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Abstract

A large body of theoretical work has shown how dendrites can increase the
computational capacity of the neuron. This work predicted that synapses active
together should be close together in space, a phenomenon called synaptic clustering.
Experimental evidence has shown that, in the absence of sensory stimulation, synapses
nearby on the same dendrite tend to be active together more than expected by chance.
Synaptic clustering, however, does not seem to be ubiquitous: other groups have
reported that nearby synapses can respond to different features of a stimulus during
sensory evoked activity. In other words, synapses that are active together during
sensory evoked activity can be far apart in space, a phenomenon we term synaptic
scattering. To unify these apparently inconsistent experimental results, we use a
computational framework to study the formation of a synaptic architecture – a set of
synaptic weights – displaying both synaptic clustering and scattering. We present three
conditions under which a neuron can learn such synaptic architecture: (i) presynaptic
inputs are organized into correlated groups of neurons; (ii) the postsynaptic neuron is
compartmentalized in subunits representing dendrites; and (iii) the synaptic plasticity
rule is local within a subunit. Importantly, we show that given the same synaptic
architecture, synaptic clustering is expressed during spontaneous activity, i.e. in the
absence of sensory evoked activity, whereas synaptic scattering is present under evoked
activity. Interestingly, reduced dendritic morphology in our model leads to a
pathological hyper-excitability, as observed for instance in Alzheimer’s Disease. This
work therefore unifies a seemingly contradictory set of experimental observations: we
demonstrate that the same synaptic architecture can lead to synaptic clustering and
scattering depending on the input structure.

Author Summary

Neurons connect together through synapses which are distributed on dendrites. The 1

spatial distribution of active synapses on the tree-shaped dendrites is under debate. Do 2

active synapses cluster or scatter on dendrites? Experimentalists observe both types of 3

spatial distributions depending on the presence/absence of a sensory stimulus. Our 4

modelling study explains how the two distributions can co-exist within a single learned 5

synaptic architecture, and we observe in our model clusters/scatters in the 6

absence/presence of a sensory stimulus. We further show that the same learning 7

mechanism can lead to a maladaptive outcome. When the number of dendrites 8
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decreases, as observed in Alzheimer’s Disease, neurons become hyper-excitable. This 9

result sheds a new light on the link between dendrites and neuropathologies. 10

Introduction 11

Dendrites have the potential to ehance the computational capacity of the individual 12

neuron. Modeling studies have shown that dendrites allow neurons to perform complex 13

computations which could not be achieved by single compartment neurons [1, 2]. In 14

particular, dendrites have been proposed to enhance sound coincidence detection [3], to 15

play a role in binocular disparity [4], and to help to compute the angular tuning in the 16

barrel cortex [5]. The first models of dendritic computation predicted the existence of 17

synaptic clustering [6–8], that is, nearby synapses on the same dendritic branch are 18

active together, a property that was at that time rather surprising (see Fig. 1A for 19

illustration). Since then, several experimental studies have examined how active inputs 20

are organized onto dendrites. The picture remains, however, rather confusing: on the 21

one hand, Takahashi et al. [9] observed synaptic clustering in adults rats without 22

sensory stimulation. Kleindienst et al, using organotypic slices from neonatal rats, 23

reported that NMDA receptors contribute to the expression of synaptic clustering [10]. 24

On the other hand, during sensory stimulation, synaptic scattering has been reported 25

several times [11–14], as shown in Fig. 1C. For instance, two nearby synapses on the 26

same sensory neuron can have different stimulus tuning (Fig. 1D), suggesting that while 27

one is active for a given stimulus the other is inactive and vice-versa [12]. Observations 28

made in multiple sensory modalities including touch [11], vision [13], and hearing [15] 29

suggest that synaptic scattering is typical of a sensory episode. We wondered whether 30

these apparently contradicting pieces of evidences, i.e. synaptic scattering and 31

clustering, can be reconciled within one theoretical framework. 32

To this end, we developed a computational model to study the formation of a 33

synaptic architecture that could either lead to synaptic clustering or scattering within 34

the same neuron. The model consists of inputs that project to a neuron with different 35

subunits, mimicking different dendritic branches. We hypothesized that different types 36

of activity lead to different input correlations: during spontaneous activity (i.e. absence 37

of stimulation), a given set of inputs are correlated, whereas during evoked activity, 38

another set of inputs are correlated. This assumes that the stimulus is encoded into 39

correlation, as opposed to only firing rates [16–18]. 40

Synaptic plasticity shapes the weights, such that a single synaptic architecture can 41

be consistent with both effects: the neuron shows synaptic clustering under spontaneous 42

activity, whereas it leads to synaptic scattering under evoked activity. We showed that 43

synaptic inputs, which triggered the highest response are the ones that are scattered 44

over the dendritic compartments. The neuron therefore responds maximally to novel 45

stimuli. Finally, we studied how the synaptic architecture depends on dendritic 46

morphology. We found that if the dendritic structure is reduced, the neuron may 47

develop seizure-like activity, a scenario present in different disease cases such as 48

