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Abstract 21 

Complex gene expression patterns are mediated by binding of transcription factors (TF) to specific 22 

genomic loci. The in vivo occupancy of a TF is, in large part, determined by the TF’s DNA binding 23 

interaction partners, motivating genomic context based models of TF occupancy. However, the 24 

approaches thus far have assumed a uniform binding model to explain genome wide bound sites for a TF 25 

in a cell-type and as such heterogeneity of TF occupancy models, and the extent to which binding rules 26 

underlying a TF’s occupancy are shared across cell types, has not been investigated. Here, we develop an 27 

ensemble based approach (TRISECT) to identify heterogeneous binding rules of cell-type specific TF 28 

occupancy and analyze the inter-cell-type sharing of such rules. Comprehensive analysis of 23 TFs, each 29 

with ChIP-Seq data in 4-12 cell-types, shows that by explicitly capturing the heterogeneity of binding 30 

rules, TRISECT accurately identifies in vivo TF occupancy (93%) substantially improving upon previous 31 

methods. Importantly, many of the binding rules derived from individual cell-types are shared across 32 

cell-types and reveal distinct yet functionally coherent putative target genes in different cell-types. 33 

Closer inspection of the predicted cell-type-specific interaction partners provides insights into context-34 

specific functional landscape of a TF. Together, our novel ensemble-based approach reveals, for the first 35 

time, a widespread heterogeneity of binding rules, comprising interaction partners within a cell-type, 36 

many of which nevertheless transcend cell-types. Notably, the putative targets of shared binding rules in 37 

different cell-types, while distinct, exhibit significant functional coherence.  38 
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Introduction 39 

Transcriptional regulation is critically mediated by the binding of transcription factors (TF) to specific 40 

DNA elements in the genome (JACOB & MONOD 1961; Busby & Ebright 1994). While the in vitro binding 41 

specificity of many human TFs has been determined, it is well recognized that the in vitro binding 42 

specificity of a TF does not explain its condition-specific in vivo binding specificity (Zinzen et al. 2009; 43 

Yáñez-Cuna et al. 2012). This recognition has spurred investigations of additional determinants of in vivo 44 

binding, such as heterogeneity of TF’s binding motif (Hannenhalli & Levy 2002), homotypic clusters of 45 

binding sites (Dror et al. 2015),  cooperative binding of the TF with its partners (Wang et al. 2006), 46 

condition-specific chromatin context (Heintzman et al. 2009), local DNA properties (Dror et al. 2015), 47 

epigenomic context (Gheldof et al. 2010) etc. While overall, both local genomic and epigenomic features 48 

have been deemed important in determining in in vivo occupancy of a TF, recent reports suggest that in 49 

vivo binding of a TF can be accurately predicted based only on the genomic signatures near the binding 50 

site (BS) without relying on the epigenomic context (Arvey et al. 2012; Dror et al. 2015); this is consistent 51 

with very recent reports showing that the epigenome itself is encoded by the genomic context 52 

(Whitaker et al. 2015; Benveniste et al. 2014). Taken together, these results strongly suggest that 53 

proximal genomic elements are the primary driver of in vivo TF binding. Prior sequence-based models of 54 

in vivo TF binding have shown that, somewhat counter-intuitively, the genomic context of a BS, which is 55 

the property of the genome, effectively encodes the condition-specific in vivo binding specificity (Arvey 56 

et al. 2012). This can be explained by the substantial plasticity of a TF’s interaction with other TFs’ and 57 

the modular nature of TF binding cooperatively with other TFs (Frietze & Farnham 2011), such that 58 

availability of specific combination of interacting TFs can guide in vivo binding to specific loci where the 59 

BS of the interacting TF are present in close proximity to each other, along with the availability of 60 

corresponding TFs (Hannenhalli & Levy 2002).  61 

Previous sequence-based modeling of in vivo TF binding was done in a cell type-specific fashion. These 62 

cell type-specific models exhibit substantial inter-cell type heterogeneity, as expected, given variation in 63 

the availability of the potentially interacting TFs. However, these previous approaches build a single 64 

model for a cell type, thus implicitly assuming a homogeneous cell type-specific model, and as such have 65 

not investigated intra-cell-type model heterogeneity. Such heterogeneity of TF binding ‘rule’ across the 66 

genome can be expected for the same reason as for the inter-cell type heterogeneity. Moreover, in 67 

many instances, a binding specificity model trained in one cell type can predict a subset of in vivo 68 

binding in a different cell type (Arvey et al. 2012), suggesting that models of binding, or parts thereof, 69 

may be shared across cell types. Overall, the heterogeneity of sequence-based models of cell type-70 

specific in vivo TF binding, and the extent to which a subset of binding rules (sub-models) are shared 71 

across cell types, is not known, motivating the present study.  72 

To this end, we have developed an ensemble model based approach (TRISECT) to reveal both cell-73 

specific and cell-independent rules for in vivo TF binding. We applied TRISECT to 23 TFs, each with 74 

genome-wide in vivo binding data in 4 – 12 cell types (a total of 135 TF-cell type combinations). For each 75 

