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Multi-Unit Activity contains information about spatial stimulus
structure in mouse primary visual cortex

Marie Tolkiehn! and Simon R. Schultz!

Abstract— This study investigates the spatial and directional
tuning of Multi-Unit Activity (MUA) in mouse primary visual
cortex and how MUA can reflect spatiotemporal structures
contained in moving gratings. Analysis of multi-shank laminar
electrophysiological recordings from mouse primary visual
cortex indicates a directional preference for moving gratings
around 180°, while preferred spatial frequency peaks around
0.02 cycles per degree, which is similar as reported in single-unit
studies. Using only features from MUA, we further achieved a
significant performance in decoding spatial frequency or direc-
tion of moving gratings, with average decoding performances
of up to 58.54% for 8 directions, and 44% correctly identified
spatial frequencies against chance level of 16.7%.

I. INTRODUCTION

The cortical microcircuit governs how we see, hear and
think. Reverse-engineering the functionality of this circuit
is a major project of modern neuroscience, and of the
emerging field of neural engineering. The mouse primary
visual cortex is a prime candidate for studying the principles
of information processing in a cortical circuit, as it possesses
a similar range of cell types and receptive field classes to that
of other mammals [1], while allowing numerous recently
developed molecular and optogenetic tools to be applied.
In order to understand how the cortical circuit functions,
and changes during learning and memory processes, it is
essential to analyse its operation during behaviour, and in
particular by recording how activity in different elements of
the circuit changes over behavioural session. Unfortunately,
the standard technique for observing neural activity, single
unit neurophysiological recording (single unit activity, SUA),
is not particularly well suited to chronic recording strategies
spanning multiple behavioural sessions, as individual units
are lost due to drift or damage if recording probes are left
in situ [2], [3].

Alternatives to single unit recording include thresholding
the signal on each channel of a multi-electrode recording
array, to collect Multi Unit Activity (MUA), and collecting
low frequency electrical signals from each channel (local
field potentials, or LFP). Both of these measures integrate
signals across a small volume of tissue, and show improved
robustness in comparison to SUA over multiple recording
sessions. This has led to their use in Brain-Machine Interface
(BMI) applications [4], [5], and suggests that they may be

* This work was supported by BBSRC grant BB/K001817/1, and a Royal
Society Industry Fellowship to SRS.

ICentre for  Neurotechnology and  Department of  Bio-
engineering, Imperial College London, London SW7
2A7Z, UK marie.tolkiehn@imperial.ac.uk,

s.schultz@imperial.ac.uk

useful probing the neural substrates of learning mechanisms
in the cortical circuit.

One drawback is that mouse visual cortex, unlike that of
cats and primates, does not show orientation columnar organ-
isation, but instead exhibits a salt-and-pepper organisation
[6], [7], whilst still displaying a high orientation selectivity
[81, [1], [7]. Because of this fine-scale random organisation, it
might be expected that MUA and LFP in mouse visual cortex
contain minimal information about the spatial structure of a
stimulus beyond retinotopy. However, we conjecture that a
residual bias in the orientation or spatial frequency tuning
sampled by the MUA or LFP on a single channel may leave
a substantial amount of information. Indeed, it has recently
been shown in mouse hippocampus (which also shows a salt-
and-pepper organisation) that LFP can be accurately used to
decode spatial position [9].

In this paper, we demonstrate that individual MUA chan-
nels contain a significant amount of information about the
direction and spatial frequency of a drifting grating. We
show that the pattern of MUA across channels can be used
to decode direction and spatial frequency with performance
substantially above chance, and conjecture that this may
provide an extremely useful tool for probing changes in
cortical circuit information representation during behavioural
learning paradigms.

II. METHODS
A. Electrophysiology:

10 acute electrophysiological experiments were performed
on female, young adult (age 2-4 months) wild-type C57B1/6
mice (Harlan, UK) with a target area of left primary visual
cortex. The animals were used in accordance with protocols
approved by UK Home Office project and personal licenses.
The mice were kept in Imperial College animal facility under
an inverted 12-hour light/dark cycle. All electrophysiological
recordings were carried out during the dark phase of the
cycle.

