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Abstract 28 

INTRODUCTION: Ebbert et al. reported gene-gene interactions between rs11136000-rs670139 (CLU-MS4A4E) and 29 

rs3865444-rs670139 (CD33-MS4A4E). We evaluate these interactions in the largest dataset for an epistasis study. 30 

 31 

METHODS: We tested interactions using 3837 cases and 4145 controls from ADGC using meta- and permutation 32 

analyses. We repeated meta-analyses stratified by APOEε4 status, estimated combined OR and population attributable 33 

fraction (cPAF), and explored causal variants. 34 

 35 

RESULTS: Results support the CLU-MS4A4E interaction and a dominant effect. An association between CLU-MS4A4E 36 

and APOEε4 negative status exists. The estimated synergy factor, OR, and cPAF for rs11136000-rs670139 are 2.23, 2.45 37 

and 8.0, respectively. We identified potential causal variants. 38 

 39 

DISCUSSION: We replicated the CLU-MS4A4E interaction in a large case-control series, with APOEε4 and possible 40 

dominant effect. The CLU-MS4A4E OR is higher than any Alzheimer’s disease locus except APOEε4, APP, and TREM2. 41 

We estimated an 8% decrease in Alzheimer’s disease incidence without CLU-MS4A4E risk alleles and identified potential 42 

causal variants. 43 

 44 
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1. Introduction 55 

Alzheimer’s disease (AD) is a complex neurodegenerative disease, and is the third leading cause of death in the United 56 

States [1]. AD is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. Many 57 

genetic loci exist that modify AD risk, but collectively, they explain only a fraction of AD’s heritability [2] and are not 58 

diagnostically useful [3,4]. Rare variants with large effects and epistatic interactions may account for much of the 59 

unexplained AD heritability, but are largely unknown due to limitations in traditional GWAS studies. While rare variant 60 

and epistatic effects on AD are poorly understood, recent studies suggest that gene-gene interactions play a critical role in 61 

AD etiology and progression [3,5–7]. 62 

 63 

A previous study [3] reported evidence of two gene-gene interactions that increase AD risk. Specifically, Ebbert et al. 64 

reported interactions between rs11136000 C/C (CLU; minor allele = T, MAF = 0.38) and rs670139 G/G (MS4A4E; minor 65 

allele = T, MAF = 0.38) genotypes (synergy factor (SF) = 3.81; p = .016), and the rs3865444 C/C (CD33; minor allele = 66 

A, MAF = 0.21) and rs670139 G/G (MS4A4E) genotypes (SF = 5.31; p = .003). All three variants have been implicated in 67 

numerous AD GWAS studies [8–13] and are on the “AlzGene Top Results” list [14], which summarizes the most 68 

established genes associated with AD.  69 

 70 

MS4A4E and CLU were recently replicated in a large meta-analysis of 74046 individuals, but CD33 did not replicate [15]. 71 

Despite CD33 failing to replicate, several studies demonstrated that CD33 is involved in AD-related pathways and 72 

pathology, giving convincing evidence that CD33 is somehow involved in AD. Three specific studies demonstrated that 73 

CD33 alters monocyte function, amyloid uptake, and that CD33 expression is associated with clinical dementia ratings 74 

[16–18]. rs3865444 is located in the 5’UTR of CD33. 75 

 76 

The association between CLU and AD status has been strongly established by both genetic and biological data. Recent 77 

studies demonstrated that rs11136000—an intronic SNP within CLU—is associated with AD-related pathology in healthy 78 

individuals including neural inefficiency [19] and decreased white matter integrity [20].  79 

 80 
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MS4A4E is a member of the membrane-spanning 4-domains subfamily A, but little else is known about the gene. 81 

However, rs670139—located in the MS4A4E 3’UTR according to gene model XM_011545416.1—is consistently 82 

associated with AD [15,18,21].  83 

 84 

In this study, we attempted to replicate these gene-gene interactions using the largest dataset used in an epistasis study, to 85 

date [22]. We performed an independent meta-analysis of datasets from the Alzheimer’s Disease Genetics Consortium 86 

(ADGC) using 3837 cases and 4145 controls, followed by a combined meta-analysis that included the original Cache 87 

County results [3] with an additional 326 cases and 2093 controls. We also tested for dosage or dominant effects and an 88 

APOEε4 effect. Finally, we explored possible causal variants using whole-genome sequence data from the Alzheimer’s 89 

