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Abstract 
Regularities in animal behaviour offer insight into the underlying organisational and 
functional principles of nervous systems and automated tracking provides the 
opportunity to extract features of behaviour directly from large-scale video data. Yet how 
to effectively analyse such behavioural data remains an open question. Here we explore 
whether a minimum description length principle can be exploited to identify meaningful 
behaviours and phenotypes. We apply a dictionary compression algorithm to 
behavioural sequences from the nematode worm Caenorhabditis elegans freely 
crawling on an agar plate both with and without food and during chemotaxis. We find 
that the motifs identified by the compression algorithm are rare but relevant for 
comparisons between worms in different environments, suggesting that hierarchical 
compression can be a useful step in behaviour analysis. We also use compressibility as 
a new quantitative phenotype and find that the behaviour of wild-isolated strains of C. 
elegans is more compressible than that of the laboratory strain N2 as well as the 
majority of mutant strains examined. Importantly, in distinction to more conventional 
phenotypes such as overall motor activity or aggregation behaviour, the increased 
compressibility of wild isolates is not explained by the loss of function of the gene npr-1, 
which suggests that erratic locomotion is a laboratory-derived trait with a novel genetic 
basis. Because hierarchical compression can be applied to any sequence, we anticipate 
that compressibility can offer insight into the organisation of behaviour in other animals 
including humans. 
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Introduction 
In introducing his four questions of ethology (1), Tinbergen emphasised that observation shapes 
how mechanistic and evolutionary questions are answered. That is, what we choose to measure 
determines the causal units that will form our explanations. The importance of understanding 
how animals structure their behaviour was recognised in part by the example set by genetics (2), 
in which many of the principles of inheritance were elucidated through careful observation and 
experimentation long before the physical nature of genes was known. For animal behaviour, the 
analogous goal is to generate or constrain hypotheses on the genetic and neural control of 
behaviour from the structure of behaviour itself. 
 
Advances in automated imaging and computer vision make it possible to revisit the question of 
behavioural representation without relying on expert annotation. These methods have been used 
directly for quantitative phenotyping to measure behavioural differences in response to genetic 
and neural perturbation (3–11), as well as to study the dimensionality, dynamics, and structure of 
animal behaviour (12–16). However, even with the latest technology, automated analysis in 
complex natural environments remains challenging (17). Instead, we study the full structure and 
complexity of a behavioural repertoire in a simpler environment and focus on the spontaneous 
crawling of the nematode worm C. elegans confined to the two-dimensional surface of an agar 
plate. We have recently introduced a discrete representation of crawling postures and used it to 
identify short behavioural motifs that worms use to respond to sensory stimulation or that differ 
between worm strains isolated from different parts of the world (18). Here we explore whether 
data compression algorithms, which have been applied in domains where discrete data are 
common such as natural language processing and genomics, can reveal structure in worm 
locomotion. 
 
Our approach is based on the minimum description length principle that the best model is the one 
that describes the data most concisely (19). We apply the minimum description length principle 
to behaviour by first constructing a dictionary of elementary behavioural states and then merging 
these states into longer sequences using a data-compression algorithm. The resulting new 
dictionary then serves as the ‘model’ of the behavioural data. Repeated steps of compression can 
find patterns and “patterns of patterns” in behaviour as proposed by Dawkins (2), thus generating 
a hierarchical representation of behavioural data.  In addition, the degree to which these steps 
reduce the total length of the sequence and dictionary, the compressibility, offers a quantitative, 
objective measure of the behavioural complexity. 
 
The connection between iterated dictionary compression and hierarchical organisation allows us 
to pursue two goals at once: to achieve maximum compression of the data and to mine its 
structure for biological meaning. In C. elegans we find that the dictionary sequences resulting 
from the compression algorithm represent rare but relevant behavioural motifs. We also measure 
the compressibility of behaviour and find that worm locomotion has intermediate compressibility 
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poised between random and repetitive and that wild-isolates of C. elegans have locomotion that 
is more ordered than the laboratory reference strain N2 and mutants in an N2 background. 
 
 
Experiments 
The data analysed in this paper comes from two previous studies (4,18). All N2, wild-isolate, and 
mutant tracking on food was done using single worms that were picked to the centre of a spot of 
E. coli OP50 on a 25 mm agar plate. Worms were allowed to habituate for 30 minutes before 
being tracked for 15 minutes. The worm side (whether it was on its left or right side) was 
manually annotated using a stereomicroscope before transferring plates to the tracking 
microscope. For off-food and chemotaxis experiments, worms were picked to the centre of 55 
mm agar plates and recorded immediately. The attractant for chemotaxis experiments was 1 µl of 
benzaldehyde (diluted 1:100 in EtOH).  