TF, for each cell type, we built ensemble models of in vivo TF binding (EMT), then decomposed each 76 

EMT model into sub-models and clustered the pooled set of sub-models across all cell types using 77 

feature selection. Our comprehensive analyses strongly suggest that the cell type-specific binding rule 78 

for a TF consists of multiple sub-models, supported by our result showing that EMT captures the binding 79 

specificity better than previous non-ensemble models (Arvey et al. 2012). Moreover, for many TFs, the 80 

sub-models are shared across cell-types, and interestingly, we found that the putative target genes for 81 
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similar sub-models across cell types exhibit a high degree of expression and functional coherence, 82 

suggesting that the in vivo binding rules are related to function of the gene targets, much more so than 83 

the cell type they are derived from.  84 

In further probing the superior performance of EMT, we demonstrate that while a model based only on 85 

the known motifs of the reference TF, i.e. without incorporating additional potential TF interaction 86 

partners (NonInteraction model), can predict in vivo binding with ~78% accuracy, when motifs for other 87 

TFs are used in the model (Interaction model), the prediction accuracy is substantially increased to over 88 

90%. Moreover, we found that the improvement in prediction accuracy by the Interaction model 89 

strongly correlates with the increase in the number of interaction partners, i.e., with model complexity, 90 

suggesting that the Interaction model effectively captures the heterogeneity of the binding rule. We 91 

identified and validated, based on literature, the potential interaction partners (we will refer to these as 92 

co-factors) that mediate context-specific binding and function of a TF. Finally, we show that certain TFs 93 

with multiple distinct binding motifs prefer binding to different motifs in different cell types, which may 94 

in part be associated with their inter-cell type variability of co-factors (Slattery et al. 2011).  95 

In sum, our analysis reveals distinct sub-models of in vivo TF binding within a cell type that are 96 

nevertheless shared across cell types, and the shared sub-models across cell types target distinct yet co-97 

functional genes in different cell types. A refined understanding of the genomic context of in vivo 98 

binding specificity can facilitate future investigations of transcriptional regulation and understanding of 99 

its genetic determinants.  100 

 101 

Results 102 

TRISECT – Ensemble model of TF binding and the Clustering of sub-models across cell types 103 

Overview. The full analysis pipeline, TRISECT, is illustrated by Fig 1A. As the first step, , we developed an 104 

ensemble model (EMT) to discriminate a TF’s in vivo bound genomic loci from the background, balancing 105 

model complexity (number of sub-models in the ensemble) against the cross-validation classification 106 

accuracy. Given a set of genome-wide loci bound by a specific TF, we first construct a foreground set of 107 

sequences (100 bps) centered at the ChIP-Seq peak. As a stringent background control, as done 108 

previously (Arvey et al. 2012), we use 100 bps regions ~200 bps away from the peak location (M&M). 109 

We considered a variety of feature sets for discrimination (see below). The EMT model was trained using 110 

Adaboost method where each sub-model is a decision tree built from a bootstrap sample (Friedman et 111 

al. 2000; Friedman 2002; Freidman 2008). Next, for a TF, given EMT models for all cell types, we 112 

represented each cell type-specific sub-model as a point in a d-dimensional space corresponding to d 113 

selected features (M&M). We clustered the data points, representing all sub-models in all cell types 114 

considered for a TF, using XY-fused network (XYF) (Melssen et al. 2006) such that sub-models within a 115 

cluster represent similar binding rules, either within a cell-type or across cell types.  116 

EMT Feature sets. We considered three types of feature sets for a 100 bps sequence – (i) Kmer: 117 

frequency of occurrence for all 4096 6-mers, (ii) KmerRC: frequency of occurrence for all 2080 6-mers 118 

where a k-mer and its reverse complement were unified, and (iii) aggregate binding scores for 981 119 

vertebrate TF motifs from TRANSFAC database (we used four stringencies for motif match) (M&M); we 120 

refer to these as pwm models. We applied TRISECT to 23 TFs, each with ChIP-Seq data in 4 to 12 cell 121 
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types (a total of 135 TF-cell pair EMTs), listed in Supplementary Table 1. A TF was included in this study if 122 

