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Abstract 

Autism spectrum disorder (ASD) is characterized by substantial phenotypic and genetic 

heterogeneity, which greatly complicates the identification of genetic factors that contribute to 

the disease. Study designs have mainly focused on group differences between cases and 

controls. The problem is that, by their nature, group difference-based methods (e.g., differential 

expression analysis) blur or collapse the heterogeneity within groups. By ignoring genes with 

variable within-group expression, an important axis of genetic heterogeneity contributing to 

expression variability among affected individuals has been overlooked. To this end, we develop 

a new gene expression analysis method—aberrant gene expression analysis, based on the 

multivariate distance commonly used for outlier detection. Our method detects the 

discrepancies in gene expression dispersion between groups and identifies genes with 

significantly different expression variability. Using this new method, we re-visited RNA 

sequencing data generated from post-mortem brain tissues of 47 ASD and 57 control samples. 

We identified 54 functional gene sets whose expression dispersion in ASD samples is more 

pronounced than that in controls, as well as 76 co-expression modules present in controls but 

absent in ASD samples due to ASD-specific aberrant gene expression. We also exploited 

aberrantly expressed genes as biomarkers for ASD diagnosis. With a whole blood expression 

data set, we identified three aberrantly expressed gene sets whose expression levels serve as 

discriminating variables achieving >70% classification accuracy. In summary, our method 

represents a novel discovery and diagnostic strategy for ASD. Our findings may help open an 

expression variability-centered research avenue for other genetically heterogeneous disorders. 
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Introduction 

Autism spectrum disorder (ASD, [OMIM 209850]) is a complex neurodevelopmental condition 

characterized by substantial phenotypic and genetic heterogeneity (Devlin and Scherer 2012; 

Geschwind 2011; Geschwind and State 2015; Willsey and State 2015). Both genetic and 

environmental factors contribute to the increased risk of developing ASD (Persico and 

Bourgeron 2006; Sandin et al. 2014). Recent years have seen major advances in the 

understanding of the genetic, neurobiological and developmental underpinnings of ASD 

(Abrahams and Geschwind 2008; Belmonte et al. 2004; Elsabbagh and Johnson 2010). Genetic 

studies, especially genome-wide association studies (GWAS), have identified many single-

nucleotide variants (SNVs) and copy number variants (CNVs) associated with ASD 

susceptibility (Glessner et al. 2009; Wang et al. 2009; Weiss et al. 2009). However, it remains 

difficult to identify the actual causal genes underlying these associations. SNVs that produce 

association signals in identified loci often fall into intergenic regions, while CNVs often extend 

across multiple variants or genes, both of which confound the identification of causal genes. 

Also, there are opposing views on the relative contribution of rare versus common variants to 

ASD susceptibility. Some studies suggest that low-frequency variants bring a greater impact on 

the risk for ASD (Neale et al. 2012; Pinto et al. 2014; Sanders et al. 2012; Sebat et al. 2007), 

while other studies suggest that common variants form a dominating source of the risk (Gaugler 

et al. 2014; Klei et al. 2012). Against this background of complexity, several studies 

demonstrate the use of gene expression information—measuring mRNA abundance of 

individual genes, coupled with other genetic approaches, allows for novel insights in 

understanding ASD (Flint et al. 2014; Gupta et al. 2014; Voineagu et al. 2011). Analyzing gene 

expression and sequence data facilitates revealing the impact of regulatory genetic variants on 

the gene itself and the indirect consequences on the expression of other genes (Iossifov et al. 

2014). 

To this end, we introduce a novel, gene expression analysis method for identifying ASD-

implicated genes. Our working hypothesis is that ASD is associated with aberrant gene 

expression caused by the promiscuous multigene activation and repression. Indeed, we show 

that many gene sets that contain genes known to be implicated in ASD tend to be expressed 

more aberrantly in ASD-affected individuals. Encouraged by these findings, we conduct a 

searching for unique combinations of genes for ASD diagnosis based on whole blood 

expression data. We use a greedy algorithm to solve the combinatorial problem of global search 

and identify three gene sets, each containing five genes, which can be used as classifier gene 
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sets with high sensitivity and high specificity to discern gene expression specific to ASD patients. 

Altogether, our results refine the relationships between gene function and gene expression 

dispersion among individuals affected with ASD, providing new insights into the genetic, 

molecular mechanisms underlying the dysregulated gene expression in ASD. Our results also 

lay out the foundation for the utilization of gene expression dispersion as biomarkers for early 

diagnosis of ASD. 

Materials and Methods 

Gene expression data 

Whole transcriptomes of 104 brain tissue samples (47 ASD and 57 controls) were previously 

determined using RNA sequencing by Gupta et al. (2014). The data had been deposited in the 

National Database for Autism Research (NDAR) under the accession code NDARCOL0002034. 

Among these samples, 62, 14 and 28 were tissues from cerebral cortex (Brodmann Area [BA] 

19), anterior prefrontal cortex (BA 10), and a part of the frontal cortex (BA 44), respectively, 

resulting in 47 (32 unique individuals) ASD samples and 57 (40 unique individuals) controls. For 

this study, the raw data of gene expression was normalized using the conditional quantile 

normalization (Hansen et al. 2012) and then processed using the algorithm of probabilistic 

estimation of expression residuals (PEER) (Stegle et al. 2010) to remove technical variation. 

PEER residuals were obtained after regressing out covariates (age, gender, brain region, and 

sample collection site) and factors accounting for ten possible hidden determinants of 

expression variation. The expression median across all samples was added back to the PEER 

residuals to give the final processed gene expression levels. Extremely lowly expressed genes 

with expression median < 2.5 (empirical cutoff) were excluded. The final data matrix contained 

the expression level information of 10,127 genes in 104 samples. Principal component analysis 

was performed to indicate that there was no population stratification regarding the global gene 

expression profiles (Supplementary Fig. 1). 

