of PCR duplicates). This cost per sample 412 

is approximately twice the cost of genotyping 14 microsatellites from the same fDNA 413 

sample—the previous strategy for the main study population, the Amboseli baboons49—414 

but provides substantially more genetic information. These estimates will drop further as 415 

the cost of high-throughput sequencing continues to fall, making application of our 416 

approach to whole populations increasingly feasible. Notably, our finding that useful 417 

sequencing reads do not asymptote with deeper sequencing (Fig. 3) also suggests the 418 

feasibility of producing a high-quality, high-coverage genome from such samples if one 419 

were to sequence more deeply than required for the analyses reported here.  420 

 Finally, to make the current protocol as cost-effective as possible, we 421 

recommend that researchers use qPCR quantification to choose DNA samples with the 422 

highest proportion of host DNA possible—the strongest predictor of the foldchange 423 

enrichment in endogenous DNA post- versus pre-capture (Fig. 2D).  424 

 425 

Assigning paternity using WHODAD 426 

  The lack of available tools for working with low coverage genomic data—427 

realistically, one of the most likely data types to be produced for studies of natural 428 

populations—represents a major barrier to moving from low-throughput marker 429 
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genotyping to genome-scale analyses. The pedigree structure of a study population is 430 

fundamental to understanding its genetic structure and social organization. However, 431 

current methods for pedigree reconstruction are unable to cope with high levels of 432 

genotype uncertainty. The approach we have implemented in WHODAD takes this 433 

uncertainty into account, suggesting one simple application for the wet lab methods 434 

presented here. Indeed, our method performed well when compared to an 435 

independently constructed extended pedigree, with its major challenges—differentiating 436 

between close relatives in a candidate pool—comparable to those reported for existing 437 

software34,35,45,46. Importantly, while analyses of pedigree structure using previously 438 

available methods are greatly aided by prior knowledge of mother-offspring 439 

relationships34, maternal links do not appear to be necessary for WHODAD analyses, 440 

which performs well even when no maternal information is available (Fig. 5; Fig. S8).  441 

   442 

Conclusions  443 

 High-throughput sequencing approaches solve one problem of working with low-444 

quality, non-invasive samples: the sheared nature of the original samples. Capture 445 

approaches have demonstrated great promise for solving the second major problem—446 

large proportions of non-endogenous DNA—since the results published by Perry et al 447 

(2010). Motivated by parallel work on ancient DNA, our results help to fulfill this promise 448 

by providing methods to perform cost-effective scaling of sequence capture from non-449 

invasive samples on a genome-wide scale, coupled with analytical methods to deal with 450 

the resulting data. Our protocols add an important tool to the range of available options 451 

for genetic data generation from such samples. Notably, for questions in which 452 
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investigators are specifically interested in variants in a priori-defined subsets of the 453 

genome (e.g., the exome50,51), targeted capture with synthesized baits, followed by 454 

much deeper sequencing, may still be the best option. However, for the many types of 455 

analyses that use genome-scale data (e.g., local ancestry analysis; genome-wide scans 456 

for selection, including in non-coding regions; reconstruction of population demographic 457 

history20–27,30), our approach will be more useful, especially as the costs of high-458 

throughput sequencing continue to fall. 459 

Here, we focused specifically on DNA obtained from fecal samples, which are one 460 

of the most commonly collected types of non-invasive samples: they contain information 461 

not only about host genetics, but also about endocrinological parameters52, gut 462 

microbiota53, parasite burdens54, and, as recently demonstrated for human infants, gene 463 

expression levels55. The sample banks already available for many natural populations 464 

thus open the door to population and evolutionary genomic studies in species in which 465 

such analyses were previously impossible. As the costs of data generation continue to 466 

fall, and the limiting factor for many studies becomes high quality phenotypic data, we 467 

envision that such studies will rapidly move far beyond the simple analyses of paternity 468 

and pedigree structure reported here.  469 

470 
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Methods 471 
 472 

Bait generation  473 

 Similar to Carpenter et al33, we use a cost-effective in vitro synthesis method 474 

based on T7 RNA polymerase amplification of sheared DNA from a high-quality sample 475 

(Fig. S1A). We extracted genomic DNA from a blood sample collected from an olive 476 

baboon (Papio anubis) who was unrelated to any of the individuals in the samples we 477 

wished to enrich. To generate baits, we sheared 5 µg of purified DNA to a mean 478 

fragment size of 150 bp, and then end repaired and A-tailed the fragments using the 479 

KAPA DNA Library Preparation Kit for Illumina Sequencing. We purified the resulting 480 

reaction using a 1.8x ratio of AMPure beads to sample volume.  481 

We annealed custom adapters to the A-tailed library by incubating the following 482 

reagents for 15 minutes at 20 °C: 10 µL 5x ligation buffer (KAPA Biosystems); 5 µL 483 