Disease Neuroimaging Initiative (ADNI). 90 

 91 

2. Methods 92 

2.1. Data description 93 

We used SNP data from the ADGC, which consists of 32 studies collected over two phases and includes 16000 cases and 94 

17000 controls. All subjects are self-reported as being of European American ancestry. More information about this 95 

dataset can be found in Naj et al. [8] and the ADGC data preparation description [23].  96 

Genotype data from 2419 individuals from the Cache County Study on Memory Health and Aging were also used in this 97 

study. The full cohort of 5092 individuals represented approximately 90% of the Cache County population aged 65 and 98 

older when the study began in 1994 [24]. The Cache County data consists exclusively of individuals of European 99 

American ancestry. Exactly 2673 individuals were excluded from the original Cache County analysis because of 00 

incomplete genotype or clinical data [3]. Additional information on this dataset can be found in previous reports [3,24]. 01 

Whole-genome data from 747 (223 controls, 195 cases, 329 MCI) individuals were used in this article and were obtained 02 

from the ADNI database (adni.loni.usc.edu). ADNI is a large collaboration from several academic and private institutions, 03 

and subjects have been recruited from over 50 sites across the U.S. and Canada. Currently, over 1500 adults (ages 55 to 04 
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90) participate, consisting of cognitively normal older individuals, people with early or late MCI, and people with early 05 

stage AD. For up-to-date information, see www.adni-info.org. 06 

2.2. SNP data preparation and statistical analysis 07 

As gene-gene interactions are challenging to identify and replicate, we used the highest quality data possible. For each 08 

ADGC dataset, we filtered SNPs imputed with low information (info < 0.5) and converted the IMPUTE2/SNPTEST 09 

format files to PLINK format, using PLINK v1.90b2i [25,26]. We used the default PLINK uncertainty cutoff of 0.1, 10 

meaning any imputed call with uncertainty greater than 0.1 was treated as missing. We included SNPs with a missing 11 

genotype rate less than 0.05 and individuals with a missing rate less than 0.01. We then extracted the SNPs of interest: 12 

rs3865444 (CD33), rs670139 (MS4A4E), and rs11136000 (CLU) and tested Hardy-Weinberg equilibrium [27,28]. Using 13 

R v3.1.1 [29], we excluded samples without complete data for all covariates including age, gender, case-control status, 14 

APOEε4 dose, and the two SNPs being tested in the corresponding interaction. Entire datasets missing the respective 15 

SNPs or covariates after data cleaning were excluded from further analysis. The requirement of complete data for both 16 

SNPs and all covariates is necessary for this analysis. Unfortunately, this requirement led to the exclusion of 23 and 24 17 

entire datasets for the CD33-MS4A4E and CLU-MS4A4E interactions, respectively. We also excluded the ADC1 dataset 18 

because it contained only one AD case, likely making it biased. 19 

Following data preparation, we tested the individual interactions in each dataset using logistic regression. We defined the 20 

R models as “case_control ~ rs3865444 + rs670139 + rs3865444:rs670139 + apoe4dose + age + sex” and “case_control ~ 21 

rs11136000 + rs670139 + rs11136000:rs670139 + apoe4dose + age + sex” for the CD33-MS4A4E and CLU-MS4A4E 22 

interactions, respectively. Case-control status, SNPs, and sex were coded as factors, age was numeric, and apoe4dose was 23 

an ordered factor from 0-2.  24 

Using results from each study, we performed a meta-analysis to test replication across the ADGC datasets using METAL 25 

(version 2011-03-25) [30], and performed a second meta-analysis including the original Cache County results to provide 26 

synergy factor and odds ratio estimates from the largest number of samples possible. We tested the originally reported 27 

interactions and heterozygous interactions (rs11136000 C/C—rs670139 G/T and rs3865444 C/C—rs670139 G/T) to test 28 

for potential dosage or dominant effects based on suggestive evidence found in the original Cache County study 29 
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(Supplemental Table 1). We assessed whether there is a dosage or dominant effect based both on whether the 30 

heterozygous interaction is significant and a t-test comparing two means. Specifically, we tested for a significant 31 

difference between the homozygous and heterozygous effect sizes. A significant difference would suggest a dosage effect, 32 

whereas an insignificant difference would suggest the effect might be dominant.  33 

Following the meta-analyses, we performed a permutation analysis with 10000 permutations for interactions that 34 

replicated independently. For each ADGC dataset, we randomly permuted case-control status across all individuals, tested 35 

the interaction, and reran the meta-analysis. We stored the p-values from each of the 10000 meta-analyses and calculated 36 

the empirical p-value by finding the original p-value’s rank in the distribution of p-values divided by the number of 37 

permutations. We also calculated the combined population attributable fraction (cPAF) as previously described [3,8]. 38 