The isoflurane-anaesthetised mouse was placed 25cm
away from the monitor (Samsung 2233Z), covering ap-
proximately 60°x75° of the visual field. The left eye was
treated with eye gel and covered with black tape to avoid
confounding effects attributable to the binocular zone of
vision or other visual inputs.

The Neuronexus A4x8 silicon microelectrode was lowered
slowly into the brain to a depth between 800um and 1050um,
at a speed of a few 10um/s. The probe was equipped with
four shanks, 200um apart, with 8 linearly arranged recording
sites of 177um?, each separated by 100um.
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B. Stimuli:

In this study, we presented a set of sinusoidal drifting
gratings, 20 repetitions each, of 6 different Spatial Fre-
quencies (SF) at 8 different directions, interleaved with 1
minute spontaneous activity (1s stimulus-ON time, with 1s
pre-stimulus time), at a constant temporal frequency of 1.6
Hz. SF were given at [0.01, 0.02, 0.04, 0.08, 0.16, 0.32]
cycles per degree (cpd), and directions were equidistantly
spaced at 45° from 0° to 315°. 0° corresponds to rightward
moving, 90° to upward moving, and 180° to leftward moving
gratings.

Stimuli were generated with FlyMouse, software refined
from FlyFly, a Matlab Psychophysics Toolbox based in-
terface developed by the Motion Vision Group at Uppsala
University (http://www.flyfly.se/about.html) and customized
by Silvia Ardila Jiminez and Marie Tolkiehn.

C. Data Acquisition:

Signals were acquired by Ripple Grapevine (Scout Pro-
cessor), amplified with a single-reference amplifier with on-
board filtering and digitisation (Grapevine Nano front end),
and software Trellis, which enabled for a live display of the
channels. Synchronisation between screen output and stimu-
lus presentation was assured by a custom-made photodiode
circuit board and photosensor (LCM555CN).

III. ANALYSIS

1) Multi-Unit Analysis: For the Multi-Unit (MU) analysis,
we first analysed the visual responsiveness of each electrode
site. A one-way ANOVA identified those electrode sites,
which showed a significant change in average firing rate
between the pre-stimulus time (Is) and during stimulus
presentation (1s). This resulted in 67.8% of the channels (217
of 320 electrode sites) exhibiting a significant difference in
firing. For further analysis we only kept the sites showing a
significant stimulus modulation.

In order to estimate which stimulus elicited a significant
response, we performed a two-tailed t-test on the mean ON
and OFF firing rates over the 48 stimuli. This resulted in up
to 16 stimuli being rejected, which was also evident from
raster plots (not shown).

2) Decoding Feature Selection: For the multinomial clas-
sification of the 48 stimuli, we evaluated decoding perfor-
mance using a variety of classifiers such as Linear Discrim-
inant Analysis (LDA), Naive Bayes, kd-Tree and k-Nearest
neighbour, on two types of features: a) binned spikes at 20
ms and b) spike count. We chose these features over a more
complicated feature extraction at this stage as a proof of
concept that MU signals can be used to significantly decode
different stimuli from these types of neural responses.

The decoding task was comprised of 2 parts for each
feature type: A) Decoding the Spatial Frequency (1 of 6 SFs),
and B) Decoding the direction from the responses (1 of 8
directions).

Classification accuracy was evaluated against chance level,
validated with a 2-fold cross-validation and averaged over
20 repetitions with random permutations of the partitions.
Decoders were tested at 8 directions at the SF of 0.02 cpd,

and in the SF decoding regime for 6 SF at 180° to ensure
the stimuli were in a detectable range. All stimulus cases
had equal probability. This means that chance probability
varied between 16.67% for SF to 12.5% for the directions.
Consistent classification above chance level suggests the
decoder’s successful use of inherent structures about SF or
direction in the MUA.