Alzheimer’s disease [19]. In summary, we provide a unifying computational framework 49

which reconciles apparently disparate experimental findings on synaptic clustering and 50

scattering, uncovering mechanism and function of synaptic architecture in dendrites. 51

1 Results 52

A learned synaptic architecture leading to synaptic clustering under 53

spontaneous activity. In this section we investigate how learning can generate a 54

synaptic architecture consistent with synaptic clustering. Three elements govern the 55
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Figure 1. Synaptic clustering and synaptic scattering. A. Schematic
representation of four synapses (circles) impinging on two spatially or temporally
distinct locations on dendrites. Nearby synapses on the same dendritic branch
co-activate (black:active/grey:inactive) during spontaneous activity, the so-called
synaptic clustering. B. Measurements of spine co-activation probability in hippocampal
pyramidal neuron slices. The probability is high for spines closer than 10 microns and
significantly lower otherwise. Replotted using data from Kleindienst et al 2011. C. We
posit that during sensory stimulation, synaptic events occur at distinct spatial or
temporal locations. Synapses activate in an anti-clustered fashion. D. Calcium response
from two spines on a pyramidal neuron recorded in vivo (here are shown two trials
corresponding to two different sound frequencies). Replotted using data from Chen et al
2011.
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evolution of synaptic weights: pre-synaptic inputs, a post-synaptic neuron, and a 56

learning rule. We therefore analyze how these three elements combine to develop a 57

synaptic architecture such that the neuron exhibitis synaptic clustering as 58

experimentally observed [9]. 59

To learn such a synaptic architecture, we used (i) a learning rule that is local to a 60

single subunit, (ii) a multi-subunits binary neuron model, and (iii) presynaptic inputs 61

organized in correlated groups of neurons. To construct those inputs, we bin the spike 62

trains and divide the bins into two types: bins where neurons fire with a given probably, 63

leading to Poisson statistics, and events where all the neurons from a group fire (see 64

Materials and Methods). These events are there to mimic the synchronous activity 65

observed in thalamic inputs [20,21], and assume these inputs being under spontaneous 66

activity. In Fig. 2A, we present an example in which events occur in two independent 67

groups of neurons. Importantly, these events are uncorrelated between the two groups. 68

These populations of presynaptic input project onto a neuron model where integration 69

happens in two stages, similar to the two-layer neuron model developed by Poirazi et 70

al. [8]. We show this model in Fig. 2B. Synaptic inputs are first integrated within their 71

distinct dendritic subunit, each independently performing a weighted sum filtered by the 72

function D to account for dendritic non-linearities (see Materials and Methods). This 73

operation results in a local variable vj = D
(∑

i wi,jxi
)

where xi is the activity of the 74

ith pre-synaptic neuron (being either 0 or 1) and wi,j is the local synaptic weight from 75

the ith neuron to the j dendritic subunit. v denotes a local signal that could be the 76

membrane potential or the calcium concentration. The learning rule uses the local signal 77

to the jth subunit to compute the weight change ∆wi,j = α(2xi − 1)vj where α is the 78

learning rate. These three elements combine to generate a unique synaptic architecture. 79

To study the evolution of synaptic weights in this model, and to illustrate the fixed 80

point of the dynamics, we used two-dimensional flow diagrams. We tracked the 81

evolution of two parameters C1 and C2 that are respectively the mean synaptic weights 82

of the first and the second group of inputs. Each arrow in the diagram shows the 83

average weight change. We first analyzed a system where presynaptic inputs are 84

uncorrelated (Fig. 3A). We analytically calculated the average weight evolution (see 85

Materials and Methods). In this case, both mean synaptic weights tend to depress, 86

leading to a silent neuron. The situation changes dramatically when presynaptic inputs 87

have some degree of correlations, i.e. synchronous events within the two different pools 88