Results are represented using both odds ratios and synergy factors [6,31] and their associated 95% confidence intervals 39 

and p-values. Synergy factors represent the ratio between the observed and expected odds ratios for the two interacting 40 

SNPs (Equation 1). The expected odds ratio for the interaction assumes there is no synergy between the SNPs (i.e., the 41 

SNPs are independent) and equals the product of the individual odds ratios (the denominator of Equation 1) [6,31]. 42 

Essentially, the synergy factor measures how strongly the observed and expected odds ratio relationship deviates from 43 

linearity, as the synergy factor deviates from one. A synergy factor equal to one suggests no synergy; rather, there is no 44 

evidence of statistical epistasis.  45 

Because synergy factors less than 1 can be challenging to interpret, we present interaction synergy factors in the direction 46 

greater than 1. Consequently, we performed all interaction analyses using each gene’s homozygous minor allele as the 47 

reference group, which is opposite the direction standardly used in genome-wide association studies. This also has the 48 

added advantage that the interaction’s odds ratio is presented in the risk direction for easy comparison to top AD risk loci. 49 

To calculate the interaction’s odds ratio, we used each SNPs individual odds ratio as previously reported in a larger 50 

dataset [21], but we had to invert the individual odds ratios to be the same direction as our analyses. We then calculated 51 

the interaction’s observed odds ratio (Equation 1) using the inverted odds ratios. We also estimated each synergy factor’s 52 

95% confidence interval using rmeta [32].  53 
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Based on results from the interaction replication, we performed a synergy factor analysis using the Cortina-Borja synergy 54 

factor Calculator [31] to test for an APOEε4 effect for the CLU-MS4A4E interaction. Specifically, we stratified the 55 

combined ADGC and Cache County data by APOEε4 status and tested for an association between the interaction and 56 

case-control status within each stratum. Alleles rs11136000 C and rs670139 G were used as the exposed groups. 57 

2.3 Exploring causal variants 58 

As a follow up analysis, we explored causal variants for replicated interactions using 747 (223 controls, 195 cases, 329 59 

MCI) ADNI whole genomes that were sequenced, aligned to hg19, and variants identified by Illumina using their internal 60 

analysis procedure. We used linkage disequilibrium, Regulome DB (accessed November 2014) [33], and functional 61 

annotations from wAnnovar [34] to isolate SNPs of interest. We first extracted all SNPs within approximately 50 62 

kilobases of each SNP of interest, calculated linkage disequilibrium using Haploview [35], and retained all SNPs with a 63 

D’ ≥ 0.99. Using Regulome DB and wAnnovar, we annotated each remaining SNP for: (1) known regulation and 64 

functional effects; (2) minor allele frequencies from the 1000 Genomes Project [36], 6500 Exomes Project [37], and the 65 

ADNI dataset; and (3) corresponding MutationTaster predictions [38]. We retained all nonsynonymous SNPs, SNPs 66 

located in untranslated regions (UTRs), and SNPs with a Regulome DB score less than 4. For each retained SNP, we 67 

tested individual associations with case-control status in the 223 controls and 195 cases using the VarStats tool in the 68 

Variant Tool Chest (VTC) [39] and subsequently tested their interaction with all SNPs in the other interacting gene using 69 

logistic regressions in R.  70 

 71 

3. Results 72 

3.1 Sample and dataset demographics 73 

Sample demographics and minor allele frequencies for rs11136000, rs670139, and rs3865444 are presented for each 74 

dataset (Table 1). Eight of the 32 datasets with 3837 cases and 4145 controls passed quality controls for the CD33-75 

MS4A4E interaction while seven datasets with 3140 cases and 2713 controls passed for CLU-MS4A4E. The remaining 76 
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datasets were either missing required SNP(s), missing a covariate, or consisted of only controls and could not be included 77 

in the analysis. All SNPs passed Hardy-Weinberg equilibrium in all remaining datasets for both cases and controls.  78 

3.2 Homozygous and heterozygous interaction meta-analysis results 79 

The heterozygous interaction between the rs11136000 C/C (CLU) and rs670139 G/T (MS4A4E) genotypes did not 80 

replicate in the independent analysis, though it is suggestive (SF = 1.58, p = 0.07, Figure 1a; Supplemental Table 1). 81 