Behavioural Analysis 
Posture discretization and time warping 
The angles of the worm midlines were determined at 49 equally spaced points (16). The 
continuously varying skeleton angles were then discretized by matching the posture in each 
frame to its closest match in a set of 90 postural templates that were derived from wild-type N2 
worms using k-means clustering (Fig. 1A). For details on the clustering and discretization, see 
(18). Because the motion of the worm between frames is often smaller than the difference 
between the 90 template postures, this procedure leads to the same template being fit in several 
consecutive frames. In order to recognize repeated behaviours performed at different speeds, we 
use a simple non-uniform time warping: repeats are removed from the posture sequences (for 
example, the sequence {1, 2, 3, 1, 1, 1, 4, 1} would be reduced to {1, 2, 3, 1, 4, 1}). 
Nevertheless, temporal information is not lost since we record the duration of each sequence 
template for subsequent analysis. In order to compare results across mutant strains and 
conditions, we used the same wild-type posture templates in all cases. 

Compression algorithm 
Many popular dictionary compression algorithms are designed to work ‘online’ with little 
memory and to scan the data from left to right in a single pass looking for repeated patterns. We 
are more interested in finding repeating patterns than in single-pass memory-efficient 
compression and so we use an ‘offline’ algorithm that considers the entire sequence at each 
iteration. We follow Nevill-Manning and Witten’s offline ‘Compressive’ heuristic for inferring 
hierarchies of repetitions in sequences (20). This is a dictionary compression method in which 
repeated subsequences are added to a dictionary and replaced by a new symbol that indicates 
where the subsequence is contained in the dictionary. At each iteration, the subsequence that is 
replaced is the one that gives the maximal compression taking into account its length and 
frequency as well as the size of the dictionary. The savings, S, due to replacing a subsequence is 
given by WN - (W + 1 + N), where W is the length of the subsequence and N is the number of 
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times it occurs in the sequence that is being compressed. The first term is the reduction in the 
length of the sequence while the second term includes the increase in the size of the dictionary 
(W + 1) and the number of new symbols introduced in the compressed sequence (N). In the case 
of ties, where two subsequences are equally compressive, the subsequence that appears first in 
the sorted list of unique subsequences is replaced and added to the dictionary. This procedure is 
applied recursively until no more compressive repeats are found. Note that the compression 
algorithm is lossless. The original sequence can be exactly recovered using the compressed 
sequence and corresponding dictionary. The algorithm is also greedy, taking the locally most 
compressive sequence at each iteration and thus not guaranteed to find the globally most 
compressive dictionary. See Fig. S1 for an extended example explaining how the sequence in 
Fig. 1 is processed. 
 
For faster computation, we calculate S only for subsequences up to length Wmax. We used Wmax = 
10 for the results presented here. Increasing Wmax to 15 gave identical results in 97% of cases in a 
test of 200 worms and where results differed, the difference in compressibility was small (Fig. 
S2).  The compressibility of a sequence of uncompressed length l is given by the sum of the 
savings S at each iteration divided by l. 
  
 
Results 
Hierarchical compression of posture sequences identifies behavioural structure 
Dictionary based compression relies on an ability to identify repeated patterns in a symbolic 
sequence. Worm locomotion can be converted to such a symbolic sequence by representing the 
continuously varying worm body shape as a sequence of discrete postures (Fig. 1A). In this 
representation, the original skeleton (in black) is matched by its nearest neighbour posture in a 
set of 90 template postures (in blue) at each point in time. The templates themselves are 
determined using k-means clustering, with k = 90 postures chosen to capture most of the variance 
of worm shapes (~80%) without being overly complex (18). Approximately repeated behaviours 
can now be found simply by identifying repeated symbolic sequences, or n-grams. An n-gram is 
any subsequence of symbols of length n. 
  