(Fig. 3B). In this case, depending on the initial weight distribution, either the first (C1) 89

or the second (C2) group of synaptic weights are potentiated, while the other is 90

depressed, as a result of symmetry breaking [22]. The inset in Fig. 3B shows the most 91

probable evolution of the synaptic weights given two initial conditions (D1 and D2). 92

These initial conditions and the noise dictate which set of weights are potentiated. This 93

results in a group of potentiated synapses corresponding to one group of neurons, while 94

synapses from the other group are depressed. 95

We then simulated a neuron with two dendritic subunits. In each subunit, synaptic 96

weights started from a different initial condition (D1 or D2). Consistent with the flow 97

diagram analysis, we showed that synapses from the first group are potentiated, and 98

synapses from the second group are depressed, onto the first subunit; likewise on the 99

second subunit synapses from the second group are potentiated and synapses from the 100

first group are depressed. The final synaptic architecture is shown in Fig. 3C. If the 101

initial conditions are random, which of the groups develops strong synapses onto a given 102

dendritic branch is random, and therefore with two branches, 50% of the time, the two 103

dendritic branch have the same selectivity and 50% of the time, the selectivity is 104

different. 105

We then tested whether this synaptic architecture is consistent with synaptic 106

clustering. We computed the co-activation probability of this neuron under spontaneous 107
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Figure 2. Presynaptic inputs and the postsynaptic neuron model. A. Raster
plots of 25 presynaptic inputs. Two distinct populations of inputs independently fire
synchronous bursts of 4 consecutive spikes (indistinguishable, they look like a single
event). B. A multi-subunits binary neuron model. It receives the n presynaptic binary
inputs x (active/inactive) and models the post-synaptic neuron’s binary response y
(spike/no spike). It has d distinct dendritic subunits. For each time bin, each subunit
independently sums their pre-synaptic inputs using a set of synaptic weights wi,j . The
synaptic architecture of the model is the entire set of synaptic weights. Non-linear
dendritic functions filter these sums (black squares: Di ), and their outputs sum linearly
at the soma producing or not an action potential reported by y.
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Figure 3. A learned synaptic architecture that displays synaptic clustering.
A. A flow diagram obtained analytically for homogeneous Poisson inputs. Each arrow
points toward the most likely evolution of the mean synaptic weights from C1 or C2
(populations of presynaptic inputs) given its current value. The length of an arrow is
proportional to the change likelihood. B. In this case the Poisson process is
inhomogeneous, and synchronous events occur in each population (60 synchronous event
per population). The two dots correspond to two initial weight distributions. Insets are
the evolution of these initial mean weights depending on the population (red/gray). C.
The synaptic weights before (left) and after (right) learning. The size of the circles
denotes the synaptic strength. D. C-oactivation probabilities obtained from simulations.
Within/Between are probabilities of two active inputs with synaptic weights above 0.5
within/between two subunits. These simulations reproduce the observation of
Kleindeinst et al 2011 [10] (n=100 repetitions starting from uniformly distributed
weights).
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activity, i.e. under the same inputs that were used for learning (see Materials and 108

Methods). Consistent with the experimental result of Kleindienst et al [10], the 109

synapses within the same dendritic branch tend to be co-active, whereas the synapses 110

between dendritic branch tend to be active at different time points (see Fig. 3D). 111

The same learned synaptic architecture can also lead to synaptic 112

scattering. In the previous section, we demonstrated that during spontaneous activity 113

correlated groups of neurons can potentiate nearby synapses, i.e. target the same 114

dendritic subunit (Fig 3C). We showed that this synaptic architecture displays synaptic 115

clustering in spontaneous activity (Fig 3D, also displayed in Fig. 4A left). In this 116

section we show that the learned synaptic architecture can also display synaptic 117

scattering when inputs contain events deviating for the one experienced previously. 118