Functional gene sets 

The curated gene sets (n = 10,348) used in the Gene Set Enrichment Analysis (GSEA) were 

obtained from the molecular signatures database (MSigDB v5.0, accessed March 2015) 

(Liberzon et al. 2011). GO terms (n = 14,825) associated with protein-coding genes were 

downloaded from BioMart (v0.7, accessed February 2015) (Smedley et al. 2015). The co-

expression networks were built for control samples using the Weighted Gene Co-expression 

Network Analysis (WGCNA) (Langfelder and Horvath 2008). The power of 16 was chosen using 

the scale-free topology criterion; the minimum module size was set to 4, and the minimum 
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height for merging modules was 0.25. The resulting modules were plotted using SBEToolbox 

(Konganti et al. 2013). The list of ASD-implicated genes was obtained from the Simons 

Foundation Autism Research Initiative (SFARI) Gene Scoring Module. The list includes 410 

genes in the categories S and 1 – 4, which stand for syndromic, high confidence, strong 

candidate, suggestive evidence, and minimal evidence, respectively, indicating the strength of 

the evidence linking genes to ASD. Of the 410 genes, 294 genes are in the expression data 

matrix we analyzed. 

Calculation of robust MD between ASD and control samples 

For a given gene set, MDi is the Mahalanobis distance (Mahalanobis 1936) from an ASD 

individual i to the multivariate centroid of control individuals. Conventional MDi was calculated 

using the following operation: 

�����·, ��� � ����· 	 ����Ψ�����· 	 ���  

where xi· is the vector of expression of genes in ASD sample i, xc is the vector of expression 

means of genes across all control samples, and ψ is the covariance matrix estimated from the 

controls. Throughout the study, a robust version of MDi was calculated using the algorithm 

Minimum Covariance Determinant (MCD) (Rousseeuw and Van Driessen 1999). The MCD 

algorithm subsamples h observations out of control individuals whose covariance matrix had the 

smallest covariance determinant. By default, h = 0.75n, where n is the total number of control 

samples. The robust MDi was then computed with the above equation by replacing xc with the 

MCD estimate of location, ���, i.e., the expression mean of the h controls, and replacing ψ with 

the MCD estimate of scattering, Ψ� , i.e., the covariance matrix estimated from the h controls. A 

Matlab implementation of MCD, available in the function mcdcov of LIBRA toolbox (Verboven 

and Hubert 2005), was used to perform the computation of MCD estimator. For a given gene set, 

MCD estimates of ��� and Ψ�  were computed as the outputs of mcdcov, and re-used for 

calculating robust MDi for ASD individuals. 

The sum of squared MDi, 

�� � ∑ ���

��

�	�  was calculated for given gene sets to measure the 

overall dispersion of M individuals affected with ASD. To assess the significance of SSMD of a 

given gene set, permutation tests were performed with N reconstructed gene sets of the same 

size but randomly selected genes. The P-value of permutation test, Pperm, was determined by 

the ratio of 



�
, where n is the number of random gene sets having SSMD greater than that of the 

tested gene set and N is the total number of random gene sets used in permutation tests. To 

save computational time, we first set N = 1,000 to obtain a short list of gene sets with Pperm < 
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0.001, and then set N = 10,000 to obtain nominal Pperm for gene sets in the short list. The 

correction for multiple testing was performed by controlling the false discovery rate (FDR) with 

the Benjamini-Hochberg method (Benjamini and Hochberg 1995).To measure the relative 

contribution of each gene in a gene set to the total SSMD of the gene set, ΔSSMD was 

calculated. ΔSSMD is the difference between the two SSMD values calculated before and after 

the gene is excluded from the gene set. 

Receiver operator characteristic (ROC) curve analysis 

For the analysis of aberrant gene expression as the biomarker for ASD diagnosis, peripheral 

blood gene expression data measured using the Affymetrix Human Gene 1.0 ST array for 104 

ASD and 82 controls was downloaded (GEO accession: GSE18123) (Kong et al. 2012). The 

raw intensity data was processed using the R function rma (robust multi-array average 

expression measure) in Affy package. The expression measure was quantile normalized and 

log2 transformed. The final data matrix contained the expression level information for 16,365 

autosomal genes among 186 samples. We equally split samples into a training set and a test 

set, each of which contains half of ASD (i.e., 52 ASD samples) and half of control samples (i.e., 

41 controls). 

ROC curve analysis was used to evaluate the specificity and sensitivity of classification tests, in 

which gene sets were used as classifiers for ASD and controls. For a given gene set, we first 

obtained the multivariate centroid of controls in the training set (Gtraining) and calculated MDi of 

each sample i (including all ASD and control samples in the training set). Using ROC curve 

analysis, the threshold (denoted by T) corresponding to optimal specificity and sensitivity 

combination was determined. If MDi is greater than T, the sample i was classified as an ASD, 

otherwise a control. The performance of each gene set for predicting ASD and control samples 

was tested at different threshold T values to obtain the area under the curve (AUC). We denote 

the AUC values with respect to the training and test data sets as AUC1 and AUC2. After 

selecting three classifier gene sets with top AUC1 values, we then assessed their prediction 

performances with the test data set using ROC curve analysis again. For each classifier gene 

set, MDi for all samples of the test set, regardless of the disease status of samples, was 

calculated against Gtraining, i.e., the multivariate centroid of controls in the training set.  

Global search for the classifier gene sets 

A greedy algorithm was developed to identify subsets of genes, for which AUC1 reaches its 

maximal values as possible. The calculation of AUC1 can be seen in section “Receiver operator 

characteristic (ROC) curve analysis.” The search is global because combinations of all 
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expressed genes were considered and no information of any pre-defined gene sets was used. 