DNA Ligase (KAPA Biosystems); 1 µL 25 µM custom adapter; ≤34 µL of A-tailed DNA; 484 

and H2O up to 50µl total volume. The custom adapters we used (EcoOT7dTV: Fwd 5’-485 

GGAAGGAAGGAAGAGATAATACGACTCACTATAGGGCCTGGT, EcoOT7dTV: Rev 486 

5’-/5Phos/CCAGGCCCTATAGTGAGTCGTATTATCTCTTCCTTCCTTCC) differ from 487 

those used in other protocols33,47,48. Specifically, they contained: 1) a T7 RNA 488 

polymerase recognition site; 2) flanking sequence that improves T7 transcription 489 

efficiency56; and 3) an EcoO109I restriction enzyme cut site that allowed us to later 490 

cleave off the adapter sequence from T7 amplified RNAs (rather than blocking it, as in 491 

Carpenter et al.33).  492 

We then digested the purified, adapter-ligated DNA with duplex-specific nuclease 493 

(DSN; Axxora). DSN is a Kamchatka crab-derived enzyme that specifically degrades 494 
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double-stranded DNA but not single-stranded DNA, allowing us to take advantage of 495 

DNA reassociation kinetics to reduce the representation of repetitive regions in the bait 496 

set (Fig. S2)57. We performed DSN digestion in fifteen 2 µL aliquots, each mixed with 1 497 

µL 4x hybridization buffer (200 mM HEPES pH 7.5; 2 M NaCl; 0.8 mM EDTA) and 1 µL 498 

human Cot-1 DNA (1 µg/µL). We denatured the DNA by heating to 98°C for 3 minutes, 499 

held the reaction at 68°C for 4 hours, and then added 4 µl H2O, 1 mL 10x DSN Buffer, 500 

and 1 µl DSN (1 U/µL) to the reaction. After 20 minutes of digestion, we stopped the 501 

reaction by adding 5 µL 2x DSN Stop Solution (10 mM EDTA) and purified it with 2.4x 502 

AMPure beads.  503 

Next, we used Klenow DNA polymerase to blunt end the non-digested DNA, 504 

size-selected for 200 - 300 bp fragments on a 2% agarose gel, and purified the size-505 

selected fraction using the Zymoclean Gel DNA Recovery Kit (Zymo Research). After 506 

purification the aliquots were PCR amplified for 16 cycles using 25 µL 2x HiFi Hot Start 507 

ReadyMix (KAPA Biosystems) and 1 µL each of 25 µΜ primers EcoOT7_PCR1 (5'-508 

GGAAGGAAGGAAGAGATAATACGACTCACT) and EcoOT7_PCR2 (5'-509 

TACGACTCACTATAGGGCCTGGT). Following amplification the bait DNA libraries 510 

were purified using 1.8x AMPure beads and the resulting product was visualized on a 511 

Bioanalyzer DNA 1000 chip (Agilent Technologies).  512 

Finally, we in vitro transcribed the DNA libraries to construct biotin-tagged RNA 513 

baits using the MEGA Shortscript Kit (Life Technologies) and Biotin-UTP (Illumina). 514 

Briefly, 125-150 nM of DNA baits were incubated at 37°C for 4 hours in the following 515 

reaction: 2 µL T7 10x reaction buffer, 2 µL each of T7 ATP, GTP, CTP, and UTP 516 

solutions (75 mM), 1 µL Biotin-UTP (50 mM), 2 µL T7 enzyme mix, and water to 20 µL 517 
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total volume. We then digested the DNA template by adding 1 µL TURBO DNase (Life 518 

Technologies) to the reaction and incubating at 37°C for 15 minutes. We purified the 519 

resulting reaction with the MEGAClear Transcription Clean-Up Kit (Life Technologies) 520 

and eluted in a final volume of 70 µL. To cleave off the adapter sequence, we digested 521 

the RNA baits with the EcoO1091 enzyme (NEB). Lastly, the baits were again purified 522 

with the MEGAclear Clean-Up Kit, eluted in 70 µL, and quantified on a Bioanalyzer RNA 523 

6000, Eukaryote Total RNA chip (Agilent Technologies).  524 

 525 

Samples, DNA extraction, and qPCR quantification 526 

         Baboon samples were stored in 95% ethanol and fDNA was extracted using the 527 

QIAamp DNA Stool Mini Kit (Qiagen; with slight modifications as described in Alberts et 528 

al.38), or using the QIAxtractor (protocol available here: 529 

http://amboselibaboons.nd.edu/assets/84050/alberts_fecal_genotyping_protocol_sca.do530 

cx)38. The majority of the sampled individuals (48 of 54) were either members of a single 531 

extended pedigree or were unrelated males living in the same study population that 532 

were genotyped for inclusion in pedigree building/paternity testing for members of that 533 

pedigree (Fig. 1). For LIT and HAP, gDNA was extracted from blood samples using the 534 

