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Summary

The brain has an impressive ability to withstand neural damage. Diseases that kill neurons
can go unnoticed for years, and incomplete brain lesions or silencing of neurons often fail to
produce any effect. How does the brain compensate for such damage, and what are the limits
of this compensation? We propose that neural circuits optimally compensate for neuron
death, thereby preserving their function as much as possible. We show that this compensation
can explain changes in tuning curves induced by neuron silencing across a variety of systems,
including the primary visual cortex. We find that optimal compensation can be implemented
through the dynamics of networks with a tight balance of excitation and inhibition, without
requiring synaptic plasticity. The limits of this compensatory mechanism are reached when
excitation and inhibition become unbalanced, thereby demarcating a recovery boundary,
where signal representation fails and where diseases may become symptomatic.

Introduction

The impact of neuron loss on information processing is poorly understood (Montague et al., 2012;

Palop et al., 2006). Every day, approximately 85,000 neurons die in the healthy adult brain (Mor-

rison and Hof, 1997; Pakkenberg and Gundersen, 1997). Chronic diseases such as Alzheimer’s

disease and brain tumor growth increase this death rate considerably, and acute events such as a

stroke and traumatic brain injury can kill huge numbers of cells rapidly. Yet, this damage can often

be asymptomatic and go unnoticed for years (Leary and Saver, 2003). Similarly, the incomplete

lesion or silencing of a targeted brain area may ‘fail’ to produce any measurable, behavioral effect.

This resilience of neural systems to damage is especially impressive when compared to man-made

computer systems that typically lose all function following only minor destruction of their circuits.

A thorough understanding of the interplay between neural damage and information processing is
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therefore crucial for our understanding of the nervous system, and may also help in the interpreta-

tion of various experimental manipulations such as pharmacological silencing (Aksay et al., 2007;

Crook and Eysel, 1992), lesion studies (Keck et al., 2008), and optogenetic perturbations (Fenno

et al., 2011).

In contrast to the study of information representation in damaged brains, there has been

substantial progress in our understanding of information representation in healthy brains (Abbott,

2008). In particular, the theory of efficient coding, which states that neural circuits represent

sensory signals optimally given various constraints (Barlow, 1961; Olshausen and Field, 1996;

Olshausen and Simoncelli, 2001; Rieke et al., 1997; Salinas, 2006), has successfully accounted for

a broad range of observations in a variety of sensory systems, in both vertebrates (Greene et al.,

2009; Olshausen and Field, 1996; Olshausen and Simoncelli, 2001; Smith and Lewicki, 2006) and

invertebrates (Fairhall et al., 2001; Machens et al., 2005; Rieke et al., 1997). However, an efficient

representation of information is of little use if it cannot withstand some damage, such as normal

cell death. Plausible mechanistic models of neural computation should be able to withstand the

type of damage that the brain can withstand.

In this work, we propose that neural systems maintain stable signal representations by ac-

tively compensating for the destruction of neurons. We show that this compensation does not

require synaptic plasticity, but can be implemented instantaneously by a balanced network whose

dynamics and connectivity are tuned to implement efficient coding (Boerlin et al., 2013; Bour-

doukan et al., 2012). When too many cells die, this balance is disrupted, and the signal repre-

sentation is lost. We predict how much cell death can be tolerated by a neural system and how

tuning curves change shape following optimal compensation. We illustrate these predictions using

three specific neural systems for which experimental data before and after silencing are available

- the oculomotor integrator in the hindbrain (Aksay et al., 2000, 2007), the cricket cercal system

(Mizrahi and Libersat, 1997; Theunissen and Miller, 1991), and the primary visual cortex (Crook

and Eysel, 1992; Crook et al., 1996, 1997, 1998; Hubel and Wiesel, 1962). In addition, we show

that many input/output non-linearities in the tuning of neurons can be re-interpreted to be the re-

sult of compensation mechanisms within neural circuits. Therefore, beyond dealing with neuronal

death, the proposed optimal compensation principle expands the theory of efficient coding and

provides important insights and constraints for any neural code.
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Results

The principle of optimal compensation. We begin our illustration of optimal compensation us-

ing a simple two-neuron system that represents a signal, x(t). This signal may be a time-dependent

sensory signal such as luminosity for example, or more generally, may be the result of a computa-

tion from within a neural circuit. We make two assumptions about how this signal is represented.

First, we assume that an estimate of the signal can be extracted from the neurons by summing their

instantaneous firing rates:

x̂(t) = r1(t) + r2(t) , (1)

where r1(t) is the firing rate of neuron 1, r2(t) is the firing rate of neuron 2, and x̂(t) is the signal

estimate. Second, we assume that the representation performance can be quantified using a simple

cost-benefit trade-off. This trade-off is called our loss function and is given by:

E = (x− x̂)2 + βC(r). (2)

Here, the first term quantifies the signal representation error - the smaller the difference between the

readout x̂ and the actual signal x, the smaller the representation error. The second term quantifies

the cost of the representation and is given by C(r) = r2
1 + r2

2. This term acts as a regularizer,

ensuring that signal representations are shared amongst all neurons using low firing rates. The

parameter β determines the trade off between this cost and the representation error. Quadratic loss

functions such as Equation 2 have been a mainstay of efficient coding theories, for instance in

the context of stimulus reconstruction (Rieke et al., 1997) or sparse coding (Olshausen and Field,

1996).

We can now study how firing rates must change in this system to compensate for the death

of a neuron. In the healthy, undamaged state, there are many possible firing rate combinations that

can represent a given signal (Figure 1A, dashed line). Among these combinations, the solution

with equal firing rates is optimal, because it has the smallest cost (Figure 1A, black circle). Now,

we kill neuron 1 in our simple model, and ask: how should the firing rate of neuron 2 change,

in order to maintain the representation performance? We see that its firing rate will double (for

very small β) so as to compensate for the failure of neuron 1 (Figure 1A, red circle). We obtain

this result by minimizing the loss function (Equation 2) under the constraint that r2 = 0. This

constraint is the mathematical equivalent of neural death. The induced change in the firing rate of

neuron 2 preserves the signal representation, and thereby compensates for the loss of neuron 1.

The system can compensate the loss of a neuron because it is redundant (two neurons for

one signal). While such redundancy is a necessary prerequisite for robustness, our toy example
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Figure 1 Optimal representation and optimal compensation in a two-neuron example. (A) A signal x can be repre-
sented using many different firing rate combinations (dashed line). Before cell death, the combination that best shares
the load between the neurons, requires that both cells are equally active (black circle). After the death of neuron 1, the
signal must be represented entirely by the remaining neuron, and so, its firing rate must double (red circle). This is the
optimal compensation, for this two-neuron example. (B) This optimal compensation can be implemented in a network
of neurons that are coupled by mutual inhibition and driven by an excitatory input signal. When neuron 1 is knocked
out, the inhibition disappears, allowing the firing rate of neuron 2 to increase. (C) Two spiking neurons, connected
together as in B, representing a signal x (black line, top panel) by producing appropriate spike trains and voltage
traces, V1 and V2 (lower panels). To read out the original signal, the spikes are replaced by decaying exponential (a
simple model of postsynaptic potentials), and summed to produced a readout, x̂ (blue, top panel). After the death of
neuron 1 (red arrow), neuron 2 compensates by firing twice as many spikes.

4

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2015. ; https://doi.org/10.1101/029512doi: bioRxiv preprint 

https://doi.org/10.1101/029512
http://creativecommons.org/licenses/by-nd/4.0/


shows that it is by no means sufficient: to keep functionality, and to properly represent the signal,

the firing rate of the remaining neuron needs to change.

Optimal compensation through instantaneous restoration of balance. Next, we investigate

how this compensation can be implemented in a neural circuit. One possibility is that a circuit

rewires through internal plasticity mechanisms in order to correct for the effect of the lost neurons.

Surprisingly, we find that plasticity is not necessary. Rather, neural networks can be wired up such

that their internal dynamics moves the instantaneous firing rates rapidly into the minimum of the

loss function (Equation 2) (Boerlin et al., 2013; Charles et al., 2012; Hu et al., 2012; Rozell et al.,

2008). As we will show, such dynamics are sufficient to compensate for the loss of neurons.

First, we assume that instantaneous firing rates, ri(t), are equivalent to filtered spike trains,

similar to the postsynaptic filtering of actual spike trains (see Methods for details). Specifically,

a spike fired by neuron i contributes a discrete unit to its instantaneous firing rate, ri → ri + 1,

followed by an exponential decay. Second, we assume that each neuron will only fire a spike if

the resulting change in the instantaneous firing rate reduces the loss (Equation 2). From these

two assumptions, the dynamics and connectivity of the network can be derived (Boerlin et al.,

2013; Bourdoukan et al., 2012). Specifically, we obtain a network containing two integrate-and-

fire neurons driven by an excitatory input signal and coupled by mutual inhibition (Figure 1B).

Both neurons work together, and take turns at producing spikes (Figure 1C). The neuron that

reaches threshold first produces a spike, contributes to the signal readout and inhibits the other

neuron. Now, when a neuron dies (Figure 1C, red arrow), the remaining neuron no longer receives

inhibition from its partner neuron and it becomes much more strongly excited, spiking twice as

often. In other words, the remaining neuron now implements the full optimization alone. This

compensation happens because each neuron seeks to minimize the loss function, with or without

the help of other neurons. When one neuron dies, the remaining neuron automatically and rapidly

assumes the full burden of signal representation. In this way, the simple spiking network naturally

implements optimal compensation following cell death (see Methods for additional details).

These ideas can be extended to realistic neural circuits by scaling up to larger networks. In a

network of N neurons, the signal is represented by the weighted summation of N firing rates:

x̂(t) =
N∑
i=1

wiri(t) , (3)

where wi is the readout weight of the ith neuron and ri(t) is the instantaneous firing rate of the

ith neuron (Figure 2A–C). Such linear readouts are used in many contexts and broadly capture

the integrative nature of dendritic summation. Just as for the two-neuron network, we can then
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Figure 2 Optimal compensation and recovery boundary in a larger spiking network (N = 100 neurons) (A) Schematic
of a network representing x(t). The signal x(t) can be read out by post-synaptically filtering each spike train, multi-
plying each filtered spike train with its readout weights wi, and then summing them all to produce x̂(t). The readout
weight for each neuron is either positive (dark blue) or negative (bright blue). (B) Schematic of a network where a
large portion of neurons with positive readout weights are knocked out. (C) Schematic of a network where 100% of
neurons with positive readout weights are knocked out. (D) The network provides an accurate representation x̂(t)

(blue line) of the time-varying signal x (black line). When 90% of neurons with positive readout weights are knocked
out (k.o.), firing rates in the remaining neurons change to compensate the loss. However, when 100% of neurons with
positive readout weights are knocked out, the representation accuracy degrades (k.o. at the recovery boundary). (E)
A raster plot of spiking activity shows that spike trains are quite irregular. Neurons with positive and negative readout
weights are marked by grey bars on the left. Red crosses mark the portion of neurons that are knocked out. Whenever
neurons are knocked out, the remaining neurons change their firing rates instantaneously to compensate. (F) Voltage
of an example neuron (marked with green dots in E) with threshold T and reset potential R. (G) The total excita-
tory (light green) and inhibitory (dark green) input currents to this example neuron are balanced, and the remaining
fluctuations (inset) produce the membrane potential shown in F. This balance is maintained after partial knock out of
neurons. However, when all the neurons with positive readout weights die, the network becomes unbalanced (black
arrow), because there is not enough excitatory current (light green) to balance the inhibitory currents (dark green).
This is the recovery boundary for the network (see also Figure S1).
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derive both network connectivity and dynamics for this larger network, by assuming that its spiking

dynamics minimize the loss function (Equation 2) (Boerlin et al., 2013; Bourdoukan et al., 2012).

