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We describe a suite of predictive models, coined FASTmC, for non-reference, 21 

cost-effective exploration and comparative analysis of context-specific DNA 22 

methylation levels. Accurate estimations of true DNA methylation levels can be 23 

obtained from as few as several thousand short-reads generated from whole 24 

genome bisulfite sequencing. These models make high-resolution time course or 25 

developmental, and large diversity studies practical regardless of species, 26 

genome size and availability of a reference genome. 27 
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 32 

BACKGROUND 33 

Advances in high-throughput sequencing has allowed for single-base resolution 34 

analysis of DNA methylation at cytosines across an entire genome. This was first 35 

applied to the model plant Arabidopsis thaliana [1],[2] and, since then, has been 36 

applied to numerous species, including protists, fungi, insects, anthozoa, 37 

tunicates, fish, and mammals [3]-[5]. Currently, DNA methylation is profiled 38 

genome-wide by deep, whole-genome bisulfite sequencing (WGBS). The use of 39 

a reference genome is essential to inform the methylation status at each 40 
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cytosine reference position, where a thymine in lieu of cytosine indicates an 41 

unmethylated cystosine [6]. Thus, absence of a reference genome has  42 

prevented rapid, genome-wide analysis of DNA methylation for the majority of 43 

known species, and is cost-prohibitive for high-resolution developmental or time-44 

course studies in species with large genomes. To date, several methods exist to 45 

accommodate the challenges assocaited with non-reference based analysis of 46 

DNA methylation, but lack cytosine context sequence specificty [7]-[9].  47 

Here we present FASTmC, a suite of predictive models that can be used 48 

to estimate genome-wide DNA methylation levels at all cytosine sequence 49 

contexts without the use of a reference genome. These models assumed a 50 

relationship between DNA methylation levels calculated from alignment of 51 

WGBS reads to a reference genome (target; �) and from direct assessment 52 

from raw WGBS reads (i.e., no alignment to a reference genome) (estimator; ��).  53 

Methylation levels are calculated as the proportion of methylated cytosines to the 54 

total number of possible methylated cytosines. The difference between the two 55 

variables exists at unmethylated cytosines; the estimator value includes 56 

unmethylated cytosines and true thymines when calculating the DNA methylation 57 

level. Estimator DNA methylation levels were compared to target levels to 58 

determine a relationship, and the strength of which, to confidently 59 
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predict/extrapolate genome-wide DNA methylation levels for any sample 60 

regardless of the availability of a reference genome.  61 

Using publicly available data, for species with reference genomes, target 62 

and estimator DNA methylation levels for 44 species were used to construct 63 

models capable of predicting genome-wide levels of DNA methylation for 64 

species without a sequenced genome. Using additional publicly available data 65 

from mutants and cell-types known to be different from wild-type samples, we 66 

discuss the sensitivity, robustness and utility of the models in terms of CpG DNA 67 

methylation, followed by plant- (CHG and CHH) and mammal-specifc (CH) DNA 68 

methylation.  69 

 70 

RESULTS AND DISCUSSION 71 

FASTmC is able to detect intraspecific differences in DNA methylation (Fig. 1). In 72 

the plant A. thaliana, mutants exist that are defective for enzymes that are 73 

required for maintenance of CpG DNA methylation – met1, met1+cmt3, and 74 

vim1+vim2+vim3 – as they have reduced CpG methylation levels compared to 75 

wild type [10]. Also, several mutant genotypes for met1 show different degrees of 76 

loss of CpG DNA methylation compared to each other: (i) An original met1 77 

mutant genotype (high loss); (ii) A met1 heterozygous mutant genotype (met1 +/-78 

) (intermediate loss); and (iii) A recovered genotype (MET1 +/+) from a MET1 79 
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+/+ and met1 +/- backcross. The recovered MET1 +/+ is wild-type for MET1 80 

function but has lost CpG methylation in some regions of the genome (low loss). 81 

FASTmC is able to capture the differences between these maintenance 82 

methyltransferases (Fig. 1A). Additionally, the slight (~3%) difference between 83 