(i) TF has narrow-peak data for at least 4 cell lines with at least 4k sites in each cell line, and (ii) TF has 123 

established PWM in TRANSFAC 2011 database. The performance assessment of EMTs was conducted 124 

based on 25% held-out dataset.  The overall performance is summarized in Fig 1B and details are 125 

provided in Supplementary Table 2.  126 

EMT performance. Fig 1B shows the overall accuracy distribution (over 135 TF-cell type pairs) for the 6 127 

types of models, where the accuracy is quantified using ROCAUC on the test set. We compared the 128 

performances, using Wilcoxon test, among 6 sets of EMTs (kmer, kmerRC, and PWM at 4 stringencies) 129 

containing 135 TF-cell type pairs in each set (Fig 1C). We found that kmerRC significantly outperforms 130 

kmer model (Wilcoxon p-value 2.65E-20), consistent with the fact that TF binding occurs on double-131 

stranded DNA and as such does not have directionality (except in relation with other interacting TFs) 132 

and therefore unifying each kmer with its reverse complement provides a better abstraction of 133 

biological determinants of TF binding. Following this line of reasoning, PWMs provide an even better 134 

abstraction of DNA binding specificity and as expected, the PWM-based models outperform kmer-based 135 

models (p-value, 2.29E-06 comparing kmerRC and pwm1k). Based on relative performances we selected 136 

pwm1k-based EMT for feature selection and clustering of sub-models and all subsequent analyses.  137 

Comparison with previous model. Next, we compared EMT model (using kmerRC and pwm1k) with 138 

previously published model based on string kernel SVM (SVM-kmer) (Arvey et al. 2012). Supplementary 139 

Table 3 lists 17 TFs for which ROCAUC was reported in (Arvey et al. 2012), where the mean accuracy 140 

across multiple cell lines was reported for each TF. We therefore compared the published accuracy with 141 

the mean EMT performance of the TF across only the cell types that were considered previously. As 142 

shown in Fig 2, in most cases, EMT outperforms SVM-kmer. DNAse hypersensitive (DHS) of a region 143 

represents its accessibility by DNA-binding proteins and previous studies have shown that integrating 144 

DHS with in vitro binding specificity can substantially enhance in vivo binding prediction (Arvey et al. 145 

2012; Pique-Regi et al. 2011). Surprisingly, using pwm1k features 6 cases EMT outperforms even the 146 

model that integrated DHS with the kmer frequencies in the SVM (green). In a few cases (blue), SVM-147 

kmer yields either comparable or improved predictability. Overall, the EMT models predict in vivo 148 

binding with a greater accuracy than a non-ensemble SVM approach represented by SVM-kmer (Arvey 149 

et al. 2012).  150 

In sum, we have described a novel ensemble-based approach to in vivo binding modeling and 151 

established its superiority relative to SVM-kmer across a wide variety of TFs and cell types. 152 

 153 

TRISECT reveals intra-cell type heterogeneity and inter-cell type sharing of binding rules across cell 154 

types 155 

The architectural difference and performance advantage of EMT relative to SVM-kmer suggests that 156 

EMT might be better able to exploit heterogeneous binding rules across the genome dictated by 157 

different combinations of interacting TFs. For each TF, we clustered the sub-models obtained from 158 

different cell types. As an illustrative example, Fig 3A-B show the cluster-membership matrix for TF ATF3 159 

for number of clusters k = 16 and 20. Fig S1 includes such mapping for all other TFs for k = 16. We found 160 

both cell type-specific (Fig 3B, cluster #6) and ubiquitous (Fig 3C, cluster #20) clusters. Examining the 161 

cluster mapping for all TFs (Fig S1), a wide range of patterns emerge: for certain TFs most clusters map 162 
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to single cell type, suggesting cell type-specific binding modalities of these TFs (EP300, JUN), while 163 

certain other TFs have ubiquitously applicable binding rules, such as YY1 and TBP, suggesting cell type 164 

independent binding rules and, presumably, function. Importantly, many clusters consist of sub-models 165 

from multiple, but not all, cell types. We ensured that inter-cell type sharing of in vivo binding rule is not 166 

simply due to shared binding loci across cell types (Supplementary Notes & Fig S2). Subsequent analyses 167 

are based on k = 16; reasons for this choice are discussed in Supplementary Notes & Fig S3). 168 

It is possible that EMT can falsely yield multiple sub-models, even in absence of heterogeneity, and 169 

those sub-models can be falsely clustered. We ascertained heterogeneity across sub-models for a TF 170 

from multiple cell types using a Dudahart test (Duda et al. 2001) and assessed the clustering tendency of 171 

the sub-models in the d-dimensional feature space using Hopkins statistics (Jain & Dubes 1988). The 172 