The resulting network consists of leaky integrate-and-fire neurons receiving a tight balance of

excitatory and inhibitory inputs (Figure 2D–G). In this balanced state, the signal x(t) is represented

accurately (Figure 2D). Now, when some portion of the neural population dies, the remaining

neurons receive less inhibition (or excitation, depending on which neurons die). In turn, their firing

rates change, and the overall levels of inhibition (or excitation) readjust (Figure 2G), until balance

is restored, and with it, accurate signal representation is restored. In this way, tightly balanced

network dynamics compensate automatically and rapidly for the destruction of their elements (see

Methods for additional details).

The recovery boundary. As expected, this recovery from neural death is not unlimited. When

too many cells die, some portions of the signal can no longer be represented, no matter how the

remaining neurons change their firing rates (Figure 2D–G). The resultant recovery boundary co-

incides with a breakdown in the balance of excitation and inhibition - where there are no longer

enough inhibitory cells to balance excitation (or enough excitatory cells to balance inhibition) (Fig-

ure 2G). In this example, the recovery boundary occurs when all the neurons with positive valued

readout weights have died, so that the network can no-longer represent positive valued signals or

remain balanced (Figure 2G, black arrow).

When all but one neuron with positive readout weights die, the remaining neuron will shoul-

der the full representational load. This is an unwieldy situation because the firing rate of this

neuron must become unrealistically large to compensate for all the dead neurons. In a more realis-

tic scenario, neural activity can saturate, in which case the recovery boundary occurs much earlier

(see Methods and Figures S1A, B). For instance, we find that a system with an equal number of

positive and negative readout weights tolerates up to 90% neuron loss (when neurons are killed in

random order) if the maximum firing rate of a neuron is 1000 Hz, whereas it will only tolerate 50%

neuron loss if the maximum firing rate is 150 Hz (Figure S1B).

Analyzing tuning curves using quadratic programming. A crucial signature of the optimal

compensation principle introduced above is that neuron firing rates must change to keep the lin-

ear readout of the signal x stable. In order to test how these changes compare with experimental

recordings, we need to quantify them more precisely, which we will do by deriving a direct math-

ematical relationship between the firing rates in our spiking network and the input signal.

While the relation between the dynamics of a spiking network and the observed firing rates of
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individual neurons has traditionally been a hard problem, addressed for instance in the framework

of mean-field theory (Renart et al., 2003), we can here circumvent many of these difficulties by

noting that our spiking network minimizes the loss function (Equation 2). While this minimization

has been performed for instantaneous firing rates, ri(t), and time-varying signals x(t), we conjec-

ture that the average firing rate, r̄, for a constant input signal, x, must be given by the minimum of

the same loss function as in Equation 2 so that,

r̄(x) = arg min
r̄i≥0,∀i

[
(x− x̂)2 + βC(r̄)

]
, (4)

where the signal estimate, x̂ =
∑

iwir̄i, is formed using the average firing rates. This minimization

is performed under the constraint that firing rates must be positive, since the firing rates of spiking

neurons are positive valued quantities, by definition. Traditionally, studies of population coding or

efficient coding usually assume both positive and negative firing rates (Dayan and Abbott, 2001;

Olshausen and Field, 1996; Olshausen and Simoncelli, 2001), and the restriction to positive firing

rates is generally considered an implementational problem (Rozell et al., 2008). Surprisingly,

however, we find that the constraint changes the nature of the solutions and provides fundamental

insights into the shapes of tuning curves in our networks, as clarified below.

Mathematically, the minimization of a quadratic function under linear constraints is called

quadratic programming. In our case, the loss function is quadratic in the average firing rates, r̄, and

the positivity constraint is linear in the firing rates. Using quadratic programming, we can therefore

calculate the average firing rates r̄ by solving Equation 4 for a range of values of x. This procedure

produces neural tuning curves, r̄(x) (Figure 3, second column), that closely match those measured

in simulations of our tightly balanced network (Figure 3, third and fourth column), for a variety

of networks of increasing complexity (Figure 3; see supplementary materials for mathematical

details).

Our first observation is that the positivity constraint produces non-linearities in neural tuning

curves. We illustrate this using a two-neuron system with two opposite valued readout weights,

w1 = 0.025, w2 = −0.025 (Figure 3A, first column). At signal value x = 0, both neurons fire

at equal rates so that the readout, Equation 3, correctly becomes x̂ = 0.025 × (r̄1 − r̄2) = 0.

When we move to higher values of x, the firing rate of the first neuron, r̄1, increases linearly

(Figure 3A, second column, orange line), and the firing rate of the second neuron, r̄2, decreases

linearly (Figure 3A, second column, blue line), so that in each case, x̂ ≈ x. Eventually, around

x = 0.4, the firing rate of neuron 2 hits zero (Figure 3A, black arrow). Since it cannot decrease

below zero, and because the estimated value x̂ must keep growing with x, the firing rate of neuron

1 must grow at a faster rate. This causes a kink in its tuning curve (Figure 3A, black arrow). This
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Figure 3 Explaining tuning curves in the spiking network with quadratic programming. (A) A network with two
neurons. The first column shows the decoding weights {w1, w2} and the cost terms for each neuron {c1, c2}. The
second column shows the tuning curves predicted using quadratic programming. The third column shows the tuning
curves measured during a 1 second simulation of the respective spiking network. The fourth column shows the
match between the measured and predicted tuning curves. (B) Similar to A, but using a network of 16 neurons with
inhomogeneous, regularly spaced decoding weights {wi}. The resulting tuning curves are regularly spaced. Neurons
with small decoding weight magnitude have smaller thresholds and shallower slopes; neurons with large decoding
weight magnitudes have larger thresholds and steeper slopes. (C) Similar to B except that decoding weights and cost
terms are regularly spaced with the addition of some noise. This irregularity leads to inhomogeneity in the balanced
network tuning curves, and in the quadratic programming prediction (see also Figures S2-S4 ).
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kink in the tuning curve slope is an indirect form of optimal compensation, where the network

is compensating for the temporary silencing of a neuron. We provide further geometric insights

into the shape of the tuning curves obtained from quadratic programming, in Figure S2 and in the

Methods.

Our second observation is that tuning curves depend on the decoder weight values: a neuron

with a negative weight has a negative firing rate slope and a neuron with a positive weight has a

positive firing rate slope (Figure 3A–C, second column). If the network consists of several neurons,

then those that have small readout weight magnitude have shallow slopes and thresholds far from

x = 0, and those with large readout weight magnitude have steep slopes and thresholds close to

x = 0 (Figure 3B, second column). By increasing the range of readout weight values, we increase

the range or tuning curve slopes (Figure S3A). Every time one of the neurons hits the zero firing

rate lower bound, the tuning curve slopes of all the other neurons change.

Our third observation is that tuning curves depend on the form of the cost terms, C(r̄).

If there is no cost term, there are many equally favorable firing rate combinations that produce

identical readouts (Figure 1A). The precise choice of a cost term largely determines which of

these solutions is found by the network. In Figure 3, we choose a biased quadratic cost C(r̄) =∑
k r̄

2
k + β2/β(rB −

∑
k ckr̄k)

2. Here, the second term biases the population towards a solution

where a background task variable rB is represented, and where the contribution of neuron k to

this background task is determine by ck. This background task could be any signal-independent

variable, that is not being probed or varied during an experiment. It has the effect of forcing tuning

curves to intercept, thereby revealing much of the complexity of the quadratic programming solu-

tion as we have just observed. By increasing the range of neuron cost values {ck}, we increase the

range or tuning curve intercepts (Figure S3B), and by decreasing the magnitude of cost values, we

decrease the tuning curve intercept values (Figure S3C). As the heterogeneity of the cost parame-

ters and readout weights increases, we see that the heterogeneity of tuning curve shapes increases

(Figure 3C, second column). If we use a quadratic cost without a bias term (C(r̄) =
∑

k r̄
2
k),

tuning curves do not intercept (Figure S4A). If we use a linear cost term (C(r̄) =
∑

k r̄k), then a

small number of neurons will dominate the representation (Figure S4B and Methods).

We note that although the firing rate predictions here using Equation 4 are very accurate (Fig-

ure 3, fourth column), we expect these predictions to break down in certain network regimes. For

example, if membrane potential noise is large (about the same order of magnitude as the synap-

tic input) (Figure S5A), or if the readout weights become too large (Figure S5B and Methods).

Accordingly, the dynamics of our network “implements” only an approximation to the quadratic
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programming algorithm, albeit a close approximation for the cases considered here. To simplify

our nomenclature, we take this to be implied for our spiking network implementation, but we note

that the quadratic programming solutions we obtain are the true optimal solutions.

Tuning curves before and after neuronal silencing. We can now calculate how tuning curves

change shape in our spiking network following neuronal death. When a set of neurons are killed or

silenced within a network, their firing rates are effectively set to zero. We can include this silencing

of neurons in our quadratic programming algorithm by simply clamping the respective neurons’

firing rates to zero:

r̄(x) = arg min
r̄i≥0 if i∈X
r̄j=0 if j∈Y

[
(x− x̂)2 + βC(r̄)

]
(5)

where X denotes the set of healthy neurons and Y the set of dead (or silenced) neurons. This

additional clamping constraint is the mathematical equivalent of killing neurons. The difference

between the solutions of Equation 4 and Equation 5 provides our definition of ‘optimal’ compen-

sation, which is understood to be the minimization of this loss function—either numerically or

through the dynamics of the spiking network. In turn, we can study the tuning curves of neurons

in networks with knocked-out neurons.