Starting with all possible two-gene combinations, AUC1 values were computed, and the top 

1,000 two-gene pairs with maximal AUC1 were retained as seeds for subsequent steps. The 

idea of the greedy strategy is to make a locally optimal choice at each stage have the hope of 

finding a global optimum. Thus, the assumption here is that the genes in the two-gene 

combinations producing the greatest AUC1 (i.e., the locally optimal solution) would be among 

those in five-gene combinations producing the greatest AUC1 (i.e., the global optimum). For 

each of the selected two-gene combinations, a new gene that can produce largest SSMD was 

identified and added to the gene pair to make a three-gene combination. The procedure was 

repeated until the number of genes reached five. At this stage, an additional procedure was 

introduced to improve the locally optimal solutions achieved by the greedy heuristic: all distinct 

three-gene combinations were extracted from five-gene combinations as the new candidate 

subsets. From these three-gene combinations, new genes were added to get a new round of 

solutions of five-gene combinations. The newly generated five-gene combinations will be 

retained if they produced larger AUC1 than older ones. This replacement procedure was 

repeated until no improvement could be made. For the top gene sets that produced the best 

AUC1 values, we then assessed their performances of prediction with the test data set. 

Computer code is available from the authors upon request. 

Results 

Many biological processes underlying human diseases are accompanied by changes in gene 

expression in corresponding tissues (Cookson et al. 2009). ASD is not an exception. Previous 

studies have detected specific gene expression changes in ASD, concerning genes involved in 

the synaptic formation, transcriptional regulation, chromatin remodeling, or inflammation and 

immune response (Voineagu et al. 2011). These analyses mostly focused on departures across 

the average expression between the case and control groups, without considering or much less 

focusing on alternative patterns of departure such as those characterized by heterogeneous 

dispersion. The goal of present study is to detect the difference in heterogeneous multigene 

expression dispersion between samples derived from ASD-affected individuals and healthy 

controls. 

Overview of aberrant gene expression analysis 

We have previously developed a multivariate method, namely aberrant gene expression 

analysis, to measure the level of multigene expression dispersion in the general population 

(Zeng et al. 2015). This analysis method uses Mahalanobis distance (MD) to quantify the 
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dissimilarity in multigene expression patterns between individuals (Mahalanobis 1936). MD is an 

appropriate measure because it accounts for the covariance between expression levels of 

multiple genes. The aberrant gene expression analysis can be used to identify genes more 

likely to be aberrantly expressed among given individuals. It can also be used to identify 

individual outliers whose expression for a given gene set differs markedly from most of a 

population. 

Here, we extend the MD-based aberrant gene expression analysis to a two-group setting. We 

estimated the level of gene expression dispersion among individuals affected with autism 

relative to controls, assuming that the increased dispersion is due to a promiscuous gene 

activation and repression associated with autism. We applied the aberrant gene expression with 

such a two-group setting and re-analyzed the gene expression data generated from the post-

mortem brain tissues of 47 ASD and 57 control samples (Gupta et al. 2014). For a given gene 

set, we computed the MD between gene expression of each ASD individual i to the multivariate 

centroid of the controls, denoted as MDi. We used the sum of squared MDi (SSMD) to measure 

the overall dispersion level for all ASD samples vs. the controls. Using permutation tests, we 

assessed the significance of gene sets and identified gene sets more likely to be aberrantly 

expressed among individuals affected with ASD (Materials and Methods). 

Coordinated gene expression is disrupted in ASD 

Our MD-based aberrant gene expression analysis is capable of detecting the signal of 

expression aberration in different forms, including, e.g., (1) the increased individual-to-individual 

gene expression variance (i.e., the increased gene expression variability) and (2) the decreased 

expression correlation between genes. To illustrate the effect of disrupted expression, we use 

gene sets comprising only two genes to show the aberrant gene expression among individuals 

affected with ASD manifested as the loss of expression correlation between the two genes. Fig. 

1 shows scatter plots of expression levels between gene pairs. In Fig. 1A, the expression of 

CORO1A is positively correlated with that of SYN2 for the controls (left panel, Pearson 

correlation test, P = 3.6×10-10). The gene CORO1A encodes coronin 1A, an actin binding 

protein. The gene SYN2, which is selectively expressed at nerve terminals in mature neurons, 

encodes synapsin II, a neuron-specific synaptic vesicle phosphoprotein (Cesca et al. 2010; 

Corradi et al. 2014). Synapsins interact with actin filaments in a phosphorylation-dependent 

manner (Benfenati et al. 1989). As evident from the description of gene functions, the correlated 

expression between the two genes is crucial for their respective actin-related molecular 

functions in normal individuals. However, such a crucial correlation becomes less significant in 
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the ASD group (middle panel, P = 0.07). To make the contrast, we superimposed the data 

points for ASD individuals onto those of the controls (right panel). The top 10 ASD samples with 

the largest MD values are highlighted with red asterisks. The data points of these ASD samples 

are the most remote observations, distributed either far away from or orthogonally against the 

“cloud of data points” around the population mean, in which most control individuals are located. 

Fig. 1B presents a negative example, in which the correlations in expression levels between 

two genes, CX3CR1 and SELPLG, are presented in both control and ASD groups (P = 1.3×10-9 

and 1.4×10-10, respectively), indicating that the coordinated expression between the two genes 

is not disrupted in ASD. Altogether, these two examples, one positive and one negative, 

suggest that aberrant gene expression is not universal. The pattern of aberration may be highly 

specific with regard to certain gene sets (e.g., that in Fig. 1A) but not others (e.g., that in Fig. 

1B). 

Functional gene sets that tend to be aberrantly expressed in ASD 

To identify gene sets more likely to be aberrantly expressed in ASD samples, we calculated 

SSMD for a number of pre-defined gene sets (Materials and Methods). These included the 

curated gene sets in the MSigDB of GSEA (Liberzon et al. 2011). The significance of each gene 

set was assessed using permutation tests with random gene sets. A total of 18 GSEA curated 

gene sets were found to produce significantly higher SSMD than random gene sets at FDR of 

10%. Functions of these gene sets fall into four major categories, namely, metabolism and 

biosynthesis, immune or inflammatory response, signaling pathway, and vitamins and 

supplements (Table 1). The relevance of these major functional categories with ASD is 

supported by respective studies (Abrahams and Geschwind 2008; Chow et al. 2012; Frye et al. 