Although the heterozygous interaction did not replicate independently in ADGC, the combined meta-analysis including 82 

Cache County is significant (SF = 1.90, p = 0.01, Figure 1a; Supplemental Table 1). The originally reported homozygous 83 

CLU-MS4A4E interaction between the rs11136000 C/C (CLU) and rs670139 G/G (MS4A4E) genotypes replicates in the 84 

independent meta-analysis (SF = 1.79, p = 0.008, Figure 1b; Supplemental Table 1). The combined meta-analysis is also 85 

significant (SF = 2.23, p = 0.0004, Figure 1b; Supplemental Table 1). The individual SNP odds ratios, as previously 86 

reported for rs11136000 and rs670139 [21], are 0.83 and 1.09, respectively. The inverted individual SNP odds ratios for 87 

rs11136000 and rs670139, are 1.20 and 0.92, respectively. The expected odds ratio for the interaction is 1.20 * 0.92 = 88 

1.10, thus the observed odds ratio is 2.23 * 1.10 = 2.45. Empirical p-values obtained from permutations support the main 89 

interaction (ADGC: p = 0.035 with Cache: p = 0.002) and the cPAF for CLU-MS4A4E is 8.0. Comparing means to 90 

determine whether there is a dosage or dominant effect between the heterozygous and homozygous interactions was not 91 

significant (p = 0.22). 92 

We found an association between the CLU-MS4A4E interaction and case-control status in APOEε4 negative subjects in 93 

the combined ADGC and Cache County data (SF = 2.08, p = 0.004, Figure 2a; Supplemental Table 2) that did not exist 94 

with APOEε4 positive subjects (SF = 1.19, p = 0.26, Figure 2b; Supplemental Table 2). The CD33-MS4A4E interaction 95 

failed to replicate in either the independent or combined meta-analyses (Figures 3a and 3b, Supplemental Table 1).  96 

3.3 Exploring causal variants 97 

We explored causal variants in the CLU and MS4A4E regions using the ADNI whole-genome data. There were 36 and 32 98 

SNPs that fit the inclusion criteria previously described for SNPs near rs11136000 and rs670139, respectively 99 

(Supplemental Tables 3 and 4). Most of the SNPs are rare (MAF < 0.01) according to the 1000 Genomes, 6500 Exomes, 00 

and ADNI datasets. None of the SNPs were significantly associated with case-control status individually or in the 01 
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pairwise interactions. We identified two SNPs in MS4A4E (rs2081547 and rs11230180) that have a Regulome DB score 02 

of ‘1f’ and have been shown to modify MS4A4A expression [40], the gene upstream from MS4A4E. A score of ‘1f’ means 03 

they are known to modify expression and are known DNase and transcription factor binding sites. 04 

 05 

4. Discussion 06 

In this study we attempted to replicate two gene-gene interactions and their association with AD case-control status in the 07 

largest dataset used in an epistasis study, to date. The CD33-MS4A4E interaction failed to replicate and may have resulted 08 

from over-fitting in the Cache County data as previously described by Ebbert et al. [3] Over-fitting happens when a model 09 

identifies random data patterns as significant when they are not truly relevant to the question at hand. While there is 10 

substantial evidence that CD33 function is related to AD pathways and pathology [16–18], our data do not support an 11 

interaction with MS4A4E that impacts AD risk.  12 

We replicated the CLU-MS4A4E interaction, demonstrated an association in APOEε4 negative subjects, and reported 13 

evidence of a possible dominant effect for MS4A4E. The homozygous interaction between rs11136000 (CLU) and 14 

rs670139 (MS4A4E) replicates independently in the ADGC datasets, supporting its validity. To provide synergy factor and 15 

odds ratio estimates from the largest number of samples possible, we report the combined meta-analysis synergy factor 16 

and odds ratio including the Cache County data. Given the broad sampling and large sample size used for this analysis, 17 

our results are likely to be generalizable to other populations of European ancestry. Further investigating this interaction 18 

in other ethnic groups is warranted. 19 

Comparing the CLU-MS4A4E odds ratio of 2.45 to top AD risk alleles according to AlzGene.org [14] along with APP, 20 

PLD3, and TREM2 adds greater perspective. Momentarily ignoring APOEε4, APP, PLD3, and TREM2, the highest 21 

individual odds ratio is from APOEε2 (OR = 1.61) [3,14] when inverting to its respective risk allele, followed by ABCA7 22 