As a first example, we compare the tuning curves of neurons before and after neuron death.

Using a one-dimensional input signal, x, and similar network connectivity as before (Figure 3C),

we solve Equation 4 and obtain a complex mixture of tuning curves with positive and negative

slopes, and diverse threshold crossings (Figure 4A). We then calculate how these tuning curves

change shape following neuron death (Figure 4B), using Equation 5. We find that neurons that

have similar tuning to the knocked out neurons increase their firing rates and dissimilarly-tuned

neurons decrease their firing rates. In this way, signal representation is preserved as much as

possible (Figure 4B, inset). In comparison, we find that a network that does not change its tuning

curves after cell death has drastically worse representation error (Figure 4B, inset). In addition,

if all the neurons with positive tuning curve slopes are killed, we cross the recovery boundary, so

even optimal compensation can no longer preserve signal representation (Figure 4C).

We note that these observations are the key signatures of optimal compensation. In particu-

lar, they are largely independent of the specific details of our network model, such as the choice of

readout weights or the choice of a cost-term. For example, if instead of using a biased quadratic

cost term, we use a quadratic cost term or a linear cost term, we still find that neurons with similar

tuning to the knocked out neurons increase their firing rates following the knockouts (see Fig-

ure S4B, E), and we find that the recovery boundary occurs at the same place (see Figure S4C,
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Figure 4 Changes in tuning curves following neuron death and optimal compensation, as calculated with quadratic
programming. (A) The firing rates of a neural population are given as a function of input signal x. Here, each line is the
firing rate tuning curve of a single neuron, with either positive slope (yellow–red) or negative slope (blue-green). The
population contains 16 neurons (a small number, for ease of visualization). The network readout x̂ closely matches
the signal x (inset), indicating that the network is providing a good signal representation. (B) Tuning curves after
the death of four negatively sloped neurons and after optimal compensation from the remaining neurons. The signal
representation continues to be accurate (inset, black line). If the tuning curves of the remaining neurons do not undergo
optimal compensation, the signal representation fails for negative values of x (inset, dashed grey line). (C) After the
death of the remaining negatively sloped neurons (bottom panel), the population is no longer capable of producing
a readout x̂ that can match negative values of the signal x, even with optimal compensation (inset, black line). This
happens because the recovery boundary has been reached – where signal representation fails.
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F).

We can now make our first comparison to measurements. We consider the vertebrate ocu-

lomotor system, which is responsible for horizontal eye fixations in the hindbrain of vertebrates.

This system is naturally comparable to the one-dimensional signal representation example that

we have just considered: the signal x corresponds to the eye position, with zero representing the

central eye position, positive values representing right-side eye positions and negative values rep-

resenting left-side eye positions. The biased cost term could reflect the system’s desire to retain

a constant muscle tone. We find that the tuning curves of neurons measured in the oculomotor

system (Aksay et al., 2000) (Figure 5A) are similar to the tuning curves in our one-dimensional

network calculated using Equation 4 (Figure 5B). In both cases, neurons that encode right-side eye

positions have positive slopes, and these follow a recruitment order, where neurons with shallow

tuning curve slopes become active before neurons with steep tuning curve slopes (Aksay et al.,

2000; Fuchs et al., 1988; Pastor and Gonzalez-Forero, 2003) (Figure 5A, B inset). Now, when

neurons with negatively sloped tuning curves are inactivated using lidocaine and muscimol injec-

tions (Aksay et al., 2000), the system can compensate so that it can still represent right-side eye

positions (Figure 5C). This is consistent with our optimal compensation prediction (Figure 4C in-

set and Figure 5D). However, the system is unable to represent left-side eye positions (Figure 5C)

because all the negatively sloped neurons are knocked out. This is consistent with our recovery

boundary prediction (Figure 4C inset and Figure 5D).

Optimal compensation in networks with bell-shaped tuning curves. Next, we investigate these

compensatory mechanisms in more complicated systems that have bell-shaped tuning curves. We

consider two examples: a small sensory system called the cricket (or cockroach) cercal system,

which represents wind velocity, (Theunissen and Miller, 1991) and the primary visual cortex,

which represents oriented edge-like stimuli (Hubel and Wiesel, 1962). Our framework can be

generalized to these cases using circular signals embedded in a two-dimensional space, x =

(cos(θ), sin(θ)), where θ is the orientation of our signal. In the case of the cercal system, θ is

wind-direction, and in the visual cortex, θ represents the orientation of an edge-like stimulus. We

must also generalize our signal readout mechanism, so that our neural population can represent the

two dimensions of the signal simultaneously:

x̂ =
N∑
i=1

wir̄i , (6)

where wi is the two-dimensional linear decoding weight of the ith neuron.

As before, we calculate tuning curves using quadratic programming (Equation 4), now for the
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Figure 5 Tuning curves and inactivation experiments: Comparison between the goldfish oculomotor system and a
one-dimensional (network) model. (A) Tuning curve measurements from right-side goldfish (Area 1) oculomotor
neurons. Firing rate measurements above 5 Hz are fit with a straight line fn = kn(x − Eth,n), where fn is the firing
rate of the nth neuron, Eth,n is the firing rate threshold, kn is the firing rate slope and x is the eye position. As the eye
position increases, from left to right, a recruitment order is observed, where neuron slopes increase as the firing rate
threshold increases (inset). Reproduced from Aksay et al. (2000). (B) Optimal tuning curves predicted using quadratic
programming (Equation 4). The predicted tuning curves are obtained using the same parameters as in previous figures
(Figure 4A), and are fit using the same procedure as in the experiments from Aksay et al. (2000). As in the data, a
recruitment order is observed with slopes increasing as the firing threshold increases (inset). (C) Eye position drift
measurements after the pharmacological inactivation of left side neurons in goldfish. Inactivation was performed
using lidocaine and muscimol injections. Here ∆D = Dafter−Dbefore, whereDbefore is the average drift in eye position
before pharmacological inactivation and Dafter is the average drift in eye position after pharmacological inactivation.
Averages are calculated across goldfish. Adapted from Aksay et al. (2007). (D) Eye position representation error of
a model system following optimal compensation. Here ∆E = EC − EI , where EI is the representation error of
the intact system and EC is the representation error following optimal compensation. These representation errors are
calculated using the loss function from equation 2.
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Figure 6 Tuning curves and inactivation experiments: Comparison between systems with angular tuning and two-
dimensional (network) models. (A) Equally spaced readout weights for a two-dimensional network model containing
four neurons. (B) This system has bell-shaped tuning curves that provide an optimal representation of a circular signal
with orientation θ. (C) Following the death of a single neuron and optimal compensation the tuning curves of the
remaining neurons do not change. (D) In the intact system, the representation error is negligible (black line). After
cell death, the error increases strongly around the preferred orientation of the knocked out neuron (θ = 0o), with
optimal compensation (red line) or without optimal compensation (dashed yellow line). (E) Firing rate recordings
from the cricket cercal system in response to air currents at different orientations. Each neuron has a preference for
a different wind direction. Compare with panel (B). Reproduced from Theunissen and Miller (1991). (F) Measured
change of cockroach cercal system tuning curves following the ablation of another cercal system neuron. In all cases,
there is no significant change in firing rate. This is consistent with the optimal compensation in C. The notation GI1-
GI2 denotes that Giant Interneuron 1 is ablated and the change in Giant Interneuron 2 is measured. The firing rate
after ablation is given as a percentage of the firing rate before ablation. Reproduced from Mizrahi and Libersat (1997).
(G–J) Similar to A–D but for a population of 16 neurons, which creates redundancy in the representation. (I) When
some of the neurons have been knocked out, the tuning curves of the remaining neurons change by shifting towards the
preferred orientations of the knocked out neurons. (J) This compensation preserves high signal representation quality
(red line). In comparison, if the tuning curves do not change, the readout error increases substantially (dashed yellow
line).
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multivariate case (Equation 28). If our system consists of four neurons with equally spaced readout

weights (Figure 6A) we obtain tuning curves that are similar to the cricket (or cockroach) cercal

system, with each neuron having a different, preferred wind direction (Theunissen and Miller,

1991) (Figure 6B, E). The similarity between predicted tuning curves (Figure 6B) and measured

tuning curves (Figure 6E) suggests that we can interpret cercal system neurons to be optimal for

representing wind direction using equally spaced readout weights.

We can now study how tuning curves in this system should change following cell death

(Equation 5). This is analogous to experiments in the cockroach cercal system where a single

neuron is killed (Libersat and Mizrahi, 1996; Mizrahi and Libersat, 1997). We find that our model

system crosses the recovery boundary following the death of a single neuron (Figure 6D), and so,

optimal compensation does not produce any changes in the remaining neurons (Figure 6C). This

result is identical to measured responses (Figure 6F) (Libersat and Mizrahi, 1996; Mizrahi and

Libersat, 1997). It occurs because four neurons are required, at a minimum, to represent all four

quadrants of the signal space, and so, there are no changes that the remaining neurons can make

to improve signal representation. Indeed, our model of the cercal system has no redundancy (see

Methods for more details). As, such, the cercal system is an extreme system that exists on the edge

of the recovery boundary (Libersat and Mizrahi, 1996; Mizrahi and Libersat, 1997).

The situation becomes more complicated in the large network example which has sufficient

redundancy to compensate for the loss of neurons. When neurons have irregularly spaced readout

weights (Figure 6G), we obtain an irregular combination of bell-shaped tuning curves (Figure 6H),

similar to those found in the primary visual cortex, with each neuron having a different preferred

orientation and maximum firing rate as determined by the value of the decoding weights. If we

now kill neurons within a specific range of preferred orientations, then the remaining neurons

increase their firing rates and shift their tuning curves towards the preferred orientations of the

missing neurons (Figure 6I). In this way, the portion of space that is under-represented following

cell death becomes populated by neighboring neurons, which thereby counteract the loss. The

signal representation performance of the population is dramatically improved following optimal

compensation compared to a system without compensatory mechanisms (Figure 6J).

A high-dimensional example: optimal compensation in V1. The visual cortex represents high-

dimensional signals, namely images, that consist of many pixel values. In the previous section, we

investigated optimal compensation in a simple model of the visual cortex, in which neurons rep-

resent a one-dimensional orientation signal embedded in a two-dimensional space. Such a model

is likely to be too simplistic to account for tuning curve changes in experiments. To investigate
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Figure 7 Optimal compensation for orientation column cell death in a positive sparse coding model of the visual
cortex. (A) Schematic of a neural population (middle) providing a representation (right) of a natural image (left).
This image representation is formed when neurons respond to an image patch x with a sparse representation and an
output x̂. Here, patches are overlapped to remove aliasing artifacts. (B) Following the death of neurons that represent
vertical orientations, the image representation degrades substantially without optimal compensation, especially for
image segments that contain vertical lines (orange arrow), and less so for image segments that contain horizontal lines
(green arrow). (C) Following optimal compensation, the image representation is recovered. (D) A selection of efficient
sparse decoding weights, illustrated as image patches. Each image patch represents the decoding weights for a single
neuron. In total, there are 288 neurons in the population. (E) A selection of vertically orientated decoding weights
whose neurons are selected for simulated death. All neurons with preferred vertical orientations at 67.5o, 90o and
112.5o and at the opposite polarity, −67.5o, −90o and −112.5o are silenced.
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compensatory mechanisms in a more realistic model of the primary visual cortex, we make a final

generalization to systems that can represent high-dimensional image signals (Figure 7A).