Qiagen Maxi Kit (Qiagen).  535 

To assess our protocol’s generalizability to samples collected and stored using 536 

different methods, we also extracted fDNA samples from 8 unhabituated Guinea 537 

baboons (P. papiο) sampled in West Africa. These samples were stored in either 90% 538 

ethanol or soaked in 90% ethanol and then dried using silica beads (i.e., the “two-step” 539 
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method58,59). They were then extracted using either the Qiagen DNA Stool Mini Kit or 540 

the Gen-ial First DNA All Tissue Kit (Table S2).  541 

We assessed the proportion of endogenous DNA in each fDNA sample using 542 

qPCR against the c-myc gene, as described in Morin et al.39.  543 

 544 

Library preparation 545 

 All samples were fragmented to the desired size (200 or 400 base pairs: see 546 

Table S1) using a Bioruptor instrument (Diagenode). Illumina sequencing libraries were 547 

then generated from the fragmented DNA using either the KAPA DNA library kits for 548 

Illumina (Capture 1) or NEBNext DNA Ultra library kit (Capture 2: see Table S1). 549 

Libraries were amplified for 6 PCR cycles prior to capture-based enrichment. Sample-550 

specific details of library preparation and sequencing results are described in Table S1. 551 

Note that we changed several steps between Capture 1 and Capture 2 based on interim 552 

improvements in the protocol (also detailed in Table S1). Because the methods used in 553 

Capture 2 were ultimately more effective, the updated Capture 2 protocol is described in 554 

the Methods except where explicitly noted. 555 

 556 

Capture-based enrichment   557 

 We modified the capture methods from Gnirke et al32 and Perry et al31 (Fig. S1B). 558 

For each capture, we hybridized 121 – 626 ng of the fDNA libraries generated as 559 

described above to the RNA baits. First, we mixed each fDNA library with 2.5 µL human 560 

Cot-1 DNA (1 mg/mL), 2.5 µL salmon sperm DNA (1 mg/ml), and 0.6 µL index-blocking 561 
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reagent (“IBR”, 50 µM). This mixture was incubated for 5 minutes at 95°C followed by 562 

12 minutes at 65°C. Next, we added 13 µL of hybridization buffer (10x SSPE, 10x 563 

Denhardt’s solution, 10 mM EDTA, 0.2% SDS, preheated to 65°C), 7 µL hybridization 564 

bait mixture (1 µL SUPERase-In, 750 ng RNA baits, and water up to a total volume of 7 565 

µL, preheated to 65°C) to the fDNA mixture, and incubated the complete mixture at 566 

65°C for 48 hours (see Fig. S11 for comparison of alternative bait concentrations and 567 

incubation times).  568 

 After incubation, we purified the enriched fDNA sample using 50 µL Dynal 569 

MyOne Streptavidin T1 beads (Invitrogen). To do so, the beads were washed a total of 570 

three times with 200 µL binding buffer (1 M NaCl, 10 mM Tris-HCl [pH 7.5], 1 mM 571 

EDTA) and resuspended in 200 µL of binding buffer. Next, the entire fDNA/RNA 572 

hybridization mix was added to the 200 µL Dynal MyOne Streptavidin T1 bead and 573 

binding buffer slurry. We incubated this mixture at room temperature for 30 minutes on 574 

an Eppendorf Thermomixer at 700 rpm. The mixture was placed on a magnetic rack, 575 

the supernatant was discarded, and the beads were washed once with 500 µL low 576 

stringency wash buffer (1x SSC, 0.1% SDS) followed by a 15-minute incubation at room 577 

temperature. The beads were then washed three times with 500 µL high stringency 578 

wash buffer (0.1x SSC, 0.1% SDS) with a 10 minute room temperature incubation 579 

between each wash. After the final wash, the enriched fDNA fraction was eluted from 580 

the beads with 50 µL elution buffer (0.1 M NaOH), transferred to a new tube containing 581 

70 µL “neutralization buffer” (1 M Tris-HCl, pH 7.5), purified with 1.8x AMPure beads, 582 

and eluted in a 30 µL volume. A final PCR was carried out in a 50 µL reaction volume 583 

using 23 µL of the post-hybridization fDNA and either: 1) 25 µL 2x KAPA High Fidelity 584 
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master mix and 2 µL TruSeq universal primer (Capture 1); or 2) 25 µL 2x NEBNext High 585 