In a dictionary-based compression algorithm, a sequence is compressed by adding an n-gram to a 
dictionary and replacing each instance of that n-gram in the original sequence by a new 1-gram 
not previously present in the sequence. Maximal compression is achieved for n-grams that are 
both long and frequent. We call these maximally compressive patterns ‘c-grams’ to distinguish 
them from the larger set of n-grams they are drawn from. This is illustrated for a simple sequence 
with two symbols in Fig. 1B. In this example, we save 7 symbols in total since the original 
sequence was 19 symbols long, the compressed sequence is 3 and the dictionary contains a total 
of 9 symbols. The compressibility per symbol is therefore 7/19, or 37% of the original sequence 
length (see Fig. S1 for a more detailed explanation). 
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Fig 1: Dictionary-based compression extracts hierarchical structure in posture sequences. (A)  
Locomotion is represented as a sequence of discrete postural states. At each point in time, the original 
skeleton (black) is matched by its nearest neighbour posture in a set of 90 template postures. The orange 
dot indicates the head. The numbers beneath each shape are the labels of the template postures in each 
case. (B)  Simple sequence to illustrate Compressive algorithm. For the indicated sequence, the 
subsequence that results in the greatest compression when it is replaced by a new state label is {1, 2, 1}. 
In the second iteration {3, 2, 2, 3} and {3, 3, 2, 2} are equally compressive.  We simply take the sequence 
that occurs first in the sorted list of unique sequences. The arc diagram on the right connects adjacent 
repeats of dictionary sequences. (C)  An arc diagram for a  sequence of worm locomotion (blue) and the 
corresponding arc diagram for the same sequence following random shuffling (black). (D)  Selected c-
grams discovered from 150 minutes (~104 postures) of worm behaviour. The most compressive sequence 
(i), the most nested c-gram (ii), and three other behaviours (iii) are plotted underneath dendrograms that 
show the hierarchical structure represented in the dictionary. The numbers in red indicate the number of 
times that the sequence under each branch occurred in the 150 minutes. 
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To visualize the replacement rules for a given sequence, we plot an arc diagram that connects 
each neighbouring c-gram that was used in constructing the dictionary (Fig. 1B, right). 
Frequently occurring c-grams are thus connected by short arcs, while rarely occurring behaviours 
are connected by longer arcs. The width of the arc corresponds to the length of the c-grams that 
are connected. When applied to wild-type worm locomotion (Fig. 1C), the arc diagram clearly 
shows that the majority of c-grams are frequent and short (small, thin arcs) but that there are 
some that are relatively rare and are separated by a long distance (longer arcs). The longest arcs 
connect c-grams that were only observed twice in the entire 1700 state sequence. This structure 
does not merely reflect chance repeats due to the finite number of symbols (the labels of the 90 
template postures). When the sequence is randomly shuffled to maintain the posture frequencies 
but destroy temporal order, very few repeats are observed (Fig. 1C, bottom). 
 
Notably absent in the arc diagrams of worm behaviour are long and highly nested repeats, which 
would be seen if worms perfectly repeated long sequences at different times. To provide further 
intuition for the level of repetition seen in spontaneous locomotion, we use the same algorithm to 
compress texts with increasing levels of structure and repetition: Moby Dick by Herman Melville 
(as used in a previous study on finding motifs in unannotated strings (21)), The Raven by Edgar 
Allan Poe, and Shake it Off by Taylor Swift (Fig. S3 and Fig. S4). 
 
Some illustrative c-grams derived from a 30 minute (two 15 minute sequences concatenated) 
sample of wild type locomotion on food are shown in Fig. 1D. The most compressive sequence 
overall is shown at the top (i). This is the subsequence selected by the compression algorithm as 
providing maximum compression of the original sequence in the first iteration. Therefore, by 
construction, it is always “simple” in the sense that it has no nesting structure. In this case, it is a 
short bout of forward locomotion, consistent with expectations given that wild-type worms spend 
a significant portion of the time crawling forwards with a stereotyped gait. 
  
The most nested c-gram found in the 30 minutes is shown in the middle (ii). Note that it contains 
the most compressive sequence from (i). Two suffixes are added (posture 84 appeared after the 
most compressive subsequence 47 times and this 4-gram was found with the 2-gram {58, 18} 21 
times in a later iteration). Finally, a prefix completes the larger behavioural unit. This illustrates 
how units formed by basic templates are reused within larger units. In addition to various kinds 
of forward locomotion, we find c-grams corresponding to other behaviours. An example of a 
reversal, pause, and a turn are shown at the bottom of Fig. 1D (iii). 
  
Compressive sequences increase discriminative power across environmental conditions 
Previous analysis has shown that the frequencies of 3-grams used by worms during locomotion 
can be used to characterize behavioural differences in different environments (on a lawn of 
bacterial food, on an agar plate without food, and during chemotaxis towards an attractant) (18). 
However, it is possible that sequences of other lengths are more informative for comparisons of 
behaviour in different conditions. The c-grams in the dictionary produced by hierarchical 
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compression have variable lengths that are chosen adaptively based on the input data, in contrast 
to the fixed-length approach based on 3-grams. To determine whether they are relevant for 
behavioural comparisons, we reanalysed the data for worms in the different conditions. 
  