2010; Klaiman et al. 2013; Lazaro and Golshani 2015; Sawicka and Zukin 2012; Tierney et al. 

2006). For example, the mTOR signaling pathway, which has a full name in the Reactome 

database: Energy dependent regulation of the serine/threonine protein kinase mTOR by LKB1-

AMPK (Croft et al. 2014), is essential to synaptogenesis; gene products of the pathway regulate 

dendritic spine morphology in synapses. The dysregulation of this pathway is implicated in ASD 

(Abrahams and Geschwind 2008; Lazaro and Golshani 2015; Sawicka and Zukin 2012). Table 

1 also contains four gene sets with miscellaneous functions, unclassified into any of the four 

major categories but all implicated in ASD. These genes are involved in: (1) activated point 

mutants of FGFR2 (Schubert et al. 2015; Stevens et al. 2010), (2) activation of the AP-1 family 

of transcription factors (Schaaf et al. 2011), (3) inwardly rectifying K+ channels (Guglielmi et al. 

2015; Lee et al. 2014), and (4) G2/M checkpoints (Fatemi et al. 2008). 
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To determine individual gene’s contribution to the total SSMD of a gene set, we computed 

ΔSSMD for each gene. The ΔSSMD of a gene is the difference between SSMD values of a 

gene set before and after excluding the gene from the gene set. Top three genes with the 

largest ΔSSMD are given for all gene sets in Table 1. SFARI ASD-implicated genes are 

highlighted. To further investigate the relationship between gene function and aberrant gene 

expression, we grouped genes into gene sets, based on their cellular and molecular functions 

indicated by gene ontology (GO) terms associated with the gene function descriptions. A total of 

36 significant GO terms at an FDR of 10% were identified (Supplementary Table 1). These 

terms are distributed in 22 biological processes (BP), 11 molecular functions (MF), and three 

cellular components (CC) sub-ontologies. The relevant processes include cellular response to 

stimulus, cellular metabolic process, cell morphogenesis and proliferation, regulation of 

intracellular transport and organelle organization, and tissue development. A close look at these 

significant GO terms revealed several that are implicated in ASD, e.g., neuropeptide receptor 

activity (GO: 0008188) (Ramanathan et al. 2004), neuropeptide binding (GO: 0042923) 

(Baribeau and Anagnostou 2015; Lim et al. 2005), and inhibitory synapse (GO: 0060077) 

(Pettem et al. 2013; Tabuchi et al. 2007). 

Co-expression modules that tend to be aberrantly expressed in ASD 

We also used the expression data from non-ASD controls to construct the co-expression 

networks. We customized the parameters of WGCNA (Langfelder and Horvath 2008) (Materials 

and Methods), instead of using the default values provided by the program, to construct as 

many as 807 network modules with relatively small size (4 to 110 genes). Such an adjustment 

of parameters was necessary because the core function mcdcov for MD calculation requires the 

size of gene sets (i.e., the size of modules) is no greater than the size of control samples (n = 

57). Otherwise, the multivariate centroid of controls would not be able to be computed. For all 

modules containing 57 genes or fewer, we computed SSMD and used permutation tests to 

assess the significance of the modules. We identified 76 significant modules that tend to be 

aberrantly expressed in ASD samples (Supplementary Table 2). Many genes in these modules 

have functions in the central nervous system. For example, module 1 is enriched with genes 

closely associated with synapse and cell junction while module 5 is enriched with genes 

involved in regulation of neurogenesis/neuron differentiation. Fig. 2A shows the co-expression 

relationships between genes in modules one and five among control samples. The co-

expression patterns in the two modules are absent in ASD samples (Fig. 2B). It is striking to 

observe such complete breakdowns of essential functional modules in ASD cases. 
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To quantify the module difference between ASD and control groups, we used the function 

modulePreservation in the WGCNA R package (Langfelder et al. 2011) to calculate two 

statistics—medianRank and Zsummary—that measure the level of connectivity preservation 

between modules constructed using control and ASD samples. The majority of 76 significant 

modules have a large medianRank and a close-to-zero small Zsummary (Supplementary 

Table 2), which suggest little or no module preservation across the control and ASD samples. 

To demonstrate that the 76 significant modules constructed using control data are robust, we 

obtained an independent data from brain tissues of 93 non-ASD healthy controls (GEO 

accession: GSE30453) (Heinzen et al. 2008) and used this new independent expression data to 

re-draw these significant modules. We found that, despite the difference in technical platforms 

(i.e., RNA sequencing vs. microarray) on which two gene expression data were generated, most 

co-expression relationships between genes in these modules could be recapitulated using the 

new independent control data—representative modules that contain ten or more genes are 

shown in Supplementary Fig. 2. These results suggest that these modules are robust and the 

co-expression relationships between genes in these modules are biologically important and 

indispensable for healthy controls. 

Next, we note that ΔSSMD may be used as a single-gene measure to prioritize genes with 

desired functions. For instance, CPLX2 is among genes with the largest value of ΔSSMD in the 

module (Fig. 2A). It is likely that the sequences of CPLX2 regulatory region are more 

heterogeneous among ASD samples, or the region contains variants associated with large gene 

expression variability more common in ASD samples. In either case, ΔSSMD enables to 

prioritize gene candidates and pinpoint the genomic regions that are likely to accommodate the 

potential mutations responsible for the increased gene expression variability. Indeed, CPLX2 

encodes a complexin protein that binds to synaphin as part of the SNAP receptor complex and 

disrupts it, allowing transmitter release. CPLX2 has been associated with schizophrenia and 

attention deficit hyperactivity disorder (Lee et al. 2005; Lionel et al. 2011), but not with autism 

yet. In future, target sequencing of the CPLX2 regulatory region in the ASD samples may allow 

us to discover unknown variants associated with autism risk. Alternatively, the deregulated 

CPLX2 expression might be part of the dysregulation of the entire module, which could be due 

to a trans-regulatory change (e.g., a change in a regulator of CPLX2 and associated module). In 

such a case, target sequencing may be used to rule out the influence of local regulatory 

mutations on the CPLX2 expression. 
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We also tested the correlation between ΔSSMD and two network metrics for nodes, i.e., 

betweenness centrality and clustering coefficient. We previously showed that disease-causing 

genes have high betweenness centrality and low clustering coefficient values (Cai et al. 2010). 