Fidelity PCR master mix, 1 µL universal PCR primer, and 1 µL NEB indexing primer 586 

(Capture 2). After 12 PCR cycles the final reaction was purified with 1x AMPure beads, 587 

eluted in 20 µL H2O, and visualized on a Bioanalyzer High Sensitivity DNA chip. 588 

  589 

Sequencing and alignment 590 

All high-throughput sequence generation was conducted on the Illumina HiSeq 591 

platform (see Table S1 for sequencing details). The resulting sequencing reads were 592 

mapped to a de novo assembly of the Papio cynocephalus genome (alignment available 593 

at https://abrp-genomics.biology.duke.edu/index.php?title=Other-downloads/Pcyn1.0) 594 

using the default settings of the bwa mem alignment algorithm v0.7.4-r38560. Duplicate 595 

reads were marked and discarded in subsequent analyses using the “MarkDuplicates” 596 

function in PicardTools (http://picard.sourceforge.net). To facilitate comparison across 597 

samples of differing coverage, and because coverage of the gDNA samples was much 598 

higher (~30X) than for the fDNA samples for LIT and HAP (1.4 and 0.27 respectively), 599 

we downsampled the gDNA libraries to 0.73x coverage (the median coverage of 600 

samples in Capture 2) using “DownsampleSam” in PicardTools.  601 

 602 

Comparison sequencing data sets 603 

 In several analyses, we compared our capture-based enrichment results to two 604 

independent datasets: i) a previously published capture-based enrichment of ancient 605 

DNA (aDNA) samples (NCBI SRA accession: SRP042225)33, and ii) shotgun 606 
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sequencing from six Capture 1 fDNA samples prior to hybridization (“pre-capture”; Table 607 

1). The aDNA samples were aligned to the human genome (hg38) and the pre-capture 608 

fDNA samples were mapped to the de novo P. cynocephalus genome assembly. 609 

 610 

Library complexity, distribution of reads, and GC content 611 

 We calculated the complexity of each library using two methods. First, we used 612 

the ENCODE Project’s PCR Bottleneck Coefficient (PBC), which calculates the percent 613 

of non-duplicate mapped reads out of the total number of mapped reads61,62.The PBC 614 

ranges from 0 to 1, where more complex libraries have higher numbers. Second, we 615 

used the function “c_curve” from the program preseq (v1.0.2) to plot the number of non-616 

duplicate fragments mapped vs. the number of total mapped fragments40. More complex 617 

libraries (i.e., those with fewer duplicate fragments) have a c_curve slope closer to 1, 618 

meaning that increasing sequencing depth continues to provide novel information. Less 619 

complex libraries have a shallower slope and asymptote at smaller values. Lastly, we 620 

evaluated the GC bias for each sequencing library using Picard Tools’ 621 

“CollectGCBiasMetrics” (http://picard.sourceforge.net).  622 

 623 

Sample attributes influencing capture efficiency 624 

 To determine the sample attributes that predicted the success of our capture 625 

protocol, we first modeled the relationship between the proportion of non-duplicate 626 

reads that mapped to the baboon genome after capture (our primary measure of 627 

protocol success) and (i) the percent of endogenous baboon DNA in the pre-capture 628 
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samples; (ii) the amount of fDNA library (ng) that went into the capture; and (iii) whether 629 

the sample was captured using our initial protocol or the second version of the protocol 630 

(i.e., in “Capture 1” or “Capture 2”). Second, we investigated the relationship between 631 

the same three variables and a secondary measure of protocol success, the fold-632 

change enrichment of baboon DNA in the sample pre- versus post-capture. Pre-capture 633 

concentrations of endogenous DNA in fDNA samples were measured as the 634 

concentration of baboon DNA estimated using qPCR, relative to the concentration of 635 

total DNA estimated using the Qubit High Sensitivity fluorometer (Life Technologies). To 636 

ensure that our qPCR-based measures were well calibrated, we confirmed the 637 

relationship between qPCR-based estimates and pre-capture sequence-based 638 

estimates of endogenous DNA in 6 samples for which both values were available (R2= 639 

0.92; Fig. S12). All statistical analyses were carried out in R63. 640 

 641 

Variant calling 642 

 We used two different approaches to call variants and genotypes in our sample: 643 