MET1 +/+ and the met1 +/- mutant can be distinguished, demonstraing the 84 

sensitivity of FASTmC (Fig. 1A). 85 

In mammals, epigenetic reprogramming, including CpG demethylation, is 86 

required to erase DNA methylation imprints and epimutations established in the 87 

previous generation [11]. Following demethylation, DNA methylation patterns are 88 

re-established at imprinted loci and transposable elements (TEs) during 89 

gametogenesis by the de novo methyltransferases DNMT3A and a non-catalytic 90 

paralogue, DNMT3-like (DNMT3L) (reviewed by [12]). The reductions in CpG 91 

DNA methylation caused by epigenetic reprogamming in primordial germ cells 92 

(PGCs) or by mutations in DNMT3L (dnmt3L) compared to somatic tissues are 93 

captured by FASTmC (Fig. 1B) [13]-[15]. Additionally, increased levels of CpG 94 

DNA methylation in the brain (e.g., NeuN+ and glia cells) [16] can be 95 

differentiated from other somatic tissues (Fig. 1B; Suppl. Table 1) [17]. Overall, 96 

as demonstrated in A. thaliana and M. musculus, FASTmC can be used to 97 

accurately detect intrapecific differences of DNA methylation levels at CpG sites 98 

(Fig. 1A and B). 99 
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We determined natural interspecific variation of DNA methylation at CpG 100 

sites across 44 different species (Fig. 2A). However, unlike intraspecific 101 

comparisons between mutants or cell-types, nucleotide biases, such as genomic 102 

GC content differences, can over- or underestimate the estimator value for the 103 

CpG sequence contexts. The estimator (equation 2 of Methods) is estimating the 104 

product of the methylation frequency of CpG sites and the GC content of the 105 

genome, and are thus confounded. This bias can be overcome in all species 106 

investigated but mammals (H. sapiens, M. musculus, and C. l. familiaris) by 107 

dividing the estimator value by an average GC content of the genome, which 108 

corrects the relationship between target and estimator to ~1:1. GC content can 109 

be approximately estimated from WGBS reads (see Methods) or additional 110 

genomic sequence data – 10,000, 50 base pairs (bp) reads (500,000bp) – can 111 

be used to directly estimate GC content (Suppl. Table 1).  112 

Nucleotide biases in genomes – such as the depletion of CpG 113 

dinucleotides to localized “CpG islands” in mammalian genomes – may interfere 114 

when estimating ��. CpG dinucleotides can be directly measured from 10,000, 50 115 

bp genomic sequencing reads (Suppl. Table 1), and this can then be used to 116 

directly calculate the proportion of target sites that are methylated, �, using the 117 

frequency of intact target sites, e.g., CpG, that remain in the bisulfite sequencing 118 

data. These are sites that were methylated and thus escaped C to T conversion. 119 
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Accommodating for nucleotide biases in mammalian genomes does not improve 120 

assessment of DNA methylation levels by FASTmC (Suppl.Table 1).. However, 121 

treating mammals separately from other species with CpG DNA methylation (i.e., 122 

phylogenetic correction) produces an improved, mammal-specific model with 123 

similar accuracy – measured as the Mean Absolute Percentage Error (MAPE) – 124 

to the remaining species (Suppl. Table 1). Additionally, only a modest increase in 125 

model improvement was observed for non-mammalian species (Suppl. Table 1). 126 

Overall, GC content correction (�� �̂⁄ ) and treating mammalians species 127 

separately improves model accuracy without introducing additional genomic 128 

sequencing data. 129 

 FASTmC also tolerates high contamination and error rates associated with 130 

sodium bisulfite conversion. We used A. thaliana met1 mutants generated by 131 

[10], which show minor (~3%) to large (~14%) differences in CpG DNA 132 

methyaltion compared to the wild-type A. thaliana. By artificially introducing un-133 

methylated chloroplast reads to 10,000 reads to met1 and met1 +/- mutant 134 

genotypes, and MET1 +/+  and A. thaliana wild-type genotypes, we were able to 135 

demonstrate that a ~3% difference in DNA methylation can still be detected with 136 

<10% chloroplast contamination, and a difference of 13-14% with 40-50% 137 

chloroplast contamination (Suppl. Table 1). Similarly, nonconversion rates >3% 138 

still allow for detection of differences between samples (Suppl. Table 1). It 139 
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should be noted that the met1 mutants and A. thaliana samples had 140 

nonconversion rates of 0.50%, 0.82%, 1.86%, and 0.56% for met1, met1 +/-, 141 

MET1 +/+, and wild-type A. thaliana, respectively. The artifically introduced error 142 

rates are extremely high, but possible. For example, <1% of reads typically map 143 

to the chloroplast genome, and nonconversion rates are typically <2% (data not 144 

shown). However, it is recommended that Lambda DNA be sequenced for each 145 

batch of WGBS libraries prepared to estimate the rate of sodium bisulfite non-146 