However, for genes in these co-expression modules tested, no significant correlation was 

detected, which suggests ΔSSMD captured statistical features of genes that differ from those 

captured by the two network metrics. Finally, we examined whether, in the same modules, 

genes with large ΔSSMD tend to be expressed more differentially between ASD cases and 

controls. For genes in each of the 76 significant modules, we calculated t statistics using 

Student’s t-test to quantify the level of differential expression (DE) between ASD cases and 

controls. For each module, we then calculated the Spearman correlation coefficient (rho) 

between ΔSSMD scores and t statistics of all genes. The distribution of correlation coefficients 

for modules is symmetrical, centered at rho=0 with most values falling in between -0.5 and 0.5 

(Supplementary Fig. 3), showing no consistent correlation between ΔSSMD scores and DE 

test statistics. Thus, DE is not predictive of ΔSSMD score or vice versa. 

Overlap between aberrantly expressed genes and ASD-implicated genes 

Taking all pre-defined gene sets (i.e., GSEA-defined, GO term-defined, and WGCNA modules) 

together, a total of 10,127 genes were under the consideration of our gene set-based analyses, 

and 1,044 unique genes were present in the gene sets considered to be significant, for which 

gene expression profiles in ASD samples are over-dispersed. The overlap between these 1,044 

genes and 294 SFARI ASD-implicated genes (Materials and Methods) is 36. These 

overlapping genes include eight of those belonging to the SFARI category of syndromic 

(DHCR7, KCNJ10, MECP2, NF1, PAX6, SCN1A, TSC1 and TSC2), four in the category of high 

and strong confidence (TBR1, ASXL3, BCL11A and DSCAM), and 24 in categories of 

suggestive and minimal evidence. Two de novo loss-of-function mutations in TBR1 have been 

previously identified in ASD patients (Neale et al. 2012; O'Roak et al. 2012a; O'Roak et al. 

2012b), along with three in ASXL3 (De Rubeis et al. 2014; Dinwiddie et al. 2013), two in 

BCL11A (De Rubeis et al. 2014; Iossifov et al. 2012), and four in DSCAM (De Rubeis et al. 

2014; Iossifov et al. 2014). Nevertheless, the number of overlapping genes (36) is not 

significantly more than expected by chance (Hypergeometric test, P = 0.16). These results 

suggest that aberrant gene expression analysis, as a deviation from the status quo, produced 

the results of many novel candidate genes, which are not present in the gene list of current 

knowledge. 
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Aberrant gene expression as biomarkers for ASD 

We sought to determine whether we could classify patients as having ASD vs. controls solely 

based on the aberrant gene expression that is more pronounced in ASD samples. For this 

purpose, we obtained the gene expression data from the peripheral blood samples, including 

104 ASD patients and 82 healthy controls (GEO accession: GSE18123) (Kong et al. 2012). The 

rationale of using this blood sample data set, rather than re-using the data set of post-mortem 

brains (Gupta et al. 2014), is from the position of the practical application. For diagnostic 

purposes, measuring gene expression in the peripheral blood makes more sense. Thus, in our 

analysis, a direct search for the biomarkers using the blood expression data is desired. After 

downloading the blood gene expression data (Kong et al. 2012), we split the data set into 

“training” and “test” sets, each containing data of 52 ASD and 41 control samples. With the 

training set data, we calculated MDi for ASD samples against the control samples. With the test 

set data, we calculated MDi for both ASD and control samples against the control samples of 

the training set (Materials and Methods). That is, we calculated MDi for all samples against the 

same set of controls in the training set. 

Our purpose was to identify gene sets comprising several genes out of autosomal protein-

coding genes expressed in the whole blood (n = 16,365) whose aberrant gene expression could 

be used to distinguish ASD cases from controls (i.e., MDi respecting the gene sets for ASD and 

non-ASD samples differs greatly). Here we used ROC curve analysis to evaluate the 

classification performance of a specific classifier gene set, so a search was conducted for gene 

sets with top AUC (the area under ROC curve) values based on the training set, for which the 

performances were assessed with the test set. We denote the AUC values with respect to the 

training and test data sets as AUC1 and AUC2. With randomly generated gene sets, we 

examined AUC2 as a function of the size of gene sets. We found no correlation between the two 

(Supplementary Fig. 4), suggesting that random gene sets have no prediction value. The 

positive correlation between the size of gene sets and AUC1 (Supplementary Fig. 4) is simply 

because that the inclusion of more variables (i.e., expression data from more genes) allows a 

better fit to the data. That is, the expression variation in control samples of the training set is 

better explained by more genes to be considered, resulting in a continuously improved AUC1. 

Nevertheless, the overfit of data for the training set (better AUC1) did not necessarily contribute 

much to the prediction for the test set (better AUC2), as suggested by the weak positive 

correlation between AUC1 and AUC2 (Supplementary Fig. 5). Based on these preliminary 

results, we decided to search for gene sets containing as few as five genes to avoid the 

potential problem associated with overfitting of the control data. Computational time is another 
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consideration—an exact solution for such a search for more than five genes is a combinatorial 

problem requires >1018 SSMD calculations, which is computationally infeasible. 