We first compressed the postural sequences of each worm in each condition to produce a 
dictionary of c-grams for that individual. We then pooled all of the c-grams across all conditions, 
keeping only the unique c-grams, and compared the distributions of c-gram frequencies between 
conditions using rank sum tests, adjusted for multiple comparisons to control the false discovery 
rate at 5% using the Benjamini-Yekutieli procedure (22). Any sequence that was found to have a 
significantly different frequency between at least two conditions is a ‘hit’. The longest hits we  

 
Fig 2: c-grams are rare but relevant subsequences. Hits are any sequences that are found to have a 
different frequency between N2 animals crawling on food, off food, or performing chemotaxis. (A) The 
longest hit is a bout of forward locomotion that is more common during chemotaxis. The box plot shows 
the frequency of this behaviour in the three conditions (red points are outliers, which are greater that the 
difference between the 25th and 75th percentiles outside of the box). (B) In each condition, the most 
compressive sequence is a hit in at least one comparison, indicating that compressive sequences are more 
likely to be modulated across conditions than n-grams as a whole. (C) The c-gram hits are more evenly 
spaced across the frequency distribution than those found using all n-grams. (D) Canonical worm 
behaviours are identified through compression and these would be missed by focusing only on the most 
frequently occurring n-grams. The behaviours are shown on the left with their highest frequency rank 
observed across all worms in the comparison group shown in red to the right. 
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detected were 10 postures long and represented bouts of forward locomotion. This was not 
because the maximum sequence length considered in a single iteration was 10 (see Behavioural 
Analysis above), since the same six sequences were still the longest hits when the maximum 
sequence length was increased to 15. One of the six 10-posture hits is shown in Fig. 2A and 
represents a persistent bout of forward locomotion which is most common during chemotaxis 
towards an attractant. 
 
The finding that c-grams with lengths up to 10 can be used to show behavioural modifications 
between conditions motivated us to revisit the previous analysis using n-grams with lengths of up 
to 10. For this relatively small data set consisting of 115 worms recorded for 15 minutes, this 
was tractable, but still required the consideration of 1.02 million unique n-grams. Of these, only 
0.2% are used with a significantly different frequency in at least one of the conditions and this 
percentage is lowest for the longest sequences (Fig. 2B). In contrast, there were only 3014 
unique c-grams in the entire pool, with 30% being significantly modulated in the environmental 
conditions. Furthermore, the fraction of significantly modulated behaviours remains high up to 
the maximum hit length.  The n-gram hits are more likely to come from relatively frequent n-
grams, whereas the c-gram hits are spread more evenly across the frequency spectrum (Fig. 2C). 
The precise frequencies and compressibilities change with the number of postures used in the 
representation, but the over all conclusions do not depend sensitively on the number of postures 
(Fig. S5). 
 
It could be that the hierarchical compression algorithm is simply selecting frequent behaviours 
and that these are more likely to be informative for comparing worms in different conditions. To 
check this, we repeated the n-gram analysis, but took only the five most frequent n-grams of each 
length up to 10 from each worm and added it to the pool. This resulted in 3905 unique n-grams 
to use for comparing worms in the different conditions. This improved the efficiency of hit 
detection, in fact increasing it above that of the c-grams, especially for short n-grams (Fig. S6A). 
However, this improvement in efficiency comes at a cost: rare behaviours are no longer included 
in the analysis. This can be seen directly in the frequency rank distribution of the hits (Fig. S6B). 
Since this distribution includes the rank of each hit across all individuals, it is possible in 
principle that some of the n-grams that are among the 5 most frequent in one individual would be 
extremely rare in another individual, especially in a different condition. For the data considered 
here, that is not the case. The frequent n-gram distribution shows a much steeper drop-off than 
the c-gram distribution. 
 
Examples of rare hits that would have been missed by focussing only on the most frequent n-
grams are shown in Fig. 2D. These include potentially interesting behaviours such as a dorsal 
turn, a pirouette (reversal followed by turn), and a long reversal. Their highest rank across all 
individuals is shown in red above each behaviour. 
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Worm behavioural sequences have intermediate compressibility 
Hierarchical compression provides a new global feature for characterising worm behaviour: the 
compressibility of the sequences. It is clear that highly repetitive sequences will be more 
compressible than random sequences and we know from the plot in Fig. 1C that worm 
behavioural sequences are not random. We also know that compressibility must be greater than 0 
and less than 1 by definition. To provide further intuition, we compared the compressibility of 
several ‘toy’ sequences (simulated controls) to real worm behavioural sequences as a function of 
sequence length (Fig. 3A).  
 