3) Multi-Unit Tuning Properties: Direction tuning of the
MU was evaluated with the sum of two modified von Mises
functions similar to those described in [8], [10]. SF tuning
curves were fit with two modified log-normal functions. In
both cases, these fits were used to estimate peak response
and cutoff-frequency. Orientation and direction selectivity
were determined with the Orientation Selectivity Index (OSI)
and Direction Selectivity Index (DSI), which were defined as
OSI = (Rpref + Rpunt — (Rortho-i- + Rortho—))/(Rpref +
Rpun), with Ry, as the preferred direction, R, the
opposite direction, and R,,;po+ denoting the orthogonal
directions [11]. DSI was defined as DSI = (Rpref —
Roun) /Rpref. An OSI of 1 represents high selectivity, an
OSI of 0 means each stimulus produces an equal numbers
of spikes.

IV. RESULTS

Investigating the spike responses to 48 different stimuli
showed that most channels were visually responsive. Figure 1
reveals a raster plot of 20 repetitions of one stimulus for one
mouse. All 32 channels are shown, where different colours
represent different electrode sites. The top red line indicates
the period the stimulus (leftward moving grating at 0.02 cpd)
was on. It is evident from the raster plot that most channels
were consistently visually responsive and that their activity
was highly modulated by this stimulus.

Stimulus On

05 0 05 1 15
time (s)
Fig. 1. A high fraction of channels is stimulus responsive. Raster plot

of MUA of 32 channels to 20 repetitions of a leftward moving grating.
Different channels are illustrated by different colours. Each line highlights
a spike incident. Top red line top indicates stimulus ON time.

A. Direction Tuning

A number of MU showed to be significantly modulated by
moving gratings. An example of two strongly tuned MU is
presented in Fig. 2. Direction tuning fits on the MU indicated
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a weak to strong direction tuning across the channels and
shanks. Mean firing rates peaked for direction tunings around
180°, with a median preferred direction of 171.8°.

In contrast to what has been suggested in the literature [8],
the polar plot of preferred spatial frequency against preferred
direction indicated that certain directions were overrepre-
sented across the visual field (Fig. 3). Here, the graph of
preferred SF against preferred direction of 217 MU for 10
mice revealed a majority of SF/direction pairs appearing
clustered around 0.02-0.03 cpd and 180°. The polar plot in
(B) of Fig. 3 showing DSI against preferred direction further
illustrates this bias towards horizontal moving gratings.
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Fig. 2. Examples of typical direction tuning curves and their

corresponding SF tuning curves on the same site from two mice. (A,
C) show strong orientational/directional tuning with a peak around 180°.
(B, D) reveal the SF tuning on the same electrode sites as in (A) and
(C), illustrating strong bandpass and lowpass properties, respectively. Note
different y-axes for the two mice. Direction tuning in degrees, SF tuning in
units of cpd, error bars standard error of the mean (s.e.m)

B. Spatial Frequency Tuning

A subset of MU indicated significant SF tuning. Similar
to values reported in the literature [8], the median preferred
SF was 0.022 cpd. About half of the MU revealed bandpass
properties indicated by a drop in response to the lowest SF,
0.01 cpd, which is illustrated by the example of panel (B) of
Fig. 2. Our analysis showed a median cutoff spatial frequency
of 0.12 cpd (as determined as the -3 dB cutoff from the
preferred SF).

Most MU revealed a preferred SF of around 0.02-0.03
cpd, which is in accordance with results seen in SU studies
[11, [8], [12], [13]. Variation was low and only occasionally
did we observe a peak SF response exceeding 0.04 cpd, as
evident from Fig. 3.

C. Orientation Selectivity Index

118 MU had an OSI exceeding 0.5. Further, the mean OSI
amounted to 0.51 £ 0.01 (s.e.m); the mean DSI to 0.41 +
0.01 (s.e.m).