(OR = 1.23) [3,14], both of which are dramatically lower than 2.45. Of known AD risk loci, only APOEε4 (OR = 3.68), 23 

APP (OR = 5.29), and TREM2 (OR = 5.05) have ORs greater than 2.45 [3,14,41,42]. The CLU-MS4A4E odds ratio is 24 

even greater than the PLD3 Val232Met mutation (OR = 2.10) [43]. These results suggest the CLU-MS4A4E interaction 25 

may play an important role in AD etiology. 26 
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A distinction must be made regarding statistical and biological epistasis, however [22]. While there is evidence that CLU, 27 

like CD33, interacts indirectly with MS4A2 [3], little is known about MS4A4E itself and we do not know whether it 28 

biologically interacts with CLU. MS4A2 indirectly modifies BCL2L1 activation or expression [3], which physically 29 

interacts with CLU. Research suggests CLU prevents amyloid fibrils and other protein aggregation events [44] while 30 

MS4A4E may facilitate aggregation as a membrane-spanning protein. Membrane-spanning proteins play diverse roles in 31 

cell activity including transport and signaling. Experiments will be required to determine whether there is biological 32 

epistasis between CLU and MS4A4E, and whether the interaction affects amyloid fibril formation. Our results indicate 33 

further investigative efforts in gene-gene interactions (and protein-protein interactions) may be important to resolve AD 34 

etiology. 35 

Comparing means for the effect estimates to assess whether there is a dosage or dominant effect between the CLU-36 

MS4A4E heterozygous and homozygous interactions was not significant, suggesting there may be a dominant effect for 37 

the rs670139 G allele. A dominant effect has important epidemiologic and heritability implications. Since the CLU-38 

MS4A4E interaction increases risk, heterozygous individuals may be at equal risk compared to homozygous individuals. 39 

We found an association between the CLU-MS4A4E interaction and case-control status in APOEε4 negative subjects in 40 

the combined ADGC and Cache County data that did not exist with APOEε4 positive subjects. This potential three-way 41 

interaction may provide valuable insight into AD risk and protective factors. A recent paper by Jun et al. [45] found CLU 42 

has a stronger association in APOEε4 positive individuals while the region surrounding MS4A4E has a stronger 43 

association in APOEε4 negative individuals. Further statistical and biological studies will be necessary to clarify these 44 

potential associations. Since all analyses in this study used each gene’s homozygous minor allele as the reference group, 45 

the interaction between CLU-MS4A4E major alleles is framed as a risk factor, meaning the interaction between the minor 46 

alleles is protective. Since the tested heterozygous interaction also increases risk, the protective association may only 47 

apply to the interaction between the homozygous minor alleles. 48 

We report several rare potential causal variants linked to rs11136000 or rs670139 with a D’ ≥ 0.99 in the ADNI whole-49 

genome data. No individual variants were significantly associated with AD risk in the ADNI data, but the analysis was 50 

likely underpowered with only 240 controls and 202 cases. Two particularly interesting variants, rs11230180 and 51 

rs2081547, are known to affect MS4A4A expression. We believe further analysis of these variants is necessary to better 52 
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understand their involvement in AD. Exploring the effects of rs670139, itself, may also be important. Little is known 53 

about MS4A4E, including the gene’s chromosomal structure. According to gene model XM_011545416.1, rs670139 is in 54 

the MS4A4E 3’UTR, but other gene models differ. 3’UTR variants can affect transcription and translation. 55 

The cPAF for CLU-MS4A4E is 8.0, suggesting there would be an approximate 8% decrease in AD incidence across the 56 

population if both major alleles were eliminated. In reality, this estimate is for the causal variants that rs670139 and 57 

rs11136000 may be tagging, but the overall effect is nontrivial. Identifying a targeted treatment in the associated pathways 58 

could have a significant impact. 59 

A major gap in AD literature to date is the lack of known causal variants. Several SNPs have repeatedly turned up in 60 

genome-wide association studies, but the tagSNPs themselves are unlikely to play a direct role in AD etiology. What is 61 

more likely is that the tagSNPs are in close linkage disequilibrium with one or more causal variants. We hypothesize two 62 

possible explanations: (1) the SNPs are linked to multiple rare variants that drive AD development and progression; or (2) 63 

there is another common variant in the region with functional effects that remain unknown. In either case, given the 64 

biological complexity of AD and results presented in this study, we believe epistasis plays a critical role in AD etiology. 65 