SAMTOOLS64,65 and the Genome Analysis Toolkit (GATK)66–68. In downstream 644 

analyses, we only retained variants that were identified by both methods, a strategy that 645 

produces a higher ratio of true positives to false positives than variants identified by a 646 

single method alone69. Duplicate-marked alignments were used as input for both 647 

methods. SAMTOOLS variant calling was carried out using mpileup and bcftools, with a 648 

maximum allowed read depth (-D) of 100. GATK variant calling was carried out 649 

following the GATK Best Practices for GATK v3.0, for variant calling from DNA-seq. To 650 

minimize potential batch effects introduced by the two capture efforts, we used the 651 
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following strategy. First, we called genotypes using reads from each capture 652 

independently. Second, we re-called genotypes using reads from both captures 653 

together. Third, we extracted the union set of variants called in steps 1 and 2 for 654 

downstream analysis.  655 

Because no reference set of genetic variants is currently publicly available for 656 

baboons, we used a bootstrapping procedure for base quality score recalibration. 657 

Briefly, we performed an initial round of variant calling on read alignments without 658 

quality score recalibration. From this variant call set, we extracted a set of high 659 

confidence variants that passed the following hard filters: quality score ≥100; QD < 2.0; 660 

MQ < 35.0; FS > 60.0; HaplotypeScore >13.0; MQRankSum < −12.5; and 661 

ReadPosRankSum < −8.0 (as described in Tung, Zhou, et al.70). We then recalibrated 662 

the base quality scores for each alignment using this high-confidence set as the 663 

database of “known variants” and repeated the same variant calling and filtering 664 

procedure for 3 additional rounds. Finally, we identified the intersection set between the 665 

variants called from GATK and SAMTOOLS, respectively, using the bcftools function 666 

isec64. To produce our final call set, we removed all sites that were genotyped in only 667 

one of the capture efforts, had a minor allele frequency of <0.05, or were within 10 kb of 668 

one another, using vcftools71. 669 

 670 

Estimating relatedness  671 

 To produce an estimate of relatedness between samples in our pedigree and to 672 

test for concordance between fecal and blood-derived samples for the same individuals, 673 

we used the program lcMLkin42. lcMLkin uses the genotype likelihoods generated by 674 
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GATK for each genotype call to calculate two measures: (i) k0, the probability that two 675 

individuals share no alleles that are identical by descent, and (ii) r, the coefficient of 676 

relatedness42. Several other methods have been developed72,73 to estimate relatedness 677 

from thousands of SNPs, but lcMLkin yielded the best match to pedigree-based 678 

estimates in our data set (Fig. S13). 679 

 We also compared genotype calls for the matched fecal and blood-derived 680 

samples using GATK’s GenotypeConcordance function68. This tool allowed us to 681 

determine concordance rates between data sets for different classes of variants (e.g., 0, 682 

1, or 2). For the majority of variant sites, we expected that the genotypes would be 683 

completely concordant (i.e., the same genotype called in the fDNA and gDNA samples 684 

from the same individual). However, for calls reported as discordant, we expected that 685 

most errors would reflect cases in which the low coverage sample was called as 686 

homozygous and the high coverage sample was called as heterozygous, as low read 687 

depth makes observation of both alleles at a heterozygous site less likely.  688 

 689 

WHODAD: Paternity inference and pedigree reconstruction  690 

 Our paternity prediction model is based on a naïve Bayes classifier that takes 691 

advantage of the rules of Mendelian segregation within pedigrees. Using data from all 692 

sites genotyped in a potential father-mother-offspring trio or, when the mother is not 693 

genotyped, all sites genotyped in a potential father-offspring dyad, it estimates the 694 

posterior probability that a potential candidate is the true father of a given offspring.  695 

Our approach can be broken into three steps (Fig. S8). First, we estimate, for 696 

each candidate male, the conditional probability that he is the true father of a given 697 
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offspring, given the genotype data for the candidate, offspring, and mother, if known 698 

(below we show the case in which genotype information is available for the mother, but 699 

the model is similar when maternal genotype information is missing). Second, we assign 700 

a p-value for the top candidate male from the first step, for the null hypothesis that he is 701 

not more related to the focal offspring than the other candidates tested. Third, we 702 

calculate the probability that the genotype data for the top candidate and offspring are 703 

consistent with a true parent-offspring relationship, using a mixture model. Steps (ii) and 704 

(iii) perform subtly different functions in our analysis: (ii) tests that the top candidate is 705 

significantly more related to the offspring than any other candidate, whereas (iii) tests 706 

that the dyadic similarity between the candidate and the offspring look as expected for 707 

parent-offspring dyads. We have found that combining both approaches is key to 708 

detecting true positive fathers while minimizing false positive calls that can occur when 709 

true fathers are not in the pool of genotyped candidates (Fig. S8). 710 

Step 1: estimating conditional probabilities for each trio. For a given offspring or 711 

mother-offspring dyad, our goal is to infer the true genetic father from a pool of n 712 

candidates. For the ith candidate, we use data for the Li variants for which we have 713 

genotype information for the known mother-offspring dyad and for the candidate father. 714 