D. Decoding Performance

Decoding performance was determined with a confusion
matrix and %-correct. Fig. 4 (A) shows the average confusion
matrix for decoding SF from spike responses for the best

270°

Fig. 3. Preferred direction is not uniformly distributed. (A) Polar plot
of preferred spatial frequency against preferred direction (217 sites from 10
animals). (B) Polar plot of DSI against preferred direction.

decoder (Naive Bayes in both cases), where circle size cor-
responds to %-correct classification. It is visible that low SFs
performed better than high SFs, which reflects the low-pass
and band-pass properties of the tuning functions. Panel (B)
of Fig. 4 reveals the average confusion matrix for directional
decoding achieving an evenly high classification performance
for all directions. Average performance for SF decoding with
the Naive Bayes classifier as depicted in panel (A) of Fig.
4 was 43.7% (chance level 16.67%), whereas the averaged
direction decoding performance (B) achieved 58.5% (chance
level 12.5%). For the direction decoding task, we classified
80 samples, for which an error rate of <70% against chance
level of 12.5% shows a significant classification performance
at p<10~*. Decoding performance varied across experiments,
Fig. 5 reveals averaged decoding performance across animals
for both feature types and decoding targets (direction, SF).
The dotted line indicates chance level.

The different decoders achieved comparable results in
decoding SF and direction. Spike train decoding performance
varied between 43.7% for Naive Bayes and 34.2% for the
kd-tree. The spike count approach for SF decoding ranged
between 45.3% and 45.7%. Spike train features achieved
between 33.74% and 58.5% correctly detected directions,
and spike count feature performance ranged between 26.3%
and 38.0%. All results showed statistically significant clas-
sification performance (p<0.05).

V. CONCLUSIONS AND DISCUSSION

MU recorded from mouse primary visual cortex were
selective to spatial frequencies and exhibit bandpass or low-
pass properties. With varying modulation depths, preferred
direction indicated that specific directions were preferentially
distributed around 180° (leftward moving grating) - one
result, which is at variance with previous literature [8], [13],
[1]. With our MU studies we could confirm the preferred
spatial frequency to lie around 0.022 cpd, which has been
reported for single units earlier [1], [8], [13]. Our data
and analysis of preferred spatial frequency against preferred
direction suggests that specific directions were overrepre-
sented across the visual field, particularly around 180°. In
addition, a mean OSI of 0.51 and a mean DSI of 0.41 further
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Fig. 4. Good predictions for low SFs and high performance on

all direction predictions. Confusion matrices for SF (A) and direction
decoding (B), where circle radius and colour correspond to correctly
classified parameters. (A) shows the averaged confusion matrix of the Naive
Bayes classifier on SF decoding, indicating a high prediction success for low
SFs, and decreasing success for higher SFs illustrated by smaller circles and
colder colours. (B) same as in (A) on direction decoding, demonstrating a
consistently high correspondence between predictions and actual directions.

illustrate the selectivity of MU data. Yet, one may argue
that our measure of DSI and OSI may overestimate the true
underlying selectivity [14].

We could further demonstrate that MUA can be used
to efficiently decode different visual stimuli, with a direc-
tional decoding performance of 58.5%. This indicates that
MUA contains information about spatial stimulus structure in
mouse primary visual cortex. This an important step in util-
ising information inherent in neural signals for applications,
which cannot rely on SU stability, or which do not have the
capacities for time consuming spike-sorting. This paves the
way for exploring how much information about the stimuli is
contained in MU and how they can be efficiently exploited
in BMI applications or chronic recordings of behavioural
studies, in which it cannot be guaranteed to sustain a stable
single unit identification over time.

A B

Spatial frequency

08 = = « Chance Level 08
07 0.7

Direction
= = «Chance Level

04
03

Fraction Correct

o O
= N

U )

Fig. 5. High average classification performance of the best decoder,
Naive Bayes, for both features on SF and direction decoding. A shows
the correct classification rate in SF-decoding from binned spike responses
(I), and from the vector of the spike counts of all channels (II). B, decoding
performance for direction reveals a higher performance for the binned spike
response features. Dashed line (red) denotes chance level, error bars in s.e.m.
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