Dudahart test verifies whether or not a set of data points should be split into two clusters from the 173 

estimate of within-cluster sum of squares for all pairs of clusters versus overall sum of squares; the ratio 174 

of the two sum of squares is quantified as the dh-ratio. On the other hand, the Hopkins statistic (H) 175 

compares the nearest neighbor distribution for a random set of points to the same distribution for the 176 

clustered sub-models (M&M). A value close to 0.5 indicates the sub-models are random set of points 177 

with no clustering, a value close to 1 indicates that they form a cluster. Fig 3C-D summarize the dh-ratio 178 

and Hopkins statistic respectively for 135 TF-cell pairs based on sub-models of TF-cell type pair, and for 179 

each TF after gathering all sub-models under a TF. We found that in all cases the dh-ratio is lower than 1 180 

rejecting homogeneity (Fig 3C) and the set of sub-models form clusters (Fig 3D). All tests done for the 181 

analysis are significant (p-value <0.001) (M&M). Together, the Dudahart test and Hopkins statistic 182 

strongly suggest that the sub-models are distinct and clusterable, i.e., TF binding rules are 183 

heterogeneous and partly shared across cell types. 184 

Next we assessed the functional underpinning of shared binding rules across cell types. Specifically, we 185 

assessed whether two co-clustered loci from different cell types (i.e., obeying similar binding rule) are 186 

functionally associated relative to loci from the same cell type but belonging to different clusters, i.e., 187 

obeying different binding rules. We devised a cluster-specific scoring of each binding sequence and 188 

assigned each binding site in each cell type to one or more clusters (M&M). As per convention, we 189 

assigned each binding site to the nearest gene as a potential transcriptional target; 95% of the target 190 

genes were within 100 kb from the binding site (median distance 4.5 kbp) (Fig S4). To assess functional 191 

coherence of a cluster, we determined the fraction of gene-pairs in the cluster (regardless of cell type) 192 

that participate in the same pathway as compared to all pairs of target genes within each cell type, and 193 

assessed the significance of enrichment using Fisher test. Likewise, we also estimated the expression 194 

coherence of genes within a cluster (M&M). As shown in Fig 4 and S5: ~40% (respectively, ~18%) multi-195 

cell type clusters show significantly higher (p-value <= 0.05) expression-coherence (respectively, 196 

pathway-coherence) than the background (expectation is 5%). Moreover, the pathway and expression 197 

coherence are highly correlated across clusters (spearman correlation=0.56, p-value=0.02). We 198 

conducted the same set of tests for random clusters of same size as real clusters. In both cases, the 199 

coherence was no greater than the null expectation (Fig 4A-B). In Supplementary Tables 5a-b, we 200 

catalogue all the clusters with mapped target genes and their enriched GO terms. 201 

Taken together, these analyses support existence of heterogeneous sets of rule governing in vivo TF 202 

binding and that subset of rules are shared across cell types with functional implication. 203 

 204 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 9, 2015. ; https://doi.org/10.1101/028787doi: bioRxiv preprint 

https://doi.org/10.1101/028787


The role of interaction partners in a TF’s binding occupancy across cell types 205 

By using 981 PWMs for a comprehensive set of vertebrate TFs as the basis for features, EMT implicitly 206 

incorporates the contributions of interaction partners in predicting in vivo binding of the reference TF.  207 

To quantify the contribution of interacting motifs, we repeated the EMT training and testing using only 208 

the PWMs corresponding to the reference TF. Individual TFs have multiple motifs reported in the 209 

literature (ranging from 1 to 8, with a median of 3; Supplementary Table 6), which can differ 210 

substantially from each other with potential functional implications (Bulyk et al. 2002; Hannenhalli 211 

2008); we refer to these motifs as the reference motifs, and the EMT model utilizing only the reference 212 

motifs as the NonInteraction model and to contrast we refer pwm1k model as Interaction model. 213 

Supplementary Table 7 shows the prediction accuracies for the Interaction and the NonInteraction 214 

models; the diagonal elements represent the cross-validation accuracies within a cell type, while the off-215 

diagonal elements represent the accuracy when EMT is trained on one cell type (row) and tested on 216 

another (column).  Comparing the diagonal elements for the two models (summarized in Fig 5A), it is 217 

evident that Interaction models have higher predictive accuracy than NonInteraction models, which is 218 

consistent with the expectation that in vivo binding of a TF relies on interactions among several TFs.  219 

Next, we conjectured that in the Interaction model, allowing for greater numbers of partners allows 220 

learning of more complex binding rules and increase binding prediction accuracy. We therefore assessed 221 

the effect of the length of the region flanking the binding site on prediction accuracy (M&M). We note 222 

that beyond 100bp, due to narrowing of the gap between the foreground and the background region, 223 

the discrimination accuracy is expected to decrease. Despite this, in some cases (Fig 5B & S6), the 224 

increase in ROCAUC beyond 100bp suggests that a larger context may be necessary in these cases to 225 

capture the binding rules. Nevertheless, we chose a sequence context of 100bp to make our model 226 

comparable to the previously published SVM-kmer (Arvey et al. 2012). 227 

For a given TF, we also quantified the variability of the model accuracy in different cell types (M&M). We 228 

expect a model that relies on cell type-specific interaction partners to be more variable in its 229 