Assuming the true father is present in the candidate pool (i.e., he has been genotyped), 715 

the probability that the ith potential candidate is the father is: 716 

 ! "# $, & = !("#,$, &)/( !("+,$, &)
,

+-.
)!1"
 

(1) 

where!" #$ %, ' !!1"  denotes the probability that the candidate is the father, conditional on 717 

the (known) mother-offspring dyad; !(#$,&, ')!!1"  denotes the joint probability of the whole 718 

trio; and !(#$,&, '))
$*+ !!1"  is the sum of the joint probabilities of all possible trios evaluated 719 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2015. ; https://doi.org/10.1101/029520doi: bioRxiv preprint 

https://doi.org/10.1101/029520
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

in the analysis. In practice, we normalize these conditional probabilities to take into 720 

account differences in the number of variants evaluated for each trio by taking the Li
th 721 

root: 722 

 ! "# $, & ≈ ! "#,$, & (/*+/( ! "-,$, & (/*.
/

-0(
)!1"
 

(1a) 

Each joint probability can be calculated in turn as: 723 

 ! "#,%, & = ! "#,%, &, (,), *
+,,,-

= ! "#,%, &, (#.,)., *.
/0

.12+,,,-
!1"
 

(2) 

where mj, fij and oj represent the genotype data for the jth variant of the mother, the 724 

candidate father, and the offspring, respectively. Genotypes take values in {0, 1, 2} (i.e., 725 

the number of copies of the reference allele at each individual-site combination). 726 

Importantly, although equation (2) unrealistically assumes independence across loci, 727 

this assumption does not change the relative order of trio joint probabilities.  728 

The probability ! "#,%, &, '#(,)(, *( !!1"  for each locus can be further decomposed as: 729 

 ! "#,%, &, '#(,)(, *( ∝ ! *( )(, '#(
! '#( "# ! )( % ! *( &

! *(
!1"
 

(3) 

where we take genotype uncertainty into account by using GATK’s genotype 730 

probabilities to calculate the conditional genotype probabilities for!" #$% &$ !!1" , ! "# $ !!1" , and 731 

! "# $ !!1"  over all possible genotype values at each site-individual combination (i.e., the 732 

probabilities that each genotype is 0, 1, or 2, which sum to 1). We also ignore the 733 

scaling constant ! "# ! $ ! % !!1"  because it cancels out in the numerator and 734 

denominator of (1). The marginal probability of the offspring’s genotype, ! "# ,!!1"  is 735 

calculated from the minor allele frequency of the variant in the population. Finally, the 736 

conditional probability ! "# $#, &'# !!1"  is based on the rules of Mendelian transmission (e.g., 737 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2015. ; https://doi.org/10.1101/029520doi: bioRxiv preprint 

https://doi.org/10.1101/029520
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Marshall et al., 1998). Due to genotype uncertainty in low coverage data, the values of 738 

! "# $, & '!!1" are small. However, the highest value is usually assigned to the most likely 739 

father (based on comparison to the pedigree; see Results) and we can directly assess 740 

the strength of the relative evidence for the top candidate versus other candidates in 741 

Step 2 by calibrating these values against permuted data.  742 

Step 2: calculating resampling-based p-values. To compute p-values for each 743 

paternity assignment, candidates are ranked based on their conditional probability 744 

! "# $, & !!1"  of being the true father. The log ratio of conditional probabilities between the 745 

highest probability father and the second best candidate is the test statistic:  746 

 ! = log&( ( )*+,- ., 0
( ),+1234 ., 0

)!1"
 

(4) 

To assess significance for r, we then simulate genotype data for a set of n 747 

unrelated candidate fathers based on allele frequency information for each locus in the 748 

analysis and sequence coverage information for the real candidates, at each of the loci 749 

for which they were genotyped in the true data set. Specifically, for each locus-750 

simulated unrelated candidate combination, fij, where i indexes a (real) candidate male 751 

and j indexes the locus, we simulate a vector of genotype probabilities for the candidate 752 

father, !"#$, !"#&, !"#' !!1" , which sum to 1. The number of probability vectors simulated for 753 

each candidate is based on the number and identity of the loci observed in the real 754 

data. For example, if the top candidate in the real data was evaluated based on 10,000 755 

sites, we would simulate an unrelated male with genotype vector probabilities simulated 756 

for each of those 10,000 sites; if the second best candidate was evaluated at 9,000 757 

sites, we would simulate an unrelated male with genotype vector probabilities simulated 758 
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for each of those 9,000 sites; and so on. The variant sets for different simulated 759 

candidates need not be identical, and are in fact highly unlikely to be so in practice.  760 