 
Fig 3:  Worm locomotion sequences are poised between random and deterministic which leads to 
intermediate compressibility. (A) The compressibility per posture increases as a function of length for N2 
locomotion sequences (orange). Uniform random sequences with 90 states (black) and a deterministic 
sequence consisting of 1 to 90 repeated (red) provide lower and upper bounds on compression. Shuffled 
(blue) and sorted (green) sequences provide related bounds constrained by having the same posture 
probability distributions as the observed locomotion sequences. A Markov chain simulated using the 
observed posture transition probabilities provides a more realistic model of locomotion sequences.  (B) 
Compressibility as a function of length for individual worms shows the variability in compressibility. 
Many of the least compressible individuals have shorter uncompressed lengths, indicating that these 
worms moved less (had fewer posture transitions) during the 15 minutes they were recorded. 
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The first toy sequence we considered was a deterministic sequence which is simply the symbols 
1 to 90 repeated in turn up to the desired length. This sequence is highly compressible, 
surpassing 0.8 compressibility for sequence lengths below 1000. Compressibility increases with 
length as more nearly optimal sequences are found, but can only reach 1 in the limit of infinite 
sequences. At the other extreme, we considered random sequences generated by sampling values 
from 1 to 90 from a uniform distribution. Uniform random sequences with 90 possible symbols 
are essentially incompressible for all observed lengths. At a length of 1000, the compressibility is 
1 x 10-4 ± 3 x 10-4 (mean ± standard deviation). In contrast, behavioural sequences from wild 
type N2 worms crawling on food show intermediate compressibility, reaching 0.4 for the longest 
sequences considered. Control sequences that are more similar to real behaviour sequences were 
also generated by sorting and randomly shuffling behaviour sequences, yielding sequences that 
are more and less ordered than the original sequences but that have the same posture frequencies. 
Again, the natural sequences are poised between random and ordered. Finally, we also compared 
the natural sequences to sequences generated from a first order Markov model with transition 
probabilities determined from worm behaviour sequences. Although more similar than shuffled 
sequences, the Markov model sequences are still less compressible (i.e. less stereotyped) than the 
original worm sequences. 
 
Plots of compressibility as a function of length for individual worms reveal inter-worm 
variability in compressibility (Fig. 3B). The least compressible worm sequences are also among 
the shortest, which result from worms that move less and therefore have fewer transitions. The 
fact that shorter sequences are more random suggests that the shape transitions that drive 
locomotion are more stereotyped than those that occur during dwelling.  As expected, decreasing 
the number of postures in the representation increases compressibility (more repetition) and 
increasing the number of postures decreases compressibility (less repetition) (Fig. S7). 
   
Stereotypy varies across strains and does not simply reflect the degree of locomotion 
Compressibility is a distinct feature for comparing the stereotypy of worm behaviour and so we 
analysed data from previously published mutant strains (4) and wild isolates (18). 
Compressibility per symbol increases with length (Fig. 3) because there are more opportunities 
for compressive subsequences to be found in longer sequences. We therefore chose to compare 
worms using a fixed sequence length of 500. Sequences from worms that went through more 
than 500 distinct postures were divided into 500-posture chunks for analysis. Since dwelling 
worms seem to be less stereotyped than roaming worms (Fig. 3B) we also kept track of the time 
worms spent in each posture. 
 
In Fig. 4A, we show a two-dimensional histogram of the distribution of compressibility against 
state duration for a set of 239 mutant strains that are not uncoordinated (‘Other mutants’). Each 
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point in the histogram comes from one 500-posture chunk. The state duration value is simply the 
average time spent in each of the 500 postures. The overlaid lines are the full extent at half- 

 
Fig 4:  Wild isolate locomotion is more stereotyped than that of most mutant strains. (A) 2-dimensional 
histogram of the distribution of compressibility against postural state duration for a set of 239 mutant 
strains that are not uncoordinated (‘Other mutants’). The red bars show the mean ± standard error for a 
selection of strains. The contours show the extent at half-maximum of the distributions for 18 wild 
isolates (orange) and 63 uncoordinated mutants (green). The wild isolate and uncoordinated distributions 
are plotted separately in B. (C) Box plots showing the compressibility measured on 500 posture chunks 
for the strains highlighted in A. CB4856 is more compressible than either N2 (p = 4.7 x 10-8) or npr-
1(ad609) (p = 3.3 x 10-5) using a rank sum test. 
 