performance accuracy than the one that relies only on the reference motifs. This expectation is borne 230 

out in our analysis (Fig 5C). This suggests that part of the sequence information for in vivo binding is 231 

encoded by the TF’s own motifs and this does not vary substantially across cell types, while the 232 

additional context- and interaction-dependent part does. However, the small variability in cross-cell type 233 

prediction accuracy when using NonInteraction model is likely to come from the heterogeneity of 234 

binding motifs for a TF. We quantified the inter-motif divergence for each TF as either the number of 235 

motifs annotated for the TF, or motif-divergence defined over all motifs-pairs) (M&M). We found that 236 

the NonInteraction model performance variability is positively correlated with both measures of motif 237 

divergences (Spearman correlation=0.63, 0.67; p-value=1.2e-3, 6.3e-4 respectively). 238 

For the Interaction model, the off-diagonal elements in Supplementary Table 7 show relatively high 239 

cross-cell type performance accuracy, suggesting that the binding ‘rules’ are shared between cell types. 240 

We ensured that the high cross-cell type prediction accuracy is not simply due to shared sequence 241 

information, i.e., the genomic loci on which the model was trained in one cell type does not substantially 242 

overlap with the loci tested in another cell type. Overall, across all TFs and all pairs of cell types, the 243 

fractional overlap in genomic loci ranges from 0 to 10%, with a mean and median of ~4% (Fig 5D).  This 244 

suggests that it is the binding rule, independent of specific sequence instances, that is shared across cell 245 

types. 246 
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Furthermore, we found that when using the Interaction models, the cross-cell type accuracy is 247 

symmetric (Spearman correlation of upper and lower triangle in Supplementary Table 7 is 0.68, p-value 248 

9.5e-53). In other words, a high (respectively, low) accuracy in cell type Y using EMT trained on cell type 249 

X implies a respectively high (respectively, low) accuracy in cell type X using the model learnt from cell 250 

type Y. This further supports that the interaction-dependent (therefore genomic-context dependent) 251 

binding rules are shared across cell types. In stark contrast, there is a lack of symmetry in cross-cell 252 

prediction accuracy when NonInteraction model is used (Spearman correlation = 0.04, p-value 0.4). 253 

In sum, our analyses suggest that the cell type-specific TF interactions play critical role in determining 254 

cell type-specific in vivo binding. In addition to that, these revealed by EMT might be responsible for cell 255 

specific binding of the reference motifs. 256 

 257 

TRISECT reveals putative co-factors providing insights into cell-specific biological roles of a TF 258 

Our results so far suggest that cell type-specific co-factors of a TF are a major driver of variability in the 259 

in vivo binding rules across cell types. To further probe into the functional implications of cell type-260 

specific co-factors, for each reference TF, we identified its cell type-specific co-factors using the feature 261 

importance of the corresponding motif as estimated by the model. To minimize redundancy, we 262 

excluded motifs with substantially high co-occurrence frequency with at least one of the reference 263 

motifs (M&M). To further minimize false positives, we assessed the enrichment of motif occurrence 264 

near the cell-specific ChIP-Seq peaks of the reference TF relative to background and retained only those 265 

putative co-factor motifs that were significantly enriched (odds ratio > 1.2 and p-value < 0.05, M&M). 266 

The choice of enrichment odds ratio threshold is rationalized in Fig S7, which shows that increasing the 267 

threshold would result in a loss of information for some TFs e.g. REST.  268 

Several lines of evidence support the cell type-specific co-factors for a TF identified by TRISECT. First, we 269 

found that for ~70% of the models, the putative co-factors are enriched for either heterodimerizing TFs 270 

or for the TF family that the reference TF belongs to (M&M & Supplementary Table 8). The enrichment 271 

of same family as that of reference TF is consistent with the fact that TFs forms dimer with other TFs 272 

preferably from same family (Amoutzias et al. 2008; Dror et al. 2015). We also performed protein 273 

domain enrichment analysis (Supplementary Table 9) using DAVID tool (Huang, Brad T. Sherman, et al. 274 

2009; Huang, Brad T Sherman, et al. 2009), and found that more than 80% of enriched domains are 275 

involved in homo- or hetero-dimerization consistent with Supplementary Table 8.  276 

Second, we expect putative co-factors to be expressed at higher level in the specific cell types where 277 

they are deemed as co-factors. For each co-factor (excluding ubiquitous co-factors), we determined the 278 

log-fold difference in expression between the cell types where it is identified as co-factor relative to cell 279 

types where it is not (M&M). The distribution of log fold changes of the co-factors are compared with a 280 

control set of fold ratios as presented in Fig 6A. For most TFs, the co-factors show significantly higher 281 

expression in the relevant cells. This is not true only in 5 cases. Among these, CTCF is known as cell type-282 

independent TF and for two of them (GABPA and NRF1) we show below, via an independence test, that 283 

they show higher cell independence than other TFs. 284 

Third, for each TF’s cell type-specific co-factors, we performed biological processes GO term enrichment 285 

analysis using the Gorilla tool (Eden et al. 2009) relative to all 981 motifs as the background. We found 286 
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significant differences in function among co-factors for a TF in different cell types. Remarkably, the 287 

biological processes can vary across cell types while still being functionally related to the reference TF. 288 