The tuning of V1 simple cells can largely be accounted for by assuming that neural firing

rates provide a sparse code of natural images (Olshausen and Field, 1996; Olshausen and Simon-

celli, 2001). In accordance with this theory, we use decoding weights that are optimized for natural

images, and we use a sparsity cost instead of a quadratic cost (see Methods). As before, we obtain

the firing rates of our neural population by minimizing our loss function (Equation 4), under the

constraint that firing rates must be positive. We find that neurons are tuned to both the orienta-

tion and polarity of edge-like images (Figure 7D), where the polarity is either a bright edge with

dark flanks, or the opposite polarity - a dark edge with bright flanks. Orientation tuning emerges

because natural images typically contain edges at many different orientations, and a sparse code

captures these natural statistics (Olshausen and Field, 1996; Olshausen and Simoncelli, 2001). Po-

larity tuning emerges as a natural consequence of the positivity constraint, because a neuron with

a positive firing rate cannot represent edges at two opposing polarities. Similar polarity tuning has

been obtained before, but with an additional constraint that decoding weights be strictly positive

(Hoyer, 2004, 2003).

Finally, we calculate optimal compensation of tuning curves following the silencing of an

orientation column (Figure 7E), again using Equation 5. Without optimal compensation, (i.e.,

without any changes in firing rates), we find that the silencing of an orientation column damages

image representation, especially for image components that contain edges parallel to the preferred

orientations of the dead neurons (Figure 7B, orange arrow). When the population implements

optimal compensation, the firing rates of many neurons change, and the image representation is

recovered (Figure 7C). The firing rates of the remaining neurons increase substantially at the pre-

ferred orientation of the silenced cells (Figure 8A, C) and the preferred orientations of many cells

shift toward the preferred orientation of the silenced cells (Figure 8A, D), similar to the simpli-

fied two-dimensional example. Note that firing rates at the anti-preferred orientation also increase

(Figure 8A, C). This occurs because neurons represent more than orientation (they represent a full

image), and so, neurons that have anti-preferred orientations relative to each other may have sim-

ilar tuning along other signal dimensions. These compensatory firing rate changes are consistent

with experiments in the cat visual cortex, in which orientation columns are silenced using GABA

(Crook et al., 1996, 1997, 1998) (Figure 8B and Figure S6). Neurons that escape silencing in the

cat visual cortex also shift their tuning curves towards the preferred orientations of the silenced

neurons (Figure 8B). In addition, the changes observed in the cat visual cortex are rapid, occurring
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Figure 8 Tuning curves and inactivation experiments: Comparison between V1 recordings and the positive sparse
coding model. (A) A set of similarly tuned neurons are selected for artificial knock out in our V1 model. The
average tuning curve of these neurons is plotted in polar co-ordinates (red). The tuning curve of a test neuron is
shown before the selected neurons are knocked out (middle column) and after optimal compensation (right column).
Each row illustrates the response of a different test neuron to neuron death. Following optimal compensation, the
neurons remaining after cell death shift their tuning curves towards the preferred orientation of the knocked out neurons
(indicated by a red cross). (B) Recordings of cat visual cortex neurons (Area 18) both before (middle column) and
after (right column) the GABA-ergic knock out of neighboring neurons (left column). The firing rates of all neurons
increase in the direction of the preferred orientation of the silenced neurons (red cross). Each row illustrates the
response of a different test neuron to silencing. Examples are selected for ease of comparison with A. Knock out
measurements were obtained using multi-unit recording and single-unit recordings were obtained for neurons that
were not subject to silencing. These results are adapted from Crook et al. (1996) and Crook et al. (1998). (C) The
average change in firing rate due to optimal compensation ∆f is calculated at each stimulus orientation, where the
average is taken across the neural population. There is a substantial increase in firing rates close to the preferred
orientations of the knocked out cells. (D) The change in preferred orientation ∆θ following optimal compensation
is given for each neuron as a function of its preferred orientation before cell death. Many cells shift their preferred
orientation towards the preferred orientation of the knocked out cells. Cells that do not change may still increase their
firing around the preferred orientation of the knocked out neurons (A, top row). In A–D we knock out 50% of neurons
with preferred orientations across a range of 50o (see also Figure S8 ).
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at the same speed as the GABA-ergic silencing, which is consistent with the rapid compensation

that we predict.

These results are largely independent of the precise parameterization of the system, such as

the number of neurons chosen and the number of neurons knocked out. A high degree of over-

completeness, for instance, will shift the recovery boundary to a larger fraction of knocked-out

neurons, but will not change the nature of the compensatory response (Figure S7A, B). At high

degrees of over-completeness, quantitive fluctuations in tuning curve responses are averaged out,

indicating that optimal compensation becomes invariant to over-completeness (Figure S7C, D).

The precise proportion of neurons knocked out in the experimental studies (Crook and Eysel,

1992) is not known. However, for a range of reasonable parameter choices (50%-75% knock

out within a single orientation column), our predicted tuning curve changes are consistent with the

recorded population response to neuron silencing (Crook and Eysel, 1992) (Figure S6B). Although

the existence of a quantitive match is interesting, it is the broad qualitative agreement between our

theory and the data from a variety of systems that is most compelling.

Discussion

To our knowledge, optimal compensation for neuron death has not been proposed before. Usually,

cell death or neuron silencing is assumed to be a wholly destructive action, and the immediate

neural response is assumed to be pathological, rather than corrective. Synaptic plasticity is typi-

cally given credit for recovery of neural function. For example, synaptic compensation has been

proposed as a mechanism for memory recovery following synaptic deletion (Horn et al., 1996),

and optimal adaptation following perturbations of sensory stimuli (Wainwright, 1999) and motor

targets (Braun et al., 2009; Kording et al., 2007; Shadmehr et al., 2010) has also been observed,

but on a slow timescale consistent with synaptic plasticity. In this work, we have explored the

properties of optimal compensation, and have shown that it may be implemented without synaptic

plasticity, on a much faster timescale, through balanced network dynamics.

The principle of optimal compensation that we have proposed here is obviously an idealiza-

tion, and any putative compensatory mechanism of an actual neural system may be more limited.

That said, we have catalogued a series of experiments in which pharmacologically induced tuning

curve changes can be explained in terms of optimal compensation. These experiments were not

originally conducted to test any specific compensatory mechansisms, and so, the results of each

individual experiment were explained by separate, alternative mechanisms (Aksay et al., 2007;

Crook et al., 1996, 1997, 1998; Libersat and Mizrahi, 1996; Mizrahi and Libersat, 1997). The
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advantage of our optimal compensation theory is that it provides a simple, unifying explanation

for all these experiments.

Our work is built upon a connection between two separate theories: the theory of balanced

networks, which is widely regarded to be the standard model of cortical dynamics (Renart et al.,

2010; van Vreeswijk and Sompolinsky, 1996, 1998) and the theory of efficient coding, which is

arguably our most influential theory of neural computation (Barlow, 1961; Bell and Sejnowski,

1997; Greene et al., 2009; Olshausen and Field, 1996; Salinas, 2006). We were able to connect

these two theories for two reasons: (1) We show how to derive a tightly balanced spiking network

from a quadratic loss function, simplifying the recent work of (Boerlin and Denève, 2011; Boerlin

et al., 2013) by focusing on the part of their networks that generate a spike-based representation of

the information. (2) We show that the firing rates in these spiking networks also obey a quadratic

loss function, albeit with a positivity constraint on the firing rate. While the importance of positivity

constraints has been noted in other context (Hoyer, 2004, 2003; Lee and Seung, 1999; Salinas,

2006), we here show its dramatic consequences in shaping tuning curves, which had not been

appreciated previously. Now, using this connection we can easily compute the tuning curves in

our network by directly minimizing the loss function under a positivity constraint. This constraint

minimization problem, called quadratic programming, provides a novel link between balanced

networks and traditional firing rate calculations. It allows us to think of spiking dynamics as a

quadratic programming algorithm, and tuning curves as the solution. In turn, we obtain a single

normative explanation for the polarity tuning of simple cells (Figure 7D), tuning curves in the

oculomotor system (Figure 5A, B), and tuning curves in the cricket cercal system (Figure 6A–F),

as well as the mechanisms underlying the generation of these tuning curves, and the response of

these systems to neuronal loss.

Several alternative network models have been proposed that minimize similar loss functions

as in our work (Charles et al., 2012; Dayan and Abbott, 2001; Hu et al., 2012; Rozell et al., 2008).

However, in all these models, neurons produce positive and negative firing rates (Charles et al.,

2012; Dayan and Abbott, 2001; Rozell et al., 2008), or positive and negative valued spikes (Hu

et al., 2012). The compensatory response of these systems will be radically different, because

oppositely tuned neurons can compensate for each other by increasing their firing rates and chang-

ing sign, whereas we predict that only similarly tuned neurons will compensate for each with

increased firing rates. Similar reasoning holds for any efficient coding theories that assumes posi-

tive and negative firing rates. In more recent work, it has been found that a spiking network, that

produces positive spikes only, can learn to efficiently represent natural images (King et al., 2013;
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Zylberberg et al., 2011). Whether these models will support optimal compensation will depend

on the specifics of the learnt connectivity (see Methods). Since optimal compensation is directly

related to balance, we expect any balanced network models that track signals (Renart et al., 2010;

van Vreeswijk and Sompolinsky, 1996, 1998) to also implement optimal compensation following

neuron death. These observations hold for generalizations of our own model in which the signal

input x is replaced by slow recurrent synaptic inputs that perform more complex computations,

such as arbitrary linear dynamical systems (Boerlin et al., 2013). Indeed, recent work on balanced

networks that act as integrators has shown robustness to various perturbations, including neuron

death (Boerlin et al., 2013; Lim and Goldman, 2013), and can therefore be considered a special

case of the optimal compensation principle that we propose here.

Aside from the specific examples studied here, we can use our theory to make a number

of important, testable predictions about the impact of neural damage on neural circuits in general.