maximum contours for the wild-isolate strains and for uncoordinated mutants. The distributions 
for the wild isolates and uncoordinated strains are plotted separately in Fig. 4B. Consistent with 
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expectations from the N2 results, the wild isolate strains, which are known to move more 
persistently on food than N2 are highly compressible while worms that transition slowly between 
postures tend to be less compressible (there are few points in the upper right quadrant of the 
distribution). Nonetheless, differences in activity do not explain all of the variation in 
compressibility that is observed between strains. 
 
This variation is clear from the strains highlighted in Fig. 4A (red bars, mean ± standard error). 
The Hawaiian isolate CB4856 is known to be more active than N2 and it is also more 
compressible. However, two other hyperactive strains with loss of function mutations in cat-2 
and npr-1 are significantly less compressible than CB4856 (Fig. 4C). This suggests that even 
though they move more persistently than N2, their locomotion is less stereotyped—more 
random—than that of CB4856. 
 
These differences could be due to the use of N2-derived postures for all of the strains. This is a 
particular concern for uncoordinated strains that will adopt postures not seen in N2. We therefore 
re-derived postures for each of the strains individually and re-calculated their 
compressibility/duration histograms (Fig. S8). We also re-calculated the histograms using 250- 
and 1000-posture chunks (Fig. S8). The conclusions about relative compressibility are not altered 
in either case. 
 
Discussion 
Hierarchical structure in behaviour 
The task of finding relevant behavioural motifs from a long string of postures is analogous to the 
task of finding genes in unannotated genomic data. However, unlike the situation in genomics, 
we do not yet have a ‘behavioural code’ that could guide the search. Instead, we take a more 
general heuristic approach to finding meaningful sequences inspired by the minimum description 
length principle. When we compress sequences of worm postures, we generate a hierarchical 
structure, but one that does not show a very high degree of nesting. Instead, the repeat structure 
of worm’s spontaneous locomotion is characterised by short motifs that are used repeatedly but 
not normally in the identical context. In this sense, worms’ spontaneous locomotion on food is 
more like a novel than a poem or song with a chorus (Fig S3). This is consistent with previous 
results using n-gram frequencies in worm locomotion. There is a small number of frequently 
used n-grams and a much larger set of rare n-grams (18). The structure we identify through 
compression suggests that the set of rare sequences is large enough to break up the repeated use 
of frequent patterns and to prevent the emergence of highly nested “patterns of patterns”. 
 
A hierarchically organised action selection can lead to repetitive patterns in sequences (23), but 
the fact that a hierarchical representation can be constructed from a flat sequence does not 
necessarily imply that the underlying generating process is hierarchical. Instead, the nested 
structures we detect are best thought of as candidate behavioural units that may serve as 
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hypothesised motifs for further study. Conversely, while there is more structure in worm 
behavioural sequences than in the corresponding shuffled data (Fig. 1C), we cannot rule out the 
presence of a deeper hierarchy in the underlying neural control. We would underestimate 
hierarchical structure if the output of a putative high-level command were implemented 
differently at the postural level because of environmental heterogeneity. That is, if different 
posture sequences were be used because of different local conditions despite the same 
overarching command. 
 
The organisation of locomotion could be clarified by comparing patterns of behaviour with 
patterns of neural activity by imaging (24–28) and thermo- and optogenetic perturbation 
(15,24,29,30). Experimental manipulation of modular behavioural units was recently used to 
uncover a hierarchy of actions in grooming flies (23). A parallel model of action selection based 
on a suppression hierarchy was sufficient to reproduce the gross pattern of behaviours. In this 
case, the hierarchy of actions had a very simple structure in which activation of a higher 
behaviour suppressed the performance of the lower actions in the sequence. Dawkins referred to 
this kind of hierarchy as a ‘peck order’ (2) to distinguish it from more general control hierarchies 
that can have a complex branching structure. For complex hierarchies, even detecting the 
behavioural modules to probe may be more difficult. If modules can be identified and controlled, 
inferring the underlying control structure in the more complex case may be aided by using c-
grams as candidate patterns to explore in more detail. 
 