As an illustrative example, Fig 6B shows the enriched BP (false discovery rate <= 10%) for ATF3 in 4 cell 289 

types. ATF3 is a stress-inducible TF involved in homeostasis (Allen-Jennings et al. 2001; Tanaka et al. 290 

2011), specifically regulating cell-cycle, apoptosis, cell adhesion and signaling (Tanaka et al. 2011). We 291 

found that ATF3 co-factors are enriched for functions related to cell cycle and proliferation in 3 out of 4 292 

cell lines. In stem cell, the identified co-factors are involved in liver regeneration and inflammatory 293 

response, consistent with previous studies showing direct link between ATF3 induction and liver injury 294 

and regeneration in mice (Chen et al. 1996; Su et al. 2002). Furthermore, enrichment of NOTCH and 295 

apoptotic signaling among co-factors in Hepg2 cell line is consistent with role of ATF3 in glucose 296 

homeostasis and other primary functions of the liver (Allen-Jennings et al. 2001). Surprisingly, we find 297 

enrichment of cognition, learning and memory among the co-factors in leukemia cell line. Since 298 

leukemia is a cancerous cell line, non-native gene expression is not unexpected (Lotem et al. 2004; 299 

Lotem et al. 2005). However, even though ATF3 is not known to play a direct role in neuronal function, a 300 

closely functionally and structurally related protein CREB has well documented role in neuronal activity 301 

and long-term memory formation in brain (Mayr & Montminy 2001), raising the possibility that either 302 

ATF3 has a hitherto unknown role in cognition or, alternatively, the same set of co-factors are involved 303 

in memory formation in conjunction with other TFs.  304 

For other TFs, the enriched GO-terms at false discovery rate cutoff of 10% (enrichment scores ranges 305 

from 1.22 to 93.75 with a median of 7.44) are listed in Supplementary Table 10 with corresponding 306 

discussion based on literature survey is provided as Supplementary Notes. This can serve as a resource 307 

for further investigation into cell type-specific binding and function of a broad array of TFs. In 308 

Supplementary Tables 5a-b, we catalogue all the clusters with their specific TF interactions (M&M), and 309 

their enriched GO terms. 310 

We noted substantial variability in the number of detected co-factors across cell types for a TF. 311 

Interestingly, a literature survey suggests that the cell types where the reference TF has specific 312 

function, the number of co-factors in that cell type is comparatively higher. For example, REST has well-313 

known neuronal functions and its binding sites in neurons exhibit lack of cognate RE1 motifs (Rockowitz 314 

et al. 2014), suggestive of dependence on co-factors. Consistently, Sknsh (brain cancer cell line) has 315 

highest co-factor cardinality for REST. Similarly, JUN plays specific role in hematopoetic differentiation 316 

and we found that Gm12878 (normal blood cell line) has the largest number of co-factors (Liebermann 317 

et al. 1998). We reasoned that TF with greater cell type-specific roles would exhibit greater variability in 318 

co-factor cardinality. For each TF we measured the variability of its co-factor cardinality across cell types. 319 

As shown in Fig 7A, interestingly, TFs with ubiquitous and invariant roles such as TBP and CTCF have the 320 

least variable co-factor cardinality.  321 

We also assessed whether the difference in prediction accuracy achieved by Interaction model and the 322 

NonInteraction model for a particular TF-cell type pair may reflect the TF’s dependence on co-factors. 323 

We measured the normalized distance between the performance (performance distance) of Interaction 324 

and NonInteraction model (M&M) and compared it with co-factor cardinality. As shown in Fig 7C, we 325 

found that the performance distance is positively correlated with co-factor cardinality (Spearman 326 

correlation = 0.65, p-value = 2.7E-17). 327 
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Previous studies have found that the DNA sequence specificity of a TF can be influenced by interaction 328 

with co-factors (Siggers et al. 2011; Slattery et al. 2011). Interestingly, a close inspection of the feature 329 

importance estimated by the NonInteraction EMT model shows that in different cell types different 330 

compositions of the reference motifs are utilized. Fig S8 presents all cell type-specific usage of a TF’s 331 

motifs; the cells where the motif usage is significantly different from expected usage are marked with 332 

asterisk (M&M). Notably, such diverse usage is observed using NonInteraction models, suggesting cell 333 

type-specific motif preference even without any modulation by the co-factors. 334 