First, we can predict how tuning curves change shape to compensate for neuron death. Specifically,

neurons with similar tuning to the dead neurons increase their firing rates and neurons with dis-

similar tuning decrease their firing rates (unless they are already silent). This happens because the

remaining neurons automatically seek to carry the informational load of the knocked out neurons

(which is equivalent to maintaing a balance of excitation and inhibition). This is a strong prediction

of our theory, and as such, an observation inconsistent with this prediction would invalidate our

theory. There have been very few experiments that measure neural tuning before and after neuron

silencing, but in the visual cortex, where this has been done, our predictions are consistent with

experimental observations (Crook et al., 1996, 1997, 1998) (Figure 8A, B).

Our second prediction is that optimal compensation is extremely fast—faster than the timescale

of neural spiking. This speed is possible because optimal compensation is supported by the balance

of excitation and inhibition, which responds rapidly to neuron death—just as balanced networks

can respond rapidly to changes in input (Renart et al., 2010; van Vreeswijk and Sompolinsky, 1996,

1998). We are not aware of any experiments that have explicitly tested the speed of compensation

following neuron silencing. In the visual cortex, the pharmacological silencing of neurons is too

slow to out-rule the possibility that there is some synaptic plasticity (Crook et al., 1996, 1997,

1998). Nonetheless, these experiments are consistent with our prediction, because the changes

observed in tuning curve shape are at least as fast, if not faster than the speed of pharmacolog-

ical silencing. Ideally, these predictions could be tested using neuronal ablations or optogenetic

silencing.

Finally, we predict that all neural systems have a cell death recovery boundary, beyond which
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neural function disintegrates. Existing measurements from the oculomotor system (Aksay et al.,

2007) seem to be consistent with this prediction (Figure 5 and Figure 6A–F). We predict that this

recovery boundary coincides with a disruption in the balance of excitation and inhibition. This has

not been explored experimentally, although the disruption of balance has recently been implicated

in a range of neural disorders such as epilepsy (Bromfield, 2006) and schizophrenia (Yizhar et al.,

2011). Anecdotally, there have been many unreported experiments where neural ablation has failed

to cause a measurable behavioral effect. Our theory suggests that such “failed” lesion experiments

may be far more interesting than previously thought, and that the boundary between a measurable

and unnoticeable behavioral effect deserves specific attention. Indeed, the properties of a recovery

boundary may shed light on the progression of neurodegenerative diseases—especially those that

are characterized by a period of asymptomatic cell death, followed by a dramatic transition to a

disabled symptomatic state, as in Alzheimer’s disease and stroke (Leary and Saver, 2003). We

predict that these transitions occur at the recovery boundary of the diseased system. We also

predict that an accumulation of asymptomatic damage, through aging for example, or through

acute conditions such as silent stroke, will increase the susceptibility of the brain to symptomatic

damage, by moving it closer to the recovery boundary. If a system was to cross our predicted

recovery boundary, without there being any functional deficit, our theory would be invalidated.

These predictions, and more broadly, the principle of optimal compensation that we have de-

veloped here, promise to be useful across a number of areas. First, as a neuroscience tool, our work

provides a framework for the interpretation of experimental manipulations such as pharmacologi-

cal silencing (Aksay et al., 2007), lesion studies (Keck et al., 2008) and optogenetic perturbations

(Fenno et al., 2011). Second, in the study of neural computation, optimal compensation may be

a useful guiding principle, because plausible models of neural computation should be designed

specifically to withstand the type of damage that the brain can withstand. Finally, our work pro-

vides a new framework for describing how neurodegenerative disease impacts behavior through

neural networks, by generalizing the theory of efficient coding from the intact brain state to the

damaged brain state (Bredesen et al., 2006; Morrison and Hof, 1997).

Methods

We have described the properties of optimal compensation, and given a variety of examples of

optimal compensation across a range of systems. Here, we present further technical details. First,

we describe how we tune a spiking network to represent signals optimally and we specify our

choice of parameters for each figure. For the high-dimensional sparse coding example, we describe
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how we calculate sparse coding receptive fields and orientation tuning curves, both before and after

neuron death. Next, we explain quadratic programming with an analytically tractable example, and

we provide further details on our knock-out calculations. Finally, we prove that our spiking model

performs optimal compensation. The Matlab code that we used to generate all the figures in this

paper, along with all the parameters used for these figures will be published online.

Derivation of network model. In this section, we derive the connectivity and dynamics of a

network that can optimally compensate for neuron death. We consider a network of N leaky

integrate-and-fire neurons receiving input x = (x1, . . . , xj, . . . , xM), where M is the dimension

of the input and xj is the jth input. In response to this input, the network produces spike trains

s = (s1, . . . , si, . . . , sN), where si(t) =
∑

l δ(t − til) is the spike train of the ith neuron and {til}
are the spike times of that neuron. Here, we describe the general formulation of our framework for

arbitrary networks with N ≥M .

A neuron fires a spike whenever its membrane potential exceeds a spiking threshold. We

can write this as Vi > Ti, where Vi is the membrane potential of neuron i and Ti is the spiking

threshold. The dynamics of the membrane potentials are given by:

dVi
dt

= −λVi +
N∑
k=1

Ωiksk +
M∑
j=1

Fijg(xj) + σV ηi , (7)

where Ωik is the connection strength from neuron k to neuron i, Fij is the connection strength

from input j to neuron i, g(xj) is an operator applied to the input xj , λ is the neuron leak and σV
is the standard deviation of intrinsic neural noise, represented by a Wiener process ηi (Dayan and

Abbott, 2001; Knight, 1972). The input “signal” g(xj) is a placeholder for any feedforward input

into the networks, but also for other recurrent synaptic inputs that are not explicitly modeled here.

When a neuron spikes, its membrane potential is reset to Ri ≡ Ti + Ωii. Note that for ease of

presentation, this reset is included in the recurrent connectivity summation of Equation 7. Also,

we have written many variables without indicating their time-dependency. For example, the input

signals, xj(t), the voltages, Vi(t) and the spike trains, sk(t), are all time-dependent quantities,

whereas the thresholds, Ti, the leak, λ and the connection strengths, Ωik and Fij , are all constants.

We assume that this network provides a representation of the input signal x using a simple

linear decoder:

x̂ =
N∑
k=1

wkrk , (8)

where wk is the fixed contribution of neuron k to the signal. We call this a vector of readout weights

or an “output kernel”. This equation is the same as Equation 6 from the main text, and is a more
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general version of Equation 1 and Equation 3. The instantaneous firing rate of the k-th neuron, rk,

is a time-dependent quantity that we obtain by filtering the spike train with an exponential filter:

rk(t) =

∫ ∞
0

e−t
′/τsk(t− t′) dt′ , (9)

where τ is the time-scale of the filtering. This firing rate definition is particularly informative

because it has the form of a simple model of a postsynaptic potential, which is a biologically

important quantity. Note that the units of this firing rate are given by τ , so we must multiply by

τ−1 to obtain units of Hz. For example, in our two-neuron example (Figure 1A), we want to plot

r1 and r2 in units of Hz, and we have used τ = 10 ms, so we must multiply by τ−1 = 100 Hz to

obtain values in standard units.

Our goal is to tune all the parameters of this network so that it produces appropriate spike

trains at appropriate times to provide an accurate representation of the input x, both before and

after cell death. We can do this by requiring our network to obey the following rule: at a given

time point t, each neuron only fires a spike whenever a spike reduces the loss function (Equation 2),

E(no spike) > E(with spike) , (10)

where the loss function is now assumed to be generalized to multivariate input signals x (Boerlin

et al., 2013; Bourdoukan et al., 2012),

E = (x− x̂)2 + βC(r), (11)

with (·)2 denoting an inner product, and C(r) =
∑

k r
2
k. Then, since a spike changes the signal

estimate by x̂ → x̂ + wi and the rate by ri → ri + 1, we can restate this spiking rule for the i-th

neuron as:

(x− x̂)2 + β
N∑
k=1

r2
k > (x− (x̂ + wi))

2 + β
N∑
k=1

(rk + δik)
2 , (12)

where δik is the kronecker delta. By expanding the right-hand-side, and canceling equal terms, this

can be rewritten as

wT
i (x− x̂)− βri >

(
β + wT

i wi

)
/2 . (13)

This equation describes a rule under which neurons fire to produce spikes that reduce the loss

function. Since a neuron i spikes whenever its voltage Vi exceeds its threshold Ti, we can interpret

the left-hand-side of this spiking condition (Equation 13) as the membrane potential of the ith

neuron:

Vi ≡ wT
i (x− x̂)− βri , (14)
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and the right-hand-side as the spiking threshold for that neuron:

Ti ≡
β + wT

i wi

2
. (15)

We can identify the connectivity and the parameters that produce optimal coding spike trains

by calculating the derivative of the membrane potential (as interpreted in Equation 14) and match-

ing the result to the dynamical equations of our integrate-and-fire network (Equation 7):

dVi
dt

= wT
i

(
dx

dt
− dx̂

dt

)
− βdri

dt
. (16)

From Equation 8, we obtain dx̂/dt =
∑

k wkdrk/dt and from Equation 9 we obtain drk/dt =

−rk/τ + sk, which yields a simple differential equation for the readout:

dx̂

dt
= −1

τ
x̂ +

N∑
k=1

wksk. (17)

By inserting these expressions into Equation 16 we obtain:

dVi
dt

= wT
i

dx

dt
+

1

τ
wT
i x̂−

N∑
k=1

(
wT
i wksk

)
+

1

τ
βri − βsi (18)

Finally, using the voltage definition from Equation 14 to write wT
i x̂ = −Vi + wT

i x − βri we can

replace the second term on the right hand side and obtain:

dVi
dt

= −1

τ
Vi −

N∑
k=1

(
wT
i wk + βδik

)
sk + wT

i

(
dx

dt
+

x

τ

)
. (19)

This equation describes the voltage dynamics of a neuron that produces spikes to represent signal

x. If we now compare this equation with our original integrate-and-fire network, Equation 7, we

see that these are equivalent if

Ωik ≡ −
(
wT
i wk + βδik

)
, (20)

Fij ≡ wij , (21)

g(xj) ≡
dxj
dt

+
xj
τ
, (22)

λ ≡ 1

τ
, (23)

Ti ≡
wT
i wi + β

2
. (24)
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A network of integrate-and-fire neurons with these parameters and connection strengths can pro-

duce spike trains that represent the signal x to a high degree of accuracy. Elements of this calcu-

lation have been produced before (Boerlin et al., 2013), but are reproduced here for the sake of

completeness. Also, it has been shown that this connectivity can be learned using a simple spike

timing-dependent plasticity rule (Bourdoukan et al., 2012), so extensive fine-tuning is not required

to obtain these spiking networks. We note that the input into the network consists of a combina-

tion of the original signal, xj , and its derivative, dxj/dt. In the simulations, we feed in the exact

derivative. To be biologically more plausible, however, the derivative could be computed through

a simple circuit that combines direct excitatory signal inputs with delayed inhibitory signal inputs

(e.g. through feedforward inhibition).