To search for the five genes, we developed a greedy algorithm to search from different starting 

points for producing local optimal solutions (Materials and Methods). Three gene sets, each 

containing five genes, were identified to generate high accuracy with balanced sensitivity and 

specificity values for the tests using both training and test data sets (Fig. 3). These gene sets 

are: {FAM120A, HDC, OR13C8, PSAP, RFX8}, {HBG1, MOCS3, PDGFA, SERAC1, SLFN12L}, 

and {BHMT2, CCL4L1, CD2, FAM189B, MAK} (see Supplementary Table 3 for corresponding 

SSMD and ΔSSMD values). All three gene sets achieved greater than 70% sensitivity and 

greater than 70% specificity in all tests (Table 2). Further analyses showed that the prediction 

power of the three gene sets largely remained no matter how the original data (Kong et al. 2012) 

was randomly split into training and test sets. Some of these classifier genes are associated 

with ASD, although mostly in an indirect manner. For instance, the protein product of FAM120A 

interacts with that of the ASD-implicated gene CYFIP1 (De Rubeis et al. 2013). A rare functional 

mutation in HDC, which encodes L-histidine decarboxylase catalyzing the biosynthesis of 

histamine from histidine, has been associated with Tourette’s syndrome (Ercan-Sencicek et al. 

2010)—a neuropsychiatric disorder potentially related to ASD (Clarke et al. 2012). The 

expression of PDGFA was found to be down-regulated in patients affected with the 22q11.2 

deletion syndrome, which is associated with high rates of ASD in childhood (Jalbrzikowski et al. 

2015). 

Finally, we repeated the searching for classifier gene sets using the expression data of brain 

samples (Gupta et al. 2014). Three classifier gene sets were obtained: {IFI6, MIDN, MAPK8, 

ENO2, GYS1}, {HSPH1, ASH1L, IFIT3, GPR3, PCSK2}, and {HNRNPK, GOLT1B, BAZ2A, 

TRABD2A, UNG}, which all gave ~75% or better prediction accuracy (Supplementary Table 4). 

These classifier genes show no overlap with those derived from the blood samples, but several 

are directly associated with ASD. For example, ASD-associated mutations have been identified 

in ASH1L, which is a SFARI category 1 (high confidence) gene (De Rubeis et al. 2014; Iossifov 

et al. 2014; Tammimies et al. 2015; Willsey et al. 2013) and in MIDN, which is involved in 

neurogenesis and neuronal migration (Butler et al. 2015). 

Discussion 

ASD is a complex disease involving multiple genetic alterations that result in modifications of 

many cellular processes. Maladaptive patterns of ASD lead to significantly high gene expression 

variability among affected individuals. Unitary models of autism brain dysfunction have not 
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adequately addressed conflicting evidence, and efforts to find a single unifying brain dysfunction 

have led the field away from research to explore individual variation and micro-subgroups. 

Therefore, it has been suggested that researchers must explore individual variation in brain 

measures within autism (Geschwind 2008; Waterhouse and Gillberg 2014). Previous studies, 

with few exceptions (Garbett et al. 2008; Voineagu et al. 2011), have rarely addressed the issue 

of increased gene expression variability associated with autism. Noticeably, Voineagu et al. 

(2011) pointed out: “Autistic subjects display significant phenotypic variability which could be 

due to an intricate interplay of genetic and environmental factors. Thus, we hypothesized that 

this phenotypic diversity is due to subject-to-subject variability in gene expression.” 

Nevertheless, the status quo pertaining to gene expression specific to ASD patients is based on 

the detection of differential gene expression, i.e., the gene-expression differences between 

mathematical expectation (i.e., mean) of ASD and control samples. The major assumption 

underlying differential expression analysis is: ASD cases have the same or similar gene 

expression change phenotypes, which makes them as a separate cohort have significantly 

higher or lower expression than the controls. However, this assumption contradicts the fact that 

ASD has highly heterogeneous genetic causes, and excludes empirical evidence gathered 

about uncommon molecular changes causing ASD (Neale et al. 2012; Pinto et al. 2014; 

Sanders et al. 2012; Sebat et al. 2007). 

Dispersion-specific measure of gene expression for autism 

Our overall strategy for this study was based on the quantitative measures of the departure of 

multigene expression dispersion between individuals. The profound heterogeneity in ASD 

underscores the importance of leveraging measures of dispersion in order to capture the 

specific tendency. Gene expression dispersion has been found associated with gene function 

and disease or physiological status of individuals (Ecker et al. 2015; Li et al. 2010; Mar et al. 

2011; Somel et al. 2006). Discrepancies in gene expression should not only be characterized by 

the mean but also by other statistics of interest, such as dispersion parameters. Using the 

proven multivariate approach (Zeng et al. 2015), we have further developed MD-based aberrant 

gene expression analysis and applied it to ASD. The statistical signal captured is the tendency 

of being more dispersed in multigene expression among ASD than control samples. We have 

shown that our variability-centered method can recapitulate signals from many genes known to 

be implicated in ASD. Our method does not depend on the prior knowledge about gene function 

or the identification of mutations in genes. Thus, it is a tool for discovering and identifying genes 

previously unknown to be involved in ASD progression. 
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Aberrant gene expression in co-expression network modules 

We have shown that, when applied to the co-expression network, SSMD can reveal the effects 

of perturbing genetic networks. SSMD analysis informs us about how ASD distorts expression 

patterns of biological systems. Disturbed ASD genetic networks have been noticed previously 

(Hormozdiari et al. 2015; Li et al. 2014; Parikshak et al. 2013; Pramparo et al. 2015; Willsey et 

al. 2013). However, most existing network analyses were not designed for directly measuring 

the level of dysregulation. Instead, information about known ASD genes, e.g., in (Li et al. 2014; 

Willsey et al. 2013), or differently expressed genes, e.g., in (Pramparo et al. 2015), were used to 

prioritize the modules, which would not allow modules contain unknown ASD genes to be 

prioritized for subsequent analyses. In contrast, our approach allows for a straightforward 

screening of perturbed network modules and provides the raw material for the identification of 

genetic regulatory mechanisms involved in the variability of gene transcription. 