Taken together, the cell type-specific co-factors revealed by TRISECT are consistent with their cell type-335 

specific expression and function and may be critical in modulating a TF’s cell type-specific biological 336 

function. 337 

 338 

Discussion 339 

In this study, we have presented a novel ensemble-based framework –TRISECT, to investigate intra-cell 340 

type heterogeneity of in vivo TF binding rules and inter-cell type commonality thereof. To the best of our 341 

knowledge, this is the first study to show, based on a comprehensive analysis, that in vivo binding 342 

specificity rule is composed of multiple components, or sub-models, many of which are shared across 343 

multiple cell types. Tellingly, non-orthologous targets of binding sites across cell types governed by a 344 

shared binding sub-model exhibit a greater functional and expression coherence than targets of binding 345 

sites in the same cell type that are governed by different binding rules. For each TF, TRISECT identified 346 

cell type-specific co-factors that are supported by gene expression data and literature studies supporting 347 

their cell type-specific function. As a useful functional resource, for 23 TFs included in this study, we 348 

provide a catalogue of clusters of shared sub-models, along with their putative cell type-specific targets, 349 

the co-factors characterizing the cluster and their function. 350 

Our ensemble model not only outperformed the previously reported sequence-based discriminative 351 

model (SVM-kmer), but in several cases it outperformed the model that utilizes the chromatin 352 

accessibility in addition to the sequence flanking the binding site (Arvey et al. 2012); paradoxically, some 353 

of the TFs (e.g., JUND) whose in vivo binding were deemed to depend less on the sequence context and 354 

more on the chromatin accessibility by the previous SVM approach were found to be adequately 355 

modeled by sequence alone when using the EMT approach. Taken together with our observation that 356 

these TFs depend on a large number of cell-type exclusive co-factors for their in vivo binding, these 357 

results suggest that cell type-specific chromatin accessibility is captured, to some extent, by binding sites 358 

for cell type-specific co-factors, shown independently by recent work (Whitaker et al. 2015; Benveniste 359 

et al. 2014). Apart from the modeling approach of a TF’s in vivo binding specificity, our study differs from 360 

Arvey et al (Arvey et al. 2012) in several other aspects. In discussing cell type-specificity, the previous 361 

study compared the models only in two cell types – GM12878 and K562, while we have investigated in-362 

depth the cell type-specificity of TRISECT across 4-12 cell types. While the previous work primarily 363 

discusses cell type-specificity and ubiquity of their models, by clustering the cell type-specific sub-364 

models, our work investigates the extent of shared binding rules; cell type-specificity and ubiquity are 365 

extreme cases thereof. In addition to cell type-specific variability in proximal co-factors, we investigated 366 

in much greater depth than the previous work the cross-cell type variability in the preferred motif for 367 

the reference TF. Together, these novel aspects of our study adds to the knowledge of sequence 368 

information that specify a TF’s in vivo binding in various cell types.  369 
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Another recent study (Dror et al. 2015) aiming to decipher the determinants of in vivo occupancy of a TF 370 

showed that TF binding specificity is influenced by nearby homotypic sites (for the reference TF), the 371 

local nucleotide composition, and certain DNA physical properties. Moreover, a preferred in vivo binding 372 

in a homotypic cluster was shown to be related to a preferred nucleotide composition (GC-rich for zinc 373 

finger TFs and AT-rich for homeodomain reference TFs) in the flanking region of the binding site. These 374 

previous findings are consistent with the fact that the co-factors identified by TRISECT are enriched for 375 

same family of TFs as the reference TF and thus have similar preference for nucleotide composition as 376 

the reference TF. In the previous work (Dror et al. 2015), the accuracy in discriminating bound vs. 377 

unbound sequences after controlling for the presence of a putative site for the reference TF was modest 378 

(ROCAUC ~ 0.6). Whereas, we have shown that the motifs for the reference TF alone can discriminate 379 

bound from the unbound control sites with ROCAUC ~ 0.78, suggesting that the reference TF are most 380 

informative in determining in vivo binding, as also observed in Pique-Regi et al (Pique-Regi et al. 2011), 381 

and the additional power of discriminations comes from the presence of co-factor motifs, as suggested 382 

before (Arvey et al. 2012; Hannenhalli & Levy 2002), or from nucleotide composition and various DNA 383 

physical properties (Dror et al. 2015). Interestingly, DNA flexibility measured by propeller twist (el 384 

Hassan & Calladine 1996) is highly dependent on GC-content (Hancock et al. 2013), which in turn is 385 

related to motif composition, as we have noted. Overall, these seemingly independent properties 386 

(nucleotide composition and DNA physical properties on one hand and motif composition on the other) 387 

may be related. Specific advantage of an ensemble model based on motif composition is that apart from 388 

being highly accurate, it is functionally interpretable and provides insights into a TF’s cell type-specific 389 

functions. 390 

Context-dependent function of a cis regulatory region requires binding of a specific combination of TFs. 391 