Our derivation of network dynamics directly from our loss function allows us to interpret the

properties of this network in terms of neural function. Each spike can be interpreted as a greedy

error reduction mechanism – it moves x̂ closer to the signal x. This error reduction is communi-

cated back to the network through recurrent connectivity, thereby reducing the membrane potential

of the other neurons. The membrane potential, in turn, can be interpreted as a representation error

– a linear projection of x − x̂ onto the neuron’s output kernel wi (Equation 14). Following this

interpretation, whenever the error becomes too big, the voltage becomes too big and it reaches

threshold. This produces a spike, which reduces the error, and so on.

We can also understand these network dynamics in terms of attractor dynamics. This net-

work implements a point attractor - firing rates evolve towards a stable fixed point in N-dimensional

firing rate space. The location of this point attractor depends on neural input and network connec-

tivity. When a neuron dies, the point attractor is projected into a subspace given by rk = 0, where

neuron k is the neuron that has died.

Note that in this derivation, we used a quadratic cost. This cost increases the value of the

spiking threshold (Equation 24) and the spiking reset (Equation 20). We can also derive network

parameters for alternative cost term choices. For example, if we we use a linear cost, we simply

need to drop the second term (βδik) in Equation 20, while keeping all other parameters the same.

In other words, we can implement a quadratic cost by increasing the spiking threshold and the

spiking reset, and we can implement a linear cost by increasing the spiking threshold without

increasing the spiking reset. In this way, the spiking threshold, and the reset determine the cost

function. It is conceivable that these variables may be learned, just as network connectivity may

be learned. Alternatively, these values may be predetermined for various brain areas, depending

on the computational target of each brain area.
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Tuning curves and quadratic programming. For constant input signals, the instantaneous fir-

ing rates of the neurons will fluctuate around some mean value. Our goal is to determine this

mean value. We will start with the most general case, and rewrite the instantaneous firing rates as

ri(t) = r̄i + ηi(t, r̄i), were ηi(t, r̄i) is a zero-mean ’noise’ term that captures the fluctuations of

the instantaneous firing rates around its mean value. Note that these fluctuations may depend on

the neuron’s mean rate. In turn, neglecting the costs for a moment, we can average the objective

function, Equation 11, over time to obtain

〈E〉t =
〈(

x−
∑
i

wiri(t)
)2
〉
t

(25)

= (x−
∑
i

wir̄i)
2 +

∑
ij

w>i wj〈ηi(r̄i)ηj(r̄j)〉t. (26)

For larger networks, we can assume that the spike trains of neurons are only weakly correlated, so

that 〈ηi(r̄i)ηj(r̄j)〉t = Var(ηi(r̄i))δij . Here, Var(ηi(r̄i) is the variance of the noise term. We obtain

〈E〉t = (x−
∑
i

wir̄i)
2 +

∑
i

‖wi‖2Var(ηi(r̄i)). (27)

We furthermore notice that the spike train statistics are often Poisson (Boerlin et al., 2013), in

which case we can make the replacement Var(ηi(r̄i)) = r̄i. The loss function becomes then a

quadratic function of the mean firing rate, which needs to be minimized under a positivity con-

straint on the mean firing rate. This type of problem is known as ’quadratic programming’ in the

literature. In this study, we generally focused on networks for which the contributions of the sec-

ond term can be neglected, which is generally the case for sufficiently small readout weights and

membrane voltage noise (see Figure S5). In this case, we obtain the multivariate version of the

loss function used in Equation 4,

〈E〉t = (x−
∑
i

wir̄i)
2 + βC(r̄) (28)

where we added the costs again. In general, quadratic programming is mathematically intractable,

so the objective function must be minimized numerically. However, in networks with a small

number of neurons, we can solve the problem analytically and gain some insight into the nature of

quadratic programming. Here, we do this for the two neuron example (Figure 3A).

In this example, firing rates r̄1 and r̄2 are given by the solution to the following equation:

(r̄1, r̄2) = arg min
r̄1≥0, r̄2≥0

[
(x− (w1r̄1 − w2r̄2))2 + β1(r̄2

1 + r̄2
2) + β2(rB − (r̄1 + r̄2)/2)2

]
. (29)
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The positivity constraint partitions the solution of this equation into three regions, determined by

the value of x: regionR1 where r̄1 = 0 and r̄2 ≥ 0, regionR2 where r̄1 ≥ 0 and r̄2 ≥ 0, and region

R3 where r̄2 = 0 and r̄1 ≥ 0 (Figure S2A). In region 2, we can then easily solve Equation 29 by

setting the derivative of our loss function to zero. This gives r̄ = (wTw +β2c
Tc +β11)−1(wTx+√

β2n
T rB) where w = (w1,−w2) and c = (1, 1)/2. Looking at this equation, we see that r̄2 = 0

when x =
√
β2rB/(2w2) and r̄1 = 0 when x = −√β2rB/(2w1). Therefore, the firing rate solution

for region 2 is valid when−√β2rB/(2w1) ≥ x ≤ √β2rB/(2w2). For x ≥ √β2rB/(2w2), we have

r̄2 = 0 because of the positivity constraint in Equation 29. This is region 3. We can calculate r̄1 by

setting r̄2 = 0 and then minimizing the loss function. This gives r̄1 = (w2
1 + β2/4 + β1)−1(w1x+√

β2rB/2). Similarly, for x ≤ −√β2rB/(2w1) we have r̄1 = 0 because of the positivity constraint.

This is region 1 and we obtain r̄2 = (w2
2 + β2/4 + β1)−1(−w2x +

√
β2rB/2). The firing rates

within each region are given by a simple linear projection of x′ = (x,
√
β2rB), although the size

and direction of this projection is different in each region. As such, the solution to this quadratic

programming problem is a piece-wise linear function of x.

In networks with larger numbers of neurons, the solution will still be a piece-wise linear

function of x, although there will be more regions and the firing rate solutions are more complicated

because more neurons are simultaneously active. In contrast, the transformation from firing rates

to x′ is very simple (Equation 8). It is given by a simple linear transformation, and is region

independent (Figure S2B).

Readout weights and cost terms: 1-d and 2-d example. There are a number of free parameters

in our model. These are the cost terms and the readout weights {wjk}. The choice of these values

determine the precise shape of tuning curves. In general however, the precise values of these

terms has little influence on the coding capability of our system, once certain properties have been

satisfied, which we will outline here.

The cost term that we use for our first example (Figure 1), and for our 2-d bump shaped

tuning curves (Figure 6 and Figure S7C, D) is a quadratic cost C(r) =
∑

k r
2
k. (Here, and in

the following, we will no longer distinguish ri, the instantaneous firing rate used in the spik-

ing network, and r̄i, the mean firing rates used in quadratic programming. Both notations apply

depending on the context.) This cost term encourages the system to find a solution in which

all neurons share in the signal representation. For our homogenous monotonic tuning curve ex-

amples (Figure 3A, B and Figure S2 and S3A) we use a homogeneous quadratic cost C(r) =

β2/β(rB −
∑

k rk/N)2 +
∑

k r
2
k, which biases the system towards a background firing rate value

of rB, where β2/β represents the extent of this bias. For our inhomogenous monotonic tuning
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curve examples (Figures 2, 3C, 4, 5B, D, 6G–J and Figures S1, S3B, C and S5), we use a slightly

more general biased quadratic cost C(r) = β2/β(rB −
∑

k ckrk)
2 +

∑
k r

2
k. This is similar to

the homogenous cost, but with a sum weighted by {ck} rather than 1/N . This allows us to intro-

duce some inhomogeneity into our system. The additional bias term in this heterogeneous cost is

equivalent to an additional readout dimension. To see this, consider a 1-dimensional system with

E = (x − x̂)2 + β2(rB −
∑

k ckrk)
2 + β

∑
k r

2
k. We can rewrite this as a 2-dimensional system

with E = (x − x̂)2 + β
∑

k r
2
k, where x = (x,

√
β2rB) and x̂ = (x̂,

√
β2

∑
k ckrk). Throughout

this work, our choice of cost function is motivated by our goal of making direct comparisons to

data from various systems. For example, in the oculomotor system, the population firing rate is ap-

proximately constant (Aksay et al., 2000) for all values of x, which is a property that may facilitate

constant muscle tone in the eye. We accommodate this property by choosing a biased quadratic

cost term. Nonetheless, our general quadratic programming predictions about optimal compensa-

tion predictions are qualitatively similar regardless of our cost choice (Figure 4 and Figure S4).

The other important parameters that we must choose are the readout weights. For the sake

of consistency and ease of comparison, we use similarly valued readout weights across several

figures (Figures 2, 3C, 4, 5B, D and Figures S1, S4 and S5A, C). We have chosen values that

are regularly spaced, with the addition of some random noise. Specifically, we set the readout

to wi = [wmin + (wmax − wmin)(i − 1)/(N/2 − 1)]ξi for i ∈ [1, N/2] and wj = −[wmin +

(wmax − wmin)(j − N/2 − 1)/(N/2 − 1)]ξj for j ∈ [N/2 + 1, N ]. Also, we set ck =
√
β2ξk/N

with ξk ∼ U(0.5, 1.5). The parameter values that we use are chosen so that we can make direct

comparisons between our framework and the oculomotor system (Figure 5A, B). These values

are wmin = 0.01 and wmax = 0.05. It is interesting to observe that the tuning curves of the

oculomotor system are consistent with a random readout. Indeed, we find that there are many

possible parameter values that produce systems with similar performance levels (Figure S3). This

suggests that the performance of the oculomotor system is adequate, even with a random readout

and the resulting random (if symmetric) connectivity. For our bump-shaped tuning curve example,

the parameter values that we use are plotted (Figure 6A, G).

All of our quadratic programming predictions for tuning curve shape and our optimal com-

pensation predictions for tuning curve shape change still hold for alternative choices of readout

weights (Figure 3 and Figure S3), once the following properties are satisfied. First, it is impor-

tant that the readout vectors span the space of the signal that we want our network to represent.

Otherwise, the system will not be able to represent signals along certain directions, or compen-

sate for neuron death. Second, it is important to set the scale of the readout, so that the cost does
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not dominate. There is a natural scaling that we can use to avoid such problems. We require the

size of firing rates to be independent of network size, x̂j =
∑N

k wjkrk ∼ O(1), so we must have

wjk ∼ O(1/N). As a consequence, the off-diagonal elements of the recurrent connectivity are

small Ωik ∼ O(1/N2), for i 6= k (Equation 20), and if we assume that the diagonal elements are

on the same order of magnitude, then β ∼ O(1/N2). This scaling provides a principled basis for

parameter choices in our model.