Toward the genetic basis of aberrant gene expression  

Our results have provided unique entry points to investigate further on the genetic basis of 

aberrant gene expression (e.g., increased gene expression variability) in ASD. When genotype 

or sequence information, along with their gene expression information, become available for 

ASD samples, it would be possible to assess the influences of the aggregation of rare mutations, 

CNVs, as well as common genetic variants on aberrant patterns of gene expression in ASD. In 

line with this view, the latest genome sequencing effort for autism-affected families showed that 

disruptive de novo/private mutations and CNVs are significantly enriched in regulatory regions 

of ASD-related genes in ASD probands (Turner et al. 2016). Furthermore, we have shown 

previously that certain common genetic variants, in addition to rare variants, cause the increase 

of gene expression variability among individuals (Hulse and Cai 2013). These common variants 

influence the variability of gene expression through the action of either epistasis or direct 

destabilization (Wang et al. 2014). By taking both rare and common variants into account, it 

would be possible to superimpose their impact onto a gene expression variability network to 

predict which parts of the network are more vulnerable to the perturbation from genetic factors 

such as ASD-related disruptive mutations. 

Aberrant gene expression as biomarkers 

Recent years have seen an intensive search for biological markers for ASD. Although a wide 

range of ASD biomarkers has been proposed, as of yet none has been validated for clinical use 

(Walsh et al. 2011). Therefore, there is a critical need for valid biological markers for ASD. 

Based on the results of aberrant gene expression analysis shown here, gene sets with just a 
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few selected genes can be used as novel biomarkers. Application of our gene-expression 

candidate biomarkers will allow for higher sensitivity and specificity in a diagnostic screen for 

ASD. We anticipate that if our gene-expression biomarkers are expanded to use the blood gene 

expression data derived from other platforms (such as different types of microarrays, RNA 

sequencing, and qPCR), they will offer a significant advancement in developing a clinical blood 

test. The success of such gene-expression biomarkers will assist in early and objective 

diagnosis for ASD. 

Caveats and future directions 

Voineagu et al. (2011) showed that the heterogeneity in gene expression between different 

brain regions of the same individual might introduce another level of gene expression variability. 

Due to the limitation of tissue samples available for this study, such an effect was not explicitly 

captured by our aberrant gene expression analysis. Also, brain regions themselves are highly 

heterogeneous because of the mixtures of cell types. Aberrant gene expression patterns might 

in part indicate different relative proportions of cell types in a sample. With the advent of the 

single-cell based technologies (Dey et al. 2015), this level of gene expression heterogeneity 

may be measured. Thus, the problem of heterogeneity of cell types in tissue samples as an 

important source of variability may be addressed in future studies. 

Conclusions 

We have developed a novel, variability-centric gene expression analysis, and applied the 

method to ASD. This advance showcases the value of development and refinement of systems 

genomics tools in studying human complex diseases. The aberrantly expressed genes identified 

in this study will facilitate the identification of ASD-predisposing variation, which may eventually 

reveal the causes of ASD and enable earlier and more targeted methods for diagnosis and 

intervention. 
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Supplementary Files 

Supplementary Table 1. GO term-defined gene sets that tend to be aberrantly expressed in 

brain tissues of ASD-affected individuals. Gene sets contain genes annotated with GO terms of 

three sub-ontologies: biological process (BP), molecular function (MF), and cellular component 

(CC). 

Supplementary Table 2. WGCNA co-expression network modules containing genes that tend 

to be aberrantly expressed in the brains of ASD-affected individuals. Modules are annotated 

with the DAVID-defined gene function keyword clusters. Representative genes with the 

corresponding function are shown in bold. Statistics of the preservation between modules built 

for cases and controls, medianRank and Zsummary, calculated using function 

modulePreservation of WGCNA are given. 

Supplementary Table 3. Genes in the three classifier gene sets obtained from blood data set 

(GEO accession: GSE18123) and corresponding SSMD and ΔSSMD values. 

Supplementary Table 4. Genes in the three classifier gene sets obtained from brain data set 

(57 controls and 47 ASD cases) and corresponding SSMD and ΔSSMD values. The 

performances of classifiers based on gene set I, II, III tested on the training and test sets are 

also reported including sensitivity (SN), specificity (SP) and accuracy (ACC) values. 

Supplementary Fig. 1. Results of principal component analysis (PCA) showing the first four 

principal components (from PC1 to PC4). The distributions of 104 samples (57 controls and 47 

ASD samples) on PCA spaces defined by PC1 and 2, PC2 and 3, and PC3 and 4 are shown. 

Supplementary Fig. 2. Reproducibility of co-expression modules in the non-ASD control group 

and the breakdown of modules in ASD. Ten example modules are shown with two independent 

data sets from controls, as well as one data set from ASD samples. Edge width is proportional 

to the Pearson’s correlation coefficients (ranging 0.5 and 1). Node size is proportional to 

ΔSSMD for each gene. 

Supplementary Fig. 3. Distribution of correlation coefficients between t statistics of DE test and 

ΔSSMD values of genes in 76 significant modules. The kernel density estimate of the 

distribution is shown with the gray line; values of Spearman correlation coefficient (rho) of 

modules are shown with orange triangles; rho=0 is shown with the dotted vertical line. 

Supplementary Fig. 4. Box plot of AUC (area under ROC curve) value against the size of 

classifier gene set. For each size of the gene set (from 3 to 15), 100 different random gene sets 
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were constructed and tested on the training set and test set for obtaining AUCs. The black and 

red boxplots denote AUC values tested on the training set (AUC1) and test set (AUC2) varying 

with the size of classifier gene set, respectively. 

Supplementary Fig. 5. Scatter plot of AUC values tested on the test set (AUC2) against AUC 

values tested on the training set (AUC1) for 100 different random classifier 5-gene sets. Red 

line denotes the least-squares line of the scatter plot. The Spearman correlation coefficient 

between AUC1 and AUC2 is 0.32 (P = 1.1×10-3). The inset shows the distribution of the 

Spearman rank correlation coefficients between AUC1 and AUC2 calculated with 1,000 

replicates of such 100 random classifier 5-gene sets.  
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Figure Legends. 