To that end, we hypothesized that evoked activity corresponds to inputs that have a 119

different correlation structure than during spontaneous activity. In Fig. 4A, groups of 120

inputs 1&2 and 3&4 were correlated by sharing synchronous events during spontaneous 121

activity. On the other hand, during evoked activity, the groups of inputs 1&3 and 2&4 122

were correlated. During evoked activity, the neuron exhibits synaptic scattering, as 123

shown in (Fig. 4A right). For synaptic clustering to happen during spontaneous activity, 124

whereas synaptic scattering is seen under evoked activity, the neuronal and subunits 125

threshold need to be set appropriately, as seen on Fig. 4A: one group of active inputs is 126

enough to activate a subunit, but the two subunits need to be activated to make the 127

neuron fire, as observed experimentally [23]. 128

In Fig. 4A, for evoked activity, we chose totally different correlated groups than 129

those for spontaneous activity (1&2, 3&4 versus 1&3, 2&4). We were interested in 130

understanding how different evoked activity has to be from spontaneous activity to 131

ensure synaptic scattering and that the neuron spikes. To test that, we probe our model 132

with different spontaneous activity: if identical to spontaneous activity, the Hamming 133

distance is 0, if completely orthogonal, the Hamming distance is 10, since we simulated 134

20 correlated input with 4 dendritic subunits (Fig. 4B). If inputs are identical to 135

spontaneous activity (inputs that were used to train the neuron), the neuron stays 136

silent, but when the Hamming distance is higher than 6, the neuron expresses synaptic 137

scattering, and therefore activate enough dendritic subunits to make the neuron spike. 138

To summarise, the neuron stays silent to the statistics of inputs it was trained for and 139

fires for unexpected or novel stimuli, leading to sparse activity. 140

Learning can lead to hyper-excitability with pathologically low number 141

of dendrites. We just demonstrated that our learning mechanism can lead to 142

interesting computations, when the number of dendritic subunits is sufficiently high. 143

But the same learning mechanism can lead to a maladaptive behaviour, that is, 144

hyper-excitability, when the number of subunits diminishes. For example, if the neuron 145

only has two dendritic subunits, then learning can lead to two likely situations as shown 146

in Fig. 5A: We denote the first situation normal because each group contacts a distinct 147

dendritic subunit, and the second situation pathological because a single group is 148

contacting both dendritic subunits. These two situations are equally likely when the 149

model has two subunits, but this probability steeply decreases as the number of 150

subunits increases. With a large number of dendrites, it is unlikely that a single group 151

of neuron targets all dendritic subunits. In fact, the probability of a normal situation 152

exponentially increases with the number of dendritic subunits. 153

Fig. 5B demonstrates that in a normal situation, the firing rate of the postsynaptic 154

neuron remains low during learning. In a situation with 8 subunits the pathological 155

situation arises in less than 10 cases out of a 100. When the number of dendritic 156

subunits drops to 2 ,the postsynaptic neuron fire abnormally high at the end of learning 157

in 50% of the cases. This high firing rate is associated with the pathological condition, 158

where the same group of correlated neurons makes strong synaptic connections on all 159
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Figure 4. The same synaptic architecture can display synaptic scattering.
A. A neuron was trained under spontaneous activity. The size of the circle shows the
synaptic strength, after learning. After learning, the neuron under spontaneous activity
shows synaptic clustering (left - two big black circles on the same dendritic branch) and
synaptic scattering under evoked activity (right - two big black circles on different
dendritic branch). Each synapses (circles), subunits (small squares) and neuronal
output (big square) are black is active and white if in-active. B. The probability of
spiking given the minimal Hamming distance between a evoked activity and
spontaneous activity, which was used to train the neuron. Note that a Hamming
distance of 0 means that the evoked activity is the same as spontaneous, and a distance
of 20 means that evoked activity is as different as possible from spontaneous activity.
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Figure 5. Pathological activity arises from reduced dendritic morphology.
A. Schematic depiction of the normal (green) and the pathological case (red). Circles
are synaptic weights, their diameter is proportional to their strength. In the
pathological case, the same population of correlated neurons forms synapses on all
dendritic subunits. B. Raster plot of the postsynaptic activity for hundred repetitions
during learning. For a sufficient number of dendritic subunits, learning leads to low
rates (green). However, as the number of dendritic subunits decreases (from 8 to 2
subunits), the neuron becomes hypersensitive to presynaptic activity, and fires at
pathologically high rates (red). Note that the color of the spike trains are set so that it
reflects the synaptic architecture (as shown in A).
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dendritic subunits (red). In such a situation any active neuron from this group will 160

make the postsynaptic neuron fire. Importantly, the adaptive property associated with 161

synaptic scattering disappears in the pathological condition and only the 162

hyper-excitability remains. This last results is interesting in light of several diseases 163

associated with a reduction in dendritic branching. For example, in Alzheimer’s 164

disease [19], dendrites are reduced and hyper-excitability is observed. 165

Discussion 166

We introduced a multi-subunit binary neuron model with a single synaptic architecture 167