Rare but relevant motifs 
Compared to the total set of unique n-grams, the c-grams that are identified by hierarchical 
compression are a much smaller subset. In the case of worms in different environmental 
conditions, from the total set of unique n-grams only 0.3% were identified as c-grams. These 
proved to be a diverse set of behavioural motifs that were informative for comparisons between 
worms in different environments even though they were discovered on a per worm basis without 
reference to the environments the worms were in. Hierarchical compression can thus serve as a 
pre-processing step in behavioural comparisons that will make it possible to apply behavioural 
motif analysis to the large behavioural databases that are increasingly being created through 
high-throughput phenotyping pipelines (3,4,8,31). 
 
Compressibility as a quantitative phenotype 
Compression provides a new measure for phenotyping that may give insight into mutant and 
wild-isolate differences. It was previously known that most wild isolates are faster on average 
than the laboratory strain N2, but we have found that this difference does not account for the 
differences we see in compressibility. For example, strains with a loss of function allele of the 
neuropeptide receptor gene npr-1 show many of the phenotypes that are associated with wild 
isolates including increased speed, a shift in collective behaviour towards aggregation, as well as 
growth and pathogen avoidance (32,33). However, we find that npr-1 mutant behaviour is less 
compressible than the wild isolate strains, including the well-studied Hawaiian strain CB4856. In 
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other words, although they move persistently, their locomotion is more random than the wild 
isolates, as are the less persistent N2 worms. 
 
The majority of mutant strains show patterns of locomotion that are less compressible (more 
random) than the wild isolates. Ranked in terms of compressibility, the 17 wild isolate strains 
have a median rank of 301 out of a total of 337 strains that were analysed and a maximum rank 
of 250. Compressibility is related to predictability, and being too predictable, especially in 
response to sensory stimulation can be deleterious in some circumstances; a fact that is strikingly 
demonstrated by tentacled snakes preying on fish (34). Unpredictability is also likely to be 
important for worms as recent work has demonstrated that ongoing network activity increases 
behavioural variability above the level predicted by sensory noise (35).  Furthermore, a degree of 
randomness is an important element of C. elegans search strategies (36–38). Nonetheless, during 
directed locomotion, the most efficient gait is likely to be repetitive, and so we speculate that the 
high compressibility of wild isolates reflects a selective pressure for efficient locomotion and 
that the more random locomotion observed in N2 is due to a relaxation of this pressure in a 
laboratory environment. Laboratory domestication is known to have occurred in N2 based on the 
analysis of other phenotypes (39,40). Regardless of the ultimate cause, behavioural 
compressibility is a novel quantitative phenotype that is different between N2 and CB4856 that is 
not explained by loss of npr-1 function. It therefore presents an opportunity to explore the 
genetics of this behavioural difference using recombinant inbred lines derived from these strains 
(41–45). 
 
Hierarchical compression beyond worms 
Compressibility is a general measure that can be applied to the behaviour of any organism that 
can be tracked and discretised or converted to a series of labels by other means. The Nevill-
Manning Compressive heuristic has already been applied to human motion capture data (46–48) 
and our approach could be readily applied to an ethogram derived either manually or 
automatically for any organism, including humans. This last possibility is worth considering 
because some human diseases affect locomotion (e.g. parkinson’s) and stereotypy (e.g. 
schizophrenia (49)) and compressibility might provide a simple scalar measure to quantify or 
even diagnose variation in a medically relevant phenotype. 
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Fig. S1: Sequences considered by a brute force version of the compression algorithm. (A) 
Summary of the algorithm and graphical representation of compressive sequences. (B) All non-
overlapping n-grams are counted.  Only n-grams that occur at least twice in the sequence are 
included here (an n-gram that occurs only once can never compress the sequence because it takes 
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as many characters in the dictionary as in the original sequence and requires the creation of a 
new symbol). Potential candidate sequences that would be replaced by different heuristics are 
highlighted, including the most frequent, longest, and most compressive. The counts and savings 
(total reduction in the number of characters after all occurrences in the original sequence are 
replaced with the new symbol) for each candidate sequence on shown. The savings can be 
negative which means that the size of the combined dictionary and compressed sequence will be 
larger than the uncompressed sequence. In the first iteration, there is a single sequence {1, 2, 1} 
which gives the maximum compression when replaced. However, ties are possible. In the second 
iteration, both {3, 2, 2, 3} and {3, 3, 2, 2} are tied for the most compressive sequence (in this 
case they are also the longest repeated n-grams). In the case of ties, we take the sequence that 
occurs first in the sorted list of n-grams, not necessarily the first to appear in the sequence, which 
is why {3, 2, 2, 3} is added to the dictionary in this case. The algorithm terminates when no 
further savings can be achieved, in this case that is because there are no more repeated n-grams, 
but it would also occur if there were only 3-grams with counts of 2 remaining since these would 
lead to zero savings when replaced. 
  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 10, 2016. ; https://doi.org/10.1101/029462doi: bioRxiv preprint 

https://doi.org/10.1101/029462
http://creativecommons.org/licenses/by/4.0/


 21 

 
 