Fig. 1. A proof-of-concept example, based on real data (Gupta et al. 2014), showing that (A) the 

correlated expression between SYN2 and CORO1A presents among non-ASD samples but is 

disrupted among ASD samples, while (B) the correlated expression between CX3CR1 and 

SELPLG presents among both non-ASD and ASD samples. Red stars in (A) show the top 10 

ASD samples with the largest MDi and r2 is the squared Pearson correlation coefficient. 
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Fig. 2. The breakdown of co-expression network modules in ASD. (A) Two example modules 

are presented as gene interaction subnetworks among non-ASD controls. Edge width is 

proportional to the value of Pearson’s correlation coefficient (ranging 0.5 – 0.8). Node size is 

proportional to the value of ΔSSMD for each gene. The two modules are enriched with genes 

whose products are closely associated with synapse or cell junction (top) and genes involved in 

regulation of neurogenesis or neuron differentiation (bottom), respectively. (B) The same sets of 

genes in the two modules are depicted for ASD samples. The missing of edges is due to the 

lack of co-expression relationships between genes. 

Fig. 3. ROC curves and dot diagrams of MDi. (A) ROC curves graphs for the three classifier 

gene sets tested with the training and test data sets. Corresponding AUC values for the training 

(AUC1) and test (AUC2) data sets are given in the inserts. Red cross indicates the optimal 

operating point of the ROC curve for the training data set. (B) Dot diagrams for training (top) 

and test (bottom) sets showing the distributions of MDi calculated with respect to the three 

classifier gene sets for samples in ASD and control groups. Log-transformed MDi values are 

shown. The red vertical lines show the optimal cutoff values determined from the ROC curves 

tested on training data set.
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Tables. 

Table 1. GSEA curated gene sets that tend to be aberrantly expressed in ASD. *Number of genes included in our analysis/Number 

of genes in the gene set. Gene sets mentioned in the main text are shown in italic. SFARI ASD-implicated genes are shown in bold. 

 GSEA gene set Number 
of genes* 

Top ΔSSMD gene Reference 

Metabolism and biosynthesis    
 KEGG_PENTOSE_PHOSPHATE_PATHWAY 19/27 H6PD, PRPS2, PFKP  
 KEGG_STEROID_BIOSYNTHESIS 14/17 SC5DL, NSDHL, DHCR7  
 REACTOME_CHOLESTEROL_BIOSYNTHESIS 20/24 SQLE, HSD17B7, HMGCR (Tierney et al. 2006) 
 REACTOME_BRANCHED_CHAIN_AMINO_ACID_ 

CATABOLISM 
16/17 DLD, HIBADH, MCCC2  

Immune/Inflammatory response    
 BIOCARTA_LAIR_PATHWAY 4/17 SELPLG, C3, ITGB1  
 BIOCARTA_41BB_PATHWAY 12/17 MAPK8, ATF2, MAPK14  
 REACTOME_IL1_SIGNALING 25/39 CHUK, RBX1, BTRC (Chow et al. 2012) 
 REACTOME_REGULATION_OF_IFNA_SIGNALING 6/24 STAT1, PTPN1, JAK1  
Signaling pathway    
 BIOCARTA_IGF1_PATHWAY 20/21 JUN, CSNK2A1, ELK1  
 PID_S1P_S1P2_PATHWAY 21/24 MAPK8, MAPK14, JUN  
 PID_HNF3APATHWAY (FOXA1/HNF3A TF network) 22/44 NDUFV3, PISD, FOS  
 REACTOME_ENERGY_DEPENDENT_REGULATION_ 

OF_MTOR_BY_LKB1_AMPK 
15/18 PRKAA1, CAB39, TSC1 (Abrahams and Geschwind 2008; 

Lazaro and Golshani 2015; 
Sawicka and Zukin 2012) 

Vitamins and supplements    
 BIOCARTA_VITCB_PATHWAY 6/11 SLC2A3, COL4A2, SLC2A1  
 REACTOME_TETRAHYDROBIOPTERIN_BH4_SYNTHESI

S_ 
RECYCLING_SALVAGE_AND_REGULATION 

9/13 GCHFR, PTS, AKT1 (Frye et al. 2010; Klaiman et al. 
2013) 

Miscellaneous    
 REACTOME_ACTIVATED_POINT_MUTANTS_OF_FGFR2 4/16 FGF9, FGFR2, FGF1 (Schubert et al. 2015; Stevens et 

al. 2010) 
 REACTOME_ACTIVATION_OF_THE_AP1_FAMILY_OF_ 

TRANSCRIPTION_FACTORS 
10/10 MAPK14, MAPK3, ATF2 (Schaaf et al. 2011) 

 REACTOME_INWARDLY_RECTIFYING_K_CHANNELS 20/31 KCNJ10, KCNJ4, GNG4 (Guglielmi et al. 2015; Lee et al. 
2014) 

 REACTOME_G2_M_CHECKPOINTS 22/45 MCM2, RFC5, RPA2 (Fatemi et al. 2008) 
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Table 2. The performances of classifiers based on gene set I, II, III tested on the training and test data sets. True positive (TP), true 

negative (TN), false positive (FP), false negative (FN), sensitivity (SN), specificity (SP), accuracy (ACC) values are reported. 

Expression data set Training set Test set 
Number of samples (ASD + control) 93 (52 + 41) 93 (52 + 41) 
Classifier gene set I II III I II III 
TP 43 44 45 40 41 37 
TN 33 32 32 30 30 30 
FP 8 9 9 11 11 11 
FN 9 8 7 12 11 15 
SN (%) 82.69 84.62 86.54 76.92 78.85 71.15 
SP (%) 80.49 78.05 78.05 73.17 73.17 73.17 
ACC (%) 81.72 81.72 82.80 75.27 76.34 72.04 
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