conversion. Reducing technical error is especially important for identifying 147 

differences between species with small amounts of or no DNA methylation like 148 

insects (Suppl. Table 1). Regardless, the FASTmC method is robust as it is able 149 

to tolerate technical and biological contamination. 150 

The number of short reads (≥30 bp) required to make accurate 151 

estimations is low, and we have determined that a few thousand reads produce 152 

high-confidence estimates of genome-wide methylation levels (Suppl. Fig. 1). 153 

Hence, these models can be used to accurately, and cost-effectively, identify 154 

differences of DNA methylation levels for any species regardless of the 155 

availability of a reference genome assembly. 156 

Non-CpG DNA methylation can also be confidently predicted within and 157 

between species using FASTmC. In A. thaliana, the majority of DNA methylation 158 

at CHG sites is maintained by chromomethylase CMT3 through a reinforcing 159 
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loop with H3K9me2 methylation catalyzed by the KRYPTONITE (KYP)/SUVH4 160 

protein [18]-[20]. Similarly to MET1, mutations in CMT3 causes reductions in 161 

CHG DNA methylation [10], which are accurately detected by FASTmC (Fig. 1C). 162 

Also, in A. thaliana, cell-type specific levels of CHH DNA methylation in the 163 

sperm cell (SC) (i.e., hypo-CHH DNA methylation) and vegetative nucleus (VN) 164 

(i.e., hyper-CHH DNA methylation), and depletion of CHH DNA methylation in 165 

mutants in the de novo DNA methylation pathway (e.g., the DNA-dependent 166 

RNA polymerase, NRPD1) were recapitulated (Fig. 1D) [21],[10]. 167 

In mammals, non-CpG DNA methylation can be found at CH sites. Work 168 

by [16] has demonstrated the overall increase of CH DNA methylation during 169 

brain development in M. musculus and Homo spaiens. FASTmC was able to 170 

capture the overall trend of increasing CH methylation through brain 171 

development in H. sapiens (Fig. 1E). Furthermore, despite only small differences 172 

in brain CH methylation in the intervals from 2 years to 5 years (0.068%), and 173 

from 55 years to 64 years (0.062%) of age, the FASTmC model accurately 174 

detected these changes (Fig. 1E) [16]. 175 

 176 

CONCLUSIONS 177 

We propose several models, which capture the variation of, and can accurately 178 

predict, genome-wide DNA methylation levels between species to represent 179 
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FASTmC and can be found at http://fastmc.genetics.uga.edu. Additionaly, the 180 

web-based interface makes FASTmC universally accessible, and models will be 181 

continuouslly updated when new whole genome and methylome data is 182 

analyzed and becomes available. Although genome content biases interfere with 183 

the accuracy of FASTmC, treating mammalian species separately for CpG DNA 184 

methylation overcame this obstacle. FASTmC makes practical previously 185 

intractable studies (e.g. high-resolution time course, developmental, and large 186 

diversity panels) regardless of species, genome size and availability of a 187 

reference genome. Furthermore, these models will greatly contribute to high-188 

resolution screening of either developmental- or environmental-induced 189 

epigenomic reprogramming events. FASTmC is a suite of powerful models that 190 

can aid researchers to make better investments in more comprehensive, fruitful 191 

studies. 192 

 193 

METHODS 194 

Whole genome bisulfite sequencing (WGBS) data was downloaded from the 195 

Short Read Archive (SRA)/Gene Expression Omnibus (GEO) or sequenced in-196 

house (Suppl. Table 1). WGBS data was aligned using methods described in 197 

[22] to generate “allC” files. The allC files were used to determine target DNA 198 

methylation levels, and can be downloaded from GEO under accession number 199 
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GSE72155. Prior to estimation of predictor DNA methylation levels, WGBS data 200 

was trimmed of adaptor sequences using Cutadapt v1.9 [23], end-trimmed using 201 

Trimmomatic [24], and quality filtered using FASTX-toolkit 202 

(http://hannonlab.cshl.edu/fastx_toolkit/). Reads of at least 30 base pairs (bp) in 203 

length with ≥20% of nucleotides having a quality score ≥75% were retained. 204 

Random sampling without replacement was performed with increasing fold-205 

change from 1-105 reads using the program fastq-tools 206 

(http://homes.cs.washington.edu/~dcjones/fastq-tools/). Custom Perl scripts 207 

were used to sum the number of Cm and C? sites for each randomly sampled 208 

read, and subsequently to estimate the predictor DNA methylation level at CpG, 209 