As such, the community must continue to identify and vet these and other interactions that are supported in the literature. 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 
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Table 1. Sample demographics by dataset. For each dataset the following information is provided: percent cases, 95 

females, age, APOEε4 positive percentage, and minor allele frequencies for rs670139, rs3865444, and rs11136000.  96 

Figure 1. Forest plot showing heterozygous (Panel A) and homozygous (Panel B) CLU-MS4A4E interaction 97 

replication with potential dominant effect. We tested the original homozygous interaction between the rs11136000 C/C 98 

(CLU; minor allele = T, MAF = 0.38) and rs670139 G/G (MS4A4E; minor allele = T, MAF = 0.38) genotypes, which 99 

replicated in ADGC independently (synergy factor = 1.79, p = 0.008, Panel B). We also report the combined meta-00 

analysis including the original Cache County results to present a synergy factor estimate from the largest number of 01 

samples possible, which is also significant (synergy factor = 2.23, p = 4e-04, Panel B). We also tested for a dosage or 02 

dominant effect based on suggestive evidence in the original Cache County results (Panel A) by testing the heterozygous 03 

interaction between the rs11136000 C/C (CLU) and rs670139 G/T (MS4A4E) genotypes, which did not replicate 04 

independently, but is suggestive (synergy factor = 1.58, p = 0.07, Panel A). The combined analysis, including the original 05 

Cache County results, is significant (synergy factor = 1.90, p = 0.01, Panel A). 06 

Figure 2. Forest plot showing APOEε4 negative association with Alzheimer’s disease case-control status. We tested 07 

for an APOEε4 association with the CLU-MS4A4E interaction using the Cortina-Borja Synergy Factor Calculator [31]. 08 

Specifically, we stratified the combined ADGC and Cache County data by APOEε4 status and tested for an association 09 

between the interaction and case-control status within each stratum. Alleles rs11136000 C and rs670139 G were used as 10 

the exposed groups. We found an association in the APOEε4 negative stratum (synergy factor = 2.08, p = 0.004, Panel A) 11 

that did not exist in the APOEε4 positive stratum (synergy factor = 1.19, p = 0.26, Panel B), suggesting an APOEε4 effect 12 

exists for this interaction. 13 

Figure 3. Forest plot showing failed replication for heterozygous (Panel A) and homozygous (Panel B) CD33-14 

MS4A4E interaction. We tested the original homozygous interaction between the rs3865444 C/C (CD33; minor allele = 15 

A, MAF = 0.21) and rs670139 G/G (MS4A4E; minor allele = T, MAF = 0.38), which did not replicate in ADGC 16 

independently (p = 0.81, Panel B) and was not significant in the combined meta-analysis (p = 0.28, Panel B). We also 17 

tested the heterozygous interaction, which also was not significant (without Cache: p = 0.64, Panel A; with Cache: p = 18 

0.44, Panel A). 19 
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Equation 1. The synergy factor describes the relationship between the expected odds ratio (denominator) and the 20 

observed odds ratio (numerator) for interacting variants. The expected odds ratio (denominator) assumes that both 21 

variants are independent (i.e., there is no synergistic, or non-linear effect on the phenotype) while the observed odds ratio 22 

(numerator) is the actual effect. A synergy factor that deviates from 1 indicates a statistical interaction between the 23 

variants that affects the phenotype. 24 
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Study N Cases (%) Females (%) Age APOE 4 + (%) rs670139 
MAF (T) 

rs3865444 
MAF (A) 

rs11136000 
MAF (T) 

ACT1 1858 487 (26.2) 1068 (57.5) 82.28 526 (28.3) 0.41 0.33 NA 

ADC2 681 566 (83.1) 365 (53.6) 79.38 394 (57.9) 0.42 0.33 0.39 

ADNI 371 230 (62.0) 157 (42.3) 77.82 201 (54.2) 0.45 0.31 0.37 

LOAD 2965 1515 (51.1) 1882 (63.5) 78.22 1667 (56.2) 0.43 0.31 0.38 

TARC1 388 244 (62.9) 244 (62.9) 78.96 189 (48.7) 0.43 0.32 0.41 

UMVUMSSM_A 1058 450 (42.5) 676 (63.9) 75.48 451 (42.6) 0.43 0.31 0.38 

UMVUMSSM_B 390 135 (34.6) 236 (60.5) 73.99 118 (30.3) 0.41 0.33 0.38 

UMVUMSSM_C 271 210 (77.5) 160 (59.0) 74.77 167 (61.6) 0.42 0.29 NA 
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