capable of exhibiting both synaptic clustering and scattering: during spontaneous 168

activity, the neuron shows synaptic clustering, whereas during evoked activity, we 169

observe synaptic scattering. The neuron showed selectivity to sensory evoked episodes 170

diverging from spontaneous activity. Finally, we demonstrated how the same learning 171

mechanism can lead to hyper-excitability as the number of dendritic subunits diminishes 172

a phenomenon observed in a syndrome like Alzheimer’s disease [19]. 173

Mel et al. [6] predicted the existence of synaptic clustering because of dendritic 174

non-linearities. Many studies have already suggested possible roles for nonlinear 175

dendrites in which synaptic clustering is observed [4, 24,25]. Interestingly, our results 176

show that dendritic non-linearities can also enhance single neuron computation when 177

synaptic scattering is observed. Nonlinear dendrites allow our model, which displays 178

synaptic scattering, to learn a linearly non-separable input-output mapping, 179

unreachable for a single compartment model [2,26]. Moreover, we demonstrate here that 180

synaptic scattering leads to sparsification of the input signal: since learning is sensitive 181

to the statistics of synchronous events, the neuron learns to stay silent for events 182

consistent with the input statistics during learning, and to fire only for events deviating 183

from it. This leads to novelty-detection, a well-known problem in statistical 184

learning [27], which we show here can be performed with as little as a single neuron. 185

Another strength of this work is to reconcile two bodies of experimental observations. 186

Synaptic clustering and scattering are not mutually exclusive, but can co-exist, 187

depending on the absence/presence of sensory stimulation. Our result also makes 188

further experimental predictions. For instance, we predict that synaptic activity might 189

cluster during sleep, but scatter during periods of activity, i.e. in the awake brain. This 190

could be tested by monitoring dendritic spine calcium signals of neocortical pyramidal 191

neurons in different brain states or level of anesthesia. Our study also provides a 192

mechanistic explanation for linear summation during sensory-evoked activity [14], and 193

an explanation for why multiple branches are necessary to make a pyramidal neuron 194

spikes [28]. 195

In conclusion, our theoretical study has sewn together several patches of 196

experimental observations, unifying synaptic clustering and scattering into a coherent 197

whole. We have further shown how learning can unlock the computational advantages of 198

nonlinear dendrites. Finally we have proposed a possible explanation for the correlation 199

between dendritic shrinkage and the neuronal hyper-excitability observed in mouse 200

models of Alzheimer’s Disease. 201

Materials and Methods 202

Inputs and Output. To model synaptic inputs we used an inhomogeneous Bernouilly 203

process. In each time bin, the probability of firing xi = 1 is either 0.01 or 1 (during a 204

synchronous event). These inputs are then integrated by the postsynaptic neuron 205

resulting in a binary output y. Synaptic integration has two steps in a multi-subunits 206
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binary neuron model. Firstly, the set of binary inputs x1, x2, . . . , xn sum linearly in 207

each subunit D1, D2, . . . , Dd given a local set of weights. It results in a local signal 208

vi =
∑

j Di(wi,jxi,j) with D a function with a threshold θ at which a jump of d is made 209

and where v stops to increase. Secondly, all the resulting v are linearly summed at the 210

soma which fires or not y = S
(∑

i vi
)
. Here S is a Heaviside functions with threshold 211

Θ. To make the neuron scatter sensitive, we set the dendritic threshold equal to the 212

correlated neuron group size and the somatic threshold just above the saturation value 213

of a single subunit. 214

Co-activation probability. To compute the co-activation probability we first 215

thresholded all synaptic weights w to determine if a synaptic contact was made. We 216

arbitrarily set this threshold to 0.5. We then take the set of inputs played during 217

learning and we computed the co-activation probability between every pair of inputs 218

which formed a synaptic contact. For instance if x1 and x2 both form a synaptic contact 219

on the subunit i, the coactivation probability of w1,i and w2,i equals p(x1 = 1 ∨ x2 = 1). 220

Normal / Pathological learning. In Fig. 5 we colored the output spike 221

depending on the synaptic architecture. If the same group of correlated neuron makes 222

synaptic contacts on all dendritic subunits the color of the spike train is red 223

(pathological) otherwise it is blue (normal). 224

We used Python v2.7, Numpy v1.3 and Matplotlib v1.4.0 to code, process and 225

display the result of all our simulations. This code is available on a git repository (link 226

to be supplied for publication). 227
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