CHG, CHH, and CH sites (Suppl. Table 1). 210 

Predictive modeling is used to find the mathematical relation between a 211 

target, (dependent variable) and various estimators (independent variables); 212 

subsequent values of an estimator(s) are used to predict the target variable 213 

using the established mathematical relationship between them. The goal of the 214 

FASTmC models were to predict reference-based (target) from non-reference-215 

based (estimator) DNA methylation levels. These models assume that in 216 

MethylC-Seq data [6]: (i) all cytosines at CpG, CHG, CHH, and CH sites are 217 

methylated. (ii) all thymines at TpG, THG, THH, and TH sites are converted 218 

unmethylated cytosines or true thymines, and (iii) all nucleotides are randomly 219 
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distributed in the genome. Our goal is to estimate the proportion of Cs in 220 

potential target sites that are in fact methylated, �, which is 221 

 222 

� �
∑��

����� ���
,        (1) 223 

 224 

where ∑	� and ∑		 are the total number of methylated and unmethylated target 225 

sites in the genome, respectively. Since � is unknown, we use an estimator, ��, 226 

which is obtained from the bisulfite sequencing data:  227 

 228 

�� �
∑ ��

�

∑ �����?��

,        (2) 229 

 230 

where ∑ 	�

  is the total number of methylated target sites in the sample and  231 

∑ 	?

  is the sum of unmethylated target sites plus sites that are equivelent to 232 

unmethylated target sites after bisulfite sequencing in the sample, e.g. all TG 233 

dinucleotides in the case of CpG methylation. With our assumptions, it is 234 

straightforward to show that for CpG methylation, the expected value of �� is ��. 235 

Thus, �� divided by the estimated genomic GC content, �̂, is an estimate of �. 236 

We estimate GC content from the frequencies of G nucleotides in the sample 237 

because these sites are unaffected from bisulfite treatment. Estimates of GC 238 
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content from WGBS reads are on average within 4.56% ± 3.52% standard 239 

deviations of the true GC content. For the other three targets of methylation (CH, 240 

CHH and CHG), it can be easily shown that 
�


��
 is also equal to �. FASTmC 241 

calculates 
�


��
  from a whole genome bisulfite sample and uses it to estimate �, the 242 

fraction of Cs that are methylated.  243 

 Violation of the assumptions can cause inaccuracies in estimating ��. We 244 

discuss some of these vioations in the results section. In addition, we note that 245 

when additional genomic short read data (≥500,000 bp) is available, the 246 

frequency of the target site in the genome, e.g., the GC content and frequency of 247 

CpG dinucleotides, can be directly measured. This can then be used to directly 248 

calculate the proportion of target sites that are methylated, �, using the 249 

frequency of intact target sites, e.g., CpG, that remain in the bisulfite genome 250 

data. These are sites that were methylated and thus escaped C to T conversion.  251 

 252 

AVAILABILITY OF SUPPORTING DATA 253 

All data used in this study can be found on the Short Read Archive (SRA)/Gene 254 

Expression Omnibus (GEO) webpages. Accession identifiers can be found in 255 

Suppl. Table 1. 256 

 257 
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Figure 1. Detection of intraspecific DNA methylation levels by FASTmC. 

Generalized linear models (GLMs) for estimator (��) versus target (�) CpG, CHG, 

CHH, and CH DNA methylation levels using 10,000 reads corrected for 

estimated GC content (�̂) (A-E). Differences between A. thaliana mutants can be 

detected (A, C, and D). Also, differences of CpG DNA methylation between 

mutants, cell-types and tissues in M. musculus can be differentiated by FASTmC 

(B). Finally, increasing CH methylation through brain development is captured 

with FASTmC (E). Shaded area represents the 95% confidence interval. 
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Figure 2. Detection of interspecific DNA methylation levels by FASTmC. 

Generalized linear models (GLMs) for estimator (��) versus target (�) CpG (A-B), 

CHG (C), CHH (D), and CH (E) DNA methylation levels using 10,000 reads 

corrected for estimated GC content (�̂). Species included in each plot can be 

found in Suppl. Table 1. Shaded area represents the 95% confidence interval. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 20, 2015. ; https://doi.org/10.1101/029496doi: bioRxiv preprint 

https://doi.org/10.1101/029496


 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 20, 2015. ; https://doi.org/10.1101/029496doi: bioRxiv preprint 

https://doi.org/10.1101/029496