We may also want to scale our decoder weights without changing the shape of our tuning

curve prediction (Figure S5B). To do this, the spiking cost parameter β and the membrane potential

leak λ must also be scaled together. Specifically, if the readout weights are given by {α× wjk},
where α is a scaling parameter that characterizes the size of the decoder weights and {wjk} are

fixed decoder weights, then the spiking cost parameter must be set to α2 × β and the membrane

potential leak must be set to α × λ. We can see that this preserves the shape of tuning curves by

looking at the resulting structure of our loss function (Equation 2):

E(r) = (x− (αw) · r)2 + α2β
N∑
i=1

ri
2 . (30)

As before, the minimum of this loss function gives firing rates in units of the membrane potential

leak (αλ). Therefore, we must divide r by (αλ) to obtain firing rates in units of Hz. Our loss

function then becomes:

E(r/(αλ)) = (x− (αw) · r/(αλ))2 + α2β
∑
i

(ri/(αλ))2 (31)

= (x−w · r/λ)2 + β
∑
i

(ri/λ)2 . (32)

This loss function is independent of α, and so, using this scaling the optimal tuning curves will

have the same shape for all values of α.

Readout weights and cost terms: V1 example. There are many possible choices of decoder

weights {wi} that provide a faithful representation of a signal. In positive sparse coding, we

choose the decoder weights that provide the most efficient signal representation, for a sparse cost

term (C(r) =
∑

k rk), under the constraint that firing rates must be positive. Here, we describe

how we calculate these positive sparse coding weights, which we will use in several of our figures

(Figures 7, 8 and Figures S6, 7).

We use the signal vector x = (x1, . . . , xj, . . . , xM) to denote an image patch, where each

element xj represents a pixel from the image patch (Olshausen and Field, 1996). We quantify the
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efficiency of a sparse representation using the following loss function:

E =
〈
(x− x̂)2

〉
+ β

〈∑
i

ri
〉
, (33)

where
〈
. . .
〉

denotes an average across image patches. This is simply Equation 2 with a sparse cost

term, averaged over image patches. The first term in this loss function is the image representation

error. The second term quantifies the sparsity of the representation. The decoding filters that

minimize this loss function will be the positive sparse coding filters for natural images.

We assume that the decoding filters are optimized to represent natural images, such as forest

scenes, flowers, sky, water and other images from nature. Natural images are chosen because they

are representative of the images that surround animals throughout evolution. We randomly select

2000 12 × 12 image patches from eight natural images taken from Van Hateren’s Natural Image

Database (van Hateren and van der Schaaf, 1998). These images are preprocessed by removing

low-order statistics, so that our sparse coding algorithm can more easily learn the higher-order

statistical structure of natural images. First of all, images are centered so as to remove first order

statistics:

x→ x−
〈
x
〉
. (34)

Next, images are whitened, so as to remove second-order statistics:

x→M−1/2x , (35)

where M =
〈
xxT

〉
is a decorrelating matrix.

We calculate sparse coding filters by minimizing the loss function (Equation 33) using a two

step procedure. First of all, for a subset of 50 image patches, we calculate the firing rates that

minimize the loss function under the constraint that firing rates must be positive:

r = arg min
ri≥0∀i

E . (36)

The positivity constraint reduces the representational power of the neural population, so, to coun-

teract this, we use a large population containing twice as many neurons as signal dimensions,

N = 2M and we initialize our decoder matrix to wjk = δj,k − δj,k+M to ensure that our neural

population can easily span the signal space throughout the sparse coding calculation.

Next, we update our kernels by stochastic gradient descent on the loss function, using the

optimal firing rates calculated in the previous step:

wi → wi − ε
dE

dwi

= wi + ε2
〈
(x− x̂)ri

〉
. (37)
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Kernel weights are normalized for each neuron, so that they do not become arbitrarily large. This

calculation is similar to sparse coding calculations performed before (Olshausen and Field, 1996),

except that we enforce the additional requirement that firing rates must be positive. This constraint

was used before for sparse non-negative matrix factorization (Hoyer, 2004, 2003). However, this

method requires an additional constraint that decoding weights be strictly positive, so that the non-

negative matrix factorization method can be applied. This additional constraint will reduce the

efficiency of the representation, because every additional constraint has the property of reducing

the efficiency by precluding solutions that may be more efficient, but that violate the additional

constraint.

To compare the properties of optimal compensation in this positive sparse coding model to

experiment, we calculate the orientation tuning of neurons in our model using a protocol similar

to that used in the experimental work (Crook and Eysel, 1992). Specifically, we drive our model

using an orientated edge-like stimulus. These stimuli are Gabor filters, with a profile similar to

the sparse coding filters. We calculate the firing rate response of each neuron using Equation 36

for 16 different stimulus orientations. At each orientation, the Gabor filter is positioned at regu-

larly spaced locations along a line perpendicular to the Gabor filter orientation and the maximum

firing rate of each neuron along this line is taken as the firing rate response of that neuron at that

orientation. These firing rate responses form the orientation tuning curves that we can compare to

experimental recordings.

The impact of neuron death. We calculate the impact of neuron death on tuning curve shape with

and without optimal compensation (Figure 4). To calculate tuning curve shape without compensa-

tion we solve Equation 4 in the intact state. We then constrain the firing rates of neurons selected

for death to zero and calculate the impact of this on our signal representation. To calculate the

impact of neuron death with optimal compensation, we solve Equation 5.

We also calculate the impact of neuron death and optimal compensation in an over-complete

positive sparse coding model (Figure S7A). To do this, we define an over-completeness factor, M ,

given by M = N/d, where N is the number of neurons in the representation and d is the signal

dimension. In the sparse coding calculation above, we had M = 2. We can use this to define N2 =

2d and w
(2)
i = wi, where wi is a sparse coding readout vector. The over-complete readout vectors

that we use are similar to the sparse coding readout vectors, but with some multiplicative noise

(to avoid parallel readout weights). Specifically, we obtain new over complete readout vectors

w
(M)
i using w

(M)
i+a = w

(2)
i · (1 + ξi+a)/(M/2), where i ∈ [1, . . . , N2], ξij ∼ N (0, 0.1), a = mN2

and m ∈ [0, . . . ,M/2 − 1]. We use this method to calculate readout weights for over-complete
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representations because the sparse coding calculation becomes computationally prohibitive for

large values of M .

The impact of neuron death in a spiking network. We investigate the impact of neuron death

in our spiking model by simulating the network both before and after neuron death (Figure 2).

Specifically, we use the Euler method to iterate the dynamics described by Equation 19 and we

measure the readout x̂, the spike trains s and the membrane potentials V. We simulate the death

of a neuron by setting all the connections to and from that neuron to zero. This is equivalent to

silencing a neuron. We continue to measure the network activity and the readout after neuron

death.

The integrate-and-fire model that we have described can produce spikes at arbitrarily large

firing rates. This can be a problem, especially when neurons die and the remaining neurons com-

pensate with extremely high, unrealistic firing rates. To avoid this, we include a form of adaptation

in our spiking model. Specifically, we extend our spiking rule so that a neuron i will only spike if

its firing rate fi is lower than a maximum fmax. Here, the firing rate f is given by the following

differential equation:
df

dt
= −f/τA + s , (38)

and τA is the timescale of adaption. This timescale is much slower that the timescale of spiking

dynamics τ .

We use this extended neural model to calculate the recovery boundary in a system that is

optimized to represent a 1-d variable (Figure S1). We kill neurons in random order until the

representation error averaged across signal values is more that 10% larger than the representation

error in an identical system without adaptation constraints. We then average across trials to obtain

a value for the recovery boundary. This working definition for the recovery boundary captures

the serious degradation in representation performance that characterizes the notion of a recovery

boundary.

We can also calculate the firing rates and recovery boundary of our extended integrate-and-

fire model using quadratic programming (data not shown). Specifically, the firing rates of this

network are given by the solution of the following optimization problem:

r(x) = arg min
R
E(x) , (39)

where R denotes the set of constraints that the firing rates must satisfy:

R = {rmax ≥ ri ≥ 0∀ i; rj = 0∀j ∈ X} (40)
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and where X is the set of all dead (or silenced) neurons.

Tight balance of excitation and inhibition. In simulations of our spiking model, we see that the

balance of excitation and inhibition coincides with optimal coding (Figure 2D, G). We define the

excitation Ei received by a neuron as the total input current received through excitatory synapses,

and inhibition Ii as the total input current received through inhibitory synapses:

Ei =
N∑
k=1

ΩE
ikrk +

M∑
j=1

FE
ij xj , (41)

Ii =
N∑
k=1

ΩI
ikrk +

M∑
j=1

F I
ijxj , (42)

where ΩE
ik ≡ Ωik unless Ωik < 0, FE

ij ≡ Fij unless Fijxj < 0, ΩI
ik ≡ Ωik unless Ωik > 0

and F I
ij ≡ Fij unless Fijxj > 0. We can understand why excitation and inhibition are balanced

during optimal coding by first observing that the value of the loss function is small during optimal

coding. Consequently, the membrane potential is small, because the membrane potential is a linear

transformation of x − x̂ (Equation 14). Finally, for membrane potentials to be small, we observe

that there must be a balance of excitation and inhibition (Equation 14, Equation 41, Equation 42).

As such, the balance of excitation and inhibition is a signature of optimal coding.

We can also understand this balance using scaling arguments. As we have discussed, the

recurrent connection strengths are small Ωik ∼ O(1/N2). However, the spiking thresholds are

also small Ti ∼ O(1/N2), because wjk ∼ O(1/N) and β ∼ O(1/N2) (Equation 24). Now,

because recurrent input is summed across the entire population of N neurons, we find that Vi ∼
O(N/N2) ∼ O(1/N). This is N times larger than the spiking threshold. In order for the mem-

brane potential to be on the same order of magnitude as the spiking threshold, there must be a

precise cancellation of excitatory and inhibitory inputs. This balance of excitation and inhibition

is much tighter than balanced networks with random connectivity (van Vreeswijk and Sompolin-

sky, 1996, 1998). In randomly connected networks the balance between excitation and inhibition

is of order O(1/
√
N) (van Vreeswijk and Sompolinsky, 1998), whereas in the tightly balanced

networks that we consider, these fluctuations are O(1/N).