This modularity contributes to morphological evolution through changes in cis elements controlling 392 

transcription, while avoiding the pleiotropic effects of TF gene’s expression change (Prud’homme et al. 393 

2007). Shared sub-models of TF binding rules across cell types, as revealed by TRISECT, may suggest 394 

shared history of cell types. 395 

The ability of a TF to bind to diverse reference motifs and in conjunction, interact with diverse 396 

combinations of co-factors serves to enhance its functional repertoire across contexts (Meijsing et al. 397 

2009; Arvey et al. 2012). Our analyses indeed reveal cell type-specific preference for the reference motif 398 

as well as the cell type-specific interaction partners of a TF. We found that the expression of cell type-399 

specific interaction partners to be higher in the cell types where they are expected to interact with the 400 

TF and their function are consistent with the context based on the literature. Thus our study provides 401 

further support for a TF’s cell type-specific functions, and more importantly, enables further 402 

investigation into the mechanisms underlying a TF’s diverse cell-specific functions.  403 

 404 

Methods 405 

Data Processing 406 

We downloaded the ChIP-Seq peaks or 23 TFs from ENCODE (Supplementary Table 1). For each TF we 407 

selected only those cell lines for which narrow-peak data was available. We chose the more stringent of 408 

the two criteria – top 5000 most significant peaks, or FDR q-values<0.2 to select binding sites (Arvey et 409 

al. 2012). Relative to the center of ChIP-Seq peaks, the DNA regions of length 100bp were identified as 410 
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the foreground. As negative control, we sampled flanking regions of 100bp from 200bp away from the 411 

positive sequences. Moreover, control sequences overlapping with any peak were excluded. Due to the 412 

proximity of the negative examples, both foreground and background are expected to have similar GC-413 

composition (Arvey et al. 2012) and chromatin accessibility. However, we explicitly controlled for the GC 414 

composition using sequence set balancing technique when comparing the foreground and the 415 

background (Whitaker et al. 2015). We discarded any cell line resulting in fewer than 4000 sites.  416 

Learning EMT 417 

We considered three types of feature set for the sequence specificity model: (a) kmers - frequencies of 418 

4096 6-mers in the 100bp sequence, (b) kmerRC - frequencies of 2080 6-kmer groups equating a k-mer 419 

and its reverse complement, and (c) pwmlk – we take all the positional weight matrices (pwm) from 420 

TRANSFAC 2011 as the features and get the motif hits using PWMSCAN (Levy & Hannenhalli 2002). The 421 

feature value is the sum of pwm-score (-log10(hit score)) obtained from the PWMSCAN; we took the log 422 

of feature values to compensate for the skewed distribution of the number of binding sites. Here, lk 423 

refers to the PWM hit threshold (hit expected every l kb on average in the genome); we used l = 424 

1/2/5/10kb.  425 

We chose Adaptive boosting (Freidman 2008; Friedman 2002) as our composite model where each sub-426 

model within the ensemble is a decision tree and each decision tree is constructed based on a bootstrap 427 

sample. We used the Adaboost framework implemented in R gbm package (Ridgeway 2015). In the 428 

framework, Huber loss function is selected to reduce over-fitting. We estimated the classification 429 

accuracy of the model based on 25% held out data set, while 75% data were being used to build each 430 

tissue-specific model. 431 

Model conversion, Dudahart test and Hopkins statistics 432 

Each sub-model is represented by a point in a d-dimensional space. Each dimension denotes a feature 433 

and the value along the dimension indicates the importance of the feature for the sub-model. 434 

Therefore, each model (consisting of multiple sub-models) can be represented as a set of points in an n-435 

dimensional space where n ≤ 981. For a model, the feature importance was measured based on the 436 

prediction performance improvement by evaluating predictions on an out-of-bag samples. We modified 437 

the gbm package (Ridgeway 2015) implementation of feature-importance to accommodate the 438 

calculation for single tree or the sub-model in question. In other words, we determined the contribution 439 

of a single tree (sub-model) in prediction performance improvement using the same out-of-bag samples.  440 

We disregard the features which do not contribute to any sub-model. We measured dh-ratio (ratio of 441 

within-cluster sum of clusters and overall sum of squares) for all cluster pairs, based on either cell type-442 

specific set of sub-models, or the pooled set of sub-models across all cell types for a TF. While 443 

calculating dh-ratio, K-nearest neighborhood (KNN) approach was used for clustering. Since the final 444 

output of KNN depends on initial random set of centers, the dh-ratio calculation was repeated 1000 445 

times to ascertain robustness. We noted that all test results were significant (p-value < 0.01). 446 

To measure Hopkins statistics (H) the sub-models are again represented as a set of points. H is defined 447 

by the