Fig. S2: Increasing the maximum length of n-gram considered during compression has little 
effect on the observed compressibility. (A) For 200 worms each recorded for 15 minutes, the 
algorithm proceeded identically in 97% of cases. For those cases where a difference was 
observed, the difference was small. (B)  The reason is that the probability of a sequence being 
the most compressive in a given iteration decreases exponentially with length. In the 200 worms, 
11-posture compressive sequences were rare and 12-posture compressive sequences were not 
observed. 
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Fig. S3:  Arc diagrams show repeats in texts with increasing structure. In all cases, punctuation 
and spaces were removed and case was ignored. (A) The first 1200 characters of Moby Dick by 
Herman Melville. Prose includes some repetition, but usually only at the level of words and short 
phrases. Three uses of ‘whenever’ and two of ‘I find myself’ are highlighted. To find a more 
frequent repeat that occurs throughout, it is necessary to go to shorter structures such as the part 
of a word ‘ing’ which is shown as the black arcs. (B) The first 1200 characters of The Raven by 
Edgar Allan Poe. Wider arcs corresponding to longer repeats are visible. The relationship 
between ‘at my chamber door’ and ‘and nothing more’ are clear in the highlighted arcs. (C) 
Shake it Off by Taylor Swift shows strong repeat structure. The third use of the chorus is slightly 
different from the previous two and so the repeat is not perfect. ‘ers gonna’ is an interesting c-
gram because it is used in two phrases: ‘Haters gonna hate’ and ‘Players gonna play’. The arc 
diagram shows that both uses have an invariant structure with respect to ‘I’m just gonna shake 
shake shake.” 
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Fig. S4:  Repeated phrases found as c-grams in Herman Melville’s Moby Dick are related to 
themes of the novel. The repeated phrases are related to the themes of the novel. The inferred 
hierarchy gives insight into the Compressive heuristic. Not surprisingly, ‘the’ is found to be the 
most compressive sequence overall. However, because it is so frequent, it often gets associated 
with suffix letters and therefore breaks other words in the hierarchy. Two examples are 
highlighted in yellow in ii and iv. Because ‘will’ only occurs 34 times, ‘thew’ is more 
compressive and is included in an earlier round of compression, effectively blocking the 
introduction of ‘will’ because of the greedy nature of the algorithm. iv is the longest repeat in the 
novel and illustrates a feature of language that is not commonly observed in worm locomotion. 
The highlighted branch of the dendrogram shows how 10 small branches merge in one step to 
form a phrase. While similar one-step merging of many short c-grams is observed in worm 
sequences (e.g. the pause in Fig. 1D), it is rare. 
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Fig. S5: Changing the number of postures used to represent the worm behaviour changes the 
results quantitatively, but not qualitatively.  The R2 value in gray for each posture number set 
indicates the average quality of the fit between the set of template postures and the original worm 
posture data from tracking.  Reducing the number of postures leads to a less accurate fit but more 
compact representation and vice versa. 
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Fig. S6:  (A) The hit rate of n-grams is increased if only the 5 most frequent n-grams of each 
length from each worm are considered.  However, this comes at the cost of ignoring rare 
sequences (B). 
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Fig. S7: Increasing the total number of template postures used to represent behaviour decreases 
compressibility, in line with expectations.   
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Fig. S8: 2-dimensional compressibility/state duration histograms. (A) The histogram using N2-
derived postures and a chunk size of 500 postures, this is a reproduction of Fig. 4A in the main 
text. (B) The same histogram but using compressibilities calculated using template postures re-
derived for each strain. npr-1 becomes less compressible in this case, but this only enhances the 
difference between it and the wild isolates. (C) This histogram was generated using N2-derived 
postures but shorter 250-posture chunks to calculate the compressibility. Compressibility is 
always lower, but the relationships between strains are similar. (D) Same as A and C, but using 
1000-posture chunks for the calculation. Compressibility increases, but again the relative 
differences are similar. There is a truncation of the duration axis and a resulting shift in the unc-
38 duration because for slow-moving strains, some 15 minute videos include fewer than 1000 
postures and were not included. 
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