Optimal compensation proof. The spiking network that we use is capable of rapidly implement-

ing optimal compensation, without requiring any synaptic plasticity mechanisms. We can prove

this by showing that an optimal network of N − 1 neurons is equivalent to an optimal network of

N neurons after the death of one neuron.

For the sake of argument, we suppose that the N th neuron dies. At a mechanistic level, the
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death of this neuron is equivalent to cutting all the connections to and from the dead neuron and

to our readout x̂. Therefore, a network where the N th neuron has died is equivalent to a network

with N − 1 neurons with readout matrix w∗ij = wij ∀j ∈ [1, N − 1] and ∀i ∈ [1,M ], with feed

forward connectivity F ∗ij = Fij ∀i ∈ [1, N − 1] and ∀j ∈ [1,M ], with recurrent connectivity

Ω∗ik = Ωik ∀i, k ∈ [1, N − 1] and with spiking thresholds T ∗i = −Ωii/2 ∀i ∈ [1, N − 1].

Now, we compare this damaged network to an optimal network consisting of N −1 neurons.

To make a fair comparison, we assume that this network has the same readout matrix w′ ≡ w∗

as the reduced damaged network. Then, the recurrent connectivity for this network is given by

Ω′ = Ω∗, the feed forward connectivity is given by F′ ≡ F∗ and the spiking thresholds are given

by T′ ≡ T∗. This configuration is equivalent to the reduced damaged network. Therefore, a

spiking neural network who’s neurons are individually tuned to represent a signal optimally before

cell death will perform optimal compensation and provide an optimal signal representation after

cell death.
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Supplemental Figures and Legends.
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Figure S1 The recovery boundary (related to Figure 2) (A) We progressively kill neurons in our balanced

network model and calculate the signal representation error (black line). The signal representation error is

given by the average loss function value (average of Equation 2), where averages are taken across signal

values and time and are written as a percentage of the maximum average error. Neurons with positive read-

out weights are knocked out first, followed by neurons with negative read-out weights. The initial increase in

error is very small, because optimal compensation successfully recovers the signal representation. However,

when neuron death hits the recovery boundary, in this case at 50% neuron death (equivalently, 100% death

of neurons with positive read-out weights), there is a sudden break-down in signal representation. We also

calculate the signal representation error where the maximum firing rate of each neuron is constrained to be

100 Hz (dashed line). We constrain the maximum firing rate of neurons using an adaptation mechanism (see

Methods). In this case the recovery boundary occurs much earlier. (B) We calculate the average recovery

boundary as the maximum allowed firing rate value decreases from 1000 Hz to 0 Hz. The average recovery

boundary is calculated by killing neurons in random order in each trial, and then taking an average recovery

boundary value across different trials. We find that the recovery boundary occurs earlier (with less neuron

death) in systems with low maximum firing rate values compared to networks with high maximum firing

rate values.
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Figure S2 The geometry of quadratic programming, (related to Figure 3) (A) Tuning curves calculated for

a two neuron example using Equation 29. The tuning curve solution can be decomposed into three regions:

regionR1 where r̄1 = 0 and r̄2 ≥ 0, regionR2 where r̄1 ≥ 0 and r̄2 ≥ 0, and regionR3 where r̄2 = 0 and

r̄1 ≥ 0. In each region the firing rate solution is given by a different linear projection of x′ = (x,
√
β2rB),

where rB is the background firing rate. (B) The transformation from firing rate space to signal space is

given by a simple linear projection of firing rates onto the read-out vector w (for the signal x) and c (for

the background firing rate rB). Unlike the transformation from signal space to firing rate space in A, this

transformation is not region dependent.
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Figure S3 A taxonomy of tuning curve shapes (related to Figure 3) . Here, we explore the relationship

between tuning curve shape and the choice of parameters in our 1-d system. Specifically, we calculate

tuning curve shape using quadratic programming (Equation 4) for 12 distinct systems, each with different

parameter values. (A) The left column shows the read-out weights {wi} and cost terms {ci} for each system.

The right column shows the tuning curves calculated using quadratic programming (Equation 4). Each row

corresponds to a distinct neural population. In this panel, we increase the spread of read-out weights from

top to bottom (left column), and we find that the range of tuning curve slopes increase (right column). The

loss is approximately invariant to this modulation (right column, bottom). (B) Similar to A, except that we

modulate the cost terms from top to bottom (left column), and we observe that the range of tuning curve

intercept values increase (right column). Again, the loss is approximately invariant to this modulation (right

column, bottom). (C) Similar to A and B except that this time we reduce the magnitude of the cost terms

from top to bottom (left column), and we observe that the intercept values decrease, until tuning curves do

not overlap with each other (right column). This time, the loss increases marginally (right column, bottom).

This happens because the system is unable to represent the background task variable (see Methods). In this

figure, each system contain 16 neurons (some tuning curves overlap in A) and the biased quadratic cost term

as in all previous 1-d examples.
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Figure S4 Optimal Compensation in systems with a linear cost or a quadratic cost (related to Figure 3). (A)
Optimal tuning curves calculated using quadratic programming (Equation 4), but with a quadratic cost term,

instead of the biased quadratic cost term. In this system, tuning curves do not overlap, because there is no

term to bias the firing rates towards a background task variable rB . Therefore, this is a poor model of the

oculomotor system (Figure 5a). (B) We knock-out four neurons with negative read-out weights and calculate

tuning curves following optimal compensation using Equation 5. As before, the slopes of similarly tuned

neurons increase to compensate. (C) When all the neurons with negative read-out weights are knocked out,

optimal compensation is unable to recover signal representation (inset), because the system has crossed the

recovery boundary. (D–F) Similar to A–C, but for a system with a sparse coding linear cost instead of a

quadratic cost. (D) In this sparse representation, all neurons are silent, except for the neuron with the largest

positive read-out weight and the neuron with the largest magnitude negative read-out weight. These two

neurons represent the entire signal, because they can do so with the smallest firing rates, and hence, with the

smallest cost. (E) We knock-out four neurons with negative read-out weights, including the neuron that was

active in D, and we calculate tuning curves following optimal compensation. A single neuron compensates
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for neuron death. This is the neuron with the largest magnitude negative read-out weight (of the remaining

neurons). Note that signal representation without optimal compensation is especially poor compared to the

system with optimal compensation (inset). (F) When all the neurons with negative read-out weights are

knocked out, optimal compensation is unable to recover signal representation.
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Figure S5 Quadratic programming firing rate predictions compared to spiking network measurements. (A)
The impact of membrane potential noise σV on firing rate predictions is calculated by comparing quadratic

programming predictions and firing rate measurements in network simulations. We calculate the prediction

error of quadratic programming by taking the average absolute difference between quadratic programming

predictions and spiking network measurements (solid line) and by taking the standard deviation of these

measurements about the predictions (dashed line). Averages are calculated across neurons, stimuli and

time, using networks with tuning curve shapes similar to previous figures (Figure 4A). In the parameter

range used throughout this paper (indicated by a blue cross), the prediction error is small and robust to

changes in noise. As expected, the error increases when the noise is the same order of magnitude as the

mean spiking threshold, T ≡ ∑
i Ti/N . (B) Similarly, the prediction error increases as the size of the

decoder weights increase. Here, α is a scaling parameter that characterizes the magnitude of the decoder

weights (see Methods). We find that the error is small around the parameter range used throughout this

paper (α = 1). However, for larger values of α the quadratic programming prediction degrades. Again, this

is expected because α determines the resolution with which our spiking network can represent a signal. As

such, our predictions are most accurate in the very regime that we are most interested in - where optimal

coding is possible. Note that we must also scale the spiking cost and the membrane potential leak with α

so that the shape of tuning curves are preserved, allowing for a fair comparison across decoder scales (see

Methods). (C) The network size N has little influence on the prediction error. Again, read-out weights and

cost parameters are scaled so that tuning curve shape is invariant to changes in N (see Methods).
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Figure S6 Histograms of experimental responses to neuron silencing in V1, compared to theoretical predic-

tions using a range of different parameters. (A) Histogram of changes in the firing rate at preferred stimulus

orientations following GABA-ergic silencing. Firing rate change for neurons with tuning preferences that

are similar to the recorded neurons (iso-orientation inactivation) are counted separately to changes in neu-

rons with different tuning preferences (cross-orientation inactivation). These results are reproduced from

Crook and Eysel (1992). (B) Histograms of preferred compensation firing rate changes in positive sparse

coding neurons, again with iso-orientation and cross-orientation neurons counted separately. Each histogram

corresponds to the theoretical prediction obtained by knocking out different percentages of neurons (25%,

50%, 75% and 100%), across different ranges of preferred orientations (at 0o only, from −22.5o to 22.5o,

and from −45o to 45o). We explore the full parameter space of our model, because the exact amount of

neuron death in the experiments from Crook and Eysel (1992) is unknown. We find that when 50% or 75%

of neurons with preferred orientations at 0o are knocked out, the form of the predicted histogram is similar

to the experimentally recorded histogram, with a greater proportion of iso-orientation inactivations having

an impact on the firing rate at the preferred stimulus orientation, compared to cross-orientation inactivation.

In these calculations, we use the same sparse coding model for each histogram, with four times as many

neurons as stimulus dimensions.
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Figure S7 Optimal compensation in V1 models with different degrees of over-completeness (related to

Figure 8) (A) The visual cortex contains many more neurons than input dimensions. To investigate the

impact of this over-completeness, we calculate the average change in tuning curve shape following optimal

compensation in our sparse coding model of V1 for increasing degrees of over completeness (see Methods).

Here, the over completeness factor, M is given byM = N/d, where N is the number of neurons and d is the

signal dimension. The form of the tuning curve changes is unaffected by the degree of over-completeness,

but there are some fluctuations in the overall change. (B) As the degree of over completeness M increases,

the average change fluctuates moderately. These fluctuations are the result of inhomogeneities in our V1

model, which have a larger effect when the over-completeness factor is small. (C) Similar to A, but for the

2-d bump-shaped tuning curve model. We use the same model as before (Figure 6 G), but with a sparse

linear cost instead of a quadratic cost. For each value of M , we choose decoder weights that are evenly

spaced on the unit circle. This produces evenly spaced bump-shaped tuning curves. We knock out neurons

in this model and calculate the average change in tuning curve. In this case, we can easily calculate the

impact of optimal compensation for systems with high degrees of over-completeness, such as the visual

cortex because the dimensionality of the problem is much lower. (D) The impact of optimal compensation

fluctuates moderately for low values of M , as in the sparse coding model. However, as the degree of over

completeness increases, the average change in tuning curve shape converges, as the fluctuations average out.

The maximum and standard deviation of the average tuning curve change are calculated across all stimulus

orientations. In both the full sparse coding model and the 2-d model, we knock out neurons with preferred

orientations between −22.5o and 22.5o.
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