To simulate each vector, we draw values from a Dirichlet distribution (i.e., a 761 

distribution on probability vectors that sum to one). In principle, the Dirichlet distribution 762 

for each biallelic site could be parameterized by the genotype frequencies for each of 763 

the three potential genotype values, !"# $%&, $%(, $%) !!1" , with genotype frequencies equal to 764 

the Hardy-Weinberg expected values based on the allele frequency of the reference 765 

allele (i.e., p2, 2p(1-p), (1-p)2, with p estimated from the data). However, the low 766 

coverage in our data introduces additional noise into this sampling problem, so we 767 

instead draw values from the following Dirichlet distribution:  768 

 !"#$, !"#&, !"#' ∼ )*+(-."# /#$, /#&, /#' )!1"  (5) 

where cij is the read depth (coverage) for the site in (true) candidate father i, and !!!1"  is a 769 

concentration parameter common to all sites and candidate fathers, estimated from the 770 

real data using the method of moments. !!!1"  can be thought of as a scaling factor for the 771 

effect of coverage on variance in !"#$, !"#&, !"#' !!1" . To make the simulations as realistic as 772 

possible, all parameters are estimated from the real data as follows: 773 

 

 
!"# = %('("#)!1"  (6) 

where the expectation is based on the allele frequencies for the reference allele 774 

estimated across all individuals, for each locus j and genotype l combination, and: 775 

 ! = # $%&' (# $%&')
# *%&$%&') (#)(*%&$%&')

!1"
 

(7) 
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where the expectations are based on the allele frequencies (as above) across all 776 

individuals and loci, and across all 3 possible genotype values (0, 1, and 2) for each 777 

locus-individual combination. Our estimates for πij and !!!1"  are based on the observed 778 

average values from the data, which approximate the expected value. 779 

 After simulating genotype data for each candidate male as if he were unrelated to 780 

the focal offspring, we can obtain a new value of r (equation 4) from the simulated data. 781 

By repeating this procedure s times, we can compute a p-value for the hypothesis that 782 

the best candidate in the true data is no more related to the focal offspring than any 783 

other candidate in the data set. This p-value is equal to the proportion of times the 784 

simulated test statistics exceed the observed test statistic. It intuitively corresponds to 785 

the probability of seeing a gap as large as the true gap between the conditional 786 

probabilities for the best and second best candidates, if all candidates were in fact 787 

unrelated (or equally related) to the focal offspring. 788 

Step 3: estimating the posterior probability of paternity. WHODAD’s inference 789 

method, like other paternity inference methods (e.g., CERVUS34,35), can falsely assign 790 

paternity to a close relative if the true father is not included in the pool of potential 791 

fathers. Such false positives arise because these methods do not actually test the 792 

hypothesis that the assigned father is the true father, but rather whether the assigned 793 

father is significantly more closely related to the focal offspring than other candidates in 794 

the pool. A more direct method would be to test the probability of observing the data for 795 

a father-offspring dyad (or father-mother-offspring trio) under the alternative hypothesis 796 

that the assigned father is the true father. Testing the alternative hypothesis is non-797 

trivial with low-coverage data, and by itself can also yield incorrect inferences (Fig. S9). 798 
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However, in combination with the resampling-based p-values described above, it can 799 

improve paternity assignments. 800 

To estimate the probability of the data given the best candidate-offspring dyad, 801 

we take advantage of the fact that dyadic measures of genotype similarity, relatedness, 802 

or other estimates of identity-by-descent should differ for true parent-offspring pairs 803 

compared to all other dyads (except for full sibs). By utilizing the many dyadic values in 804 

a data set of mothers, offspring, and candidate fathers, we should therefore be able to 805 

distinguish father-offspring dyads from dyads involving other relatives or unrelated pairs. 806 

Notably, this method allows us to use dyadic values for mother-offspring pairs to 807 

maximum effect.  808 

We use a normal mixture clustering approach and the k0 value from the R 809 

package lcMLkin, where low k0 values predict high pedigree relatedness (other 810 

measures of dyadic relatedness could be substituted, but the k0 values produced the 811 

best correlation with known pedigree-based measures of relatedness in our sample: 812 

Fig. S13). We denote yb as the vector of logit-transformed k0 measurements for the 813 

best candidate-offspring dyads for all tested father-offspring dyads; y1 as the vector of 814 

logit(k0) measurements for all known mother-offspring dyads, if any are present (y1 can 815 

be an empty vector if no mother-offspring dyads were sampled); and y0 as the vector of 816 

logit(k0) measurements for all other dyads. Thus, y0 captures the distribution of logit(k0) 817 

values for non-parent-offspring dyads; y1 captures the distribution of logit(k0) values for 818 

known parent-offspring dyads; and yb contains a mixture of logit(k0) values for both true 819 

parent-offspring dyads and non-parent-offspring dyads. 820 
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We first work only with y0, and use a mixture model approach to assign the 821 

logit(k0) value for each dyad i into one of K component normal distributions (fit using the 822 

mixtools function in R, with a default value of K=5). Components with lower mean 823 

values for k0 can be thought of as capturing the distribution of logit(k0) values for highly 824 

related dyads (e.g., half-siblings), whereas components with high mean values capture 825 

distantly related or unrelated dyads (if relatedness coefficients were used instead of k0, 826 

this direction would be reversed: low values would correspond to distantly related dyads 827 

instead). For y1, all dyads are from the same relatedness category (mother-offspring), 828 

so logit(k0) values in y1 can be modeled by a single distribution parameterized by a 829 

mean and a variance. Finally, for yb, values of logit(k0) can be assumed to be drawn 830 

from either the distribution on y1 or from one of the distributions (likely one with a low 831 

mean value) in the mixture model for y0: 832 

 !"#~%& ', )* + 1 − % &('#, )#*)!1"  (8) 

where for the ith individual in yb, !"!!1"  and !"#!!1"  are the mean and variance for one of the 833 

distributions in the mixture model of y0; !!!1"  and !"!!1"  are the mean and variance for the 834 

distribution on y1; and !!!1"  is the probability that a value in yb belongs to the parent-835 

offspring distribution or one of the distributions fit in the mixture model for other dyads. 836 

To infer these parameters, for each dyad in yb, we assign !", $"%!!1"  to the mean and 837 

variance of the mostly likely normal component by evaluating the likelihood under all K 838 

components. We then combine y1 and yb to jointly infer !, #, $%!!1"  in equation (8). 839 

Finally, we introduce a latent indicator variable zbi for each dyad to indicate if the 840 

ith dyad in yb is a true father-offspring dyad. The probability of being a true father-841 

offspring dyad, or P(zbi=1), becomes the final statistic used to assess our paternity 842 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2015. ; https://doi.org/10.1101/029520doi: bioRxiv preprint 

https://doi.org/10.1101/029520
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

assignments. To infer P(zbi=1), we use an expectation-maximization algorithm (see 843 

Supplementary Methods for detailed information about the EM steps). WHODAD 844 

considers a male as the likely true father of a focal offspring if he was (i) the candidate 845 

with the highest conditional probability of paternity; (ii) assigned a p-value from our 846 

simulations < 0.05; and (iii) P(zbi=1) > 0.9. 847 

 848 

Testing the accuracy of paternity assignment using WHODAD 849 

 We assigned paternity using the methods detailed above for all previously 850 

identified father-offspring pairs (n = 27) in the Amboseli pedigree (Fig. 1). This pedigree 851 

was constructed using a combination of observational life history data on female 852 

pregnancies and infant care (to infer maternal-offspring dyads), demographic data to 853 

identify possible candidate fathers, and microsatellite genotyping data analyzed in the 854 

program CERVUS (with confidence >95%; see Alberts et al.38 for additional detail).  855 

Our data set contained maternal genotype information derived from the fecal 856 

enrichment protocol for 15 of these individuals (56%). We first used WHODAD to assign 857 

paternity for these 15 offspring while incorporating the genotype data from their 858 

mothers. To assess the accuracy of WHODAD in the absence of maternal genotype 859 

data, we then repeated the paternity analysis for the same 15 offspring without including 860 

the mother’s genotype. For this analysis, we were also able to include the 12 additional 861 

offspring for whom we did not have genotype data from the mother, but had genotype 862 

data from the known father (n=27).  863 

 To examine how the presence of close male kin influenced the accuracy and 864 

confidence of WHODAD’s paternity assignments, we conducted three additional 865 
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analyses. First, to assess the accuracy of WHODAD when the pedigree-assigned father 866 

is the only close male relative present, we removed all close relatives of the offspring 867 

except the father (r≥0.25, e.g., grandfathers, half-sibling or full-sibling brothers) from the 868 

pool of potential fathers. Second, to test if WHODAD assigned a father with high 869 

confidence even when no close relatives were present, we removed all close male 870 

relatives, including the pedigree-assigned father, from the pool of candidate males. 871 

Third, to assess the risk of confidently (but erroneously) assigning a close male relative 872 

as the likely father when the pedigree-assigned father was not genotyped, we removed 873 

the father from the pool of potential fathers. For all WHODAD analyses we report 874 

assignment accuracy based on whether the father was identified by WHODAD with a p-875 

value less than 0.05 and a P(zbi=1) > 0.90. Offspring were not assigned a father (“no 876 

assignment”) when the best candidate male was identified with a p-value > 0.05 or a 877 

P(zbi=1) < 0.90.  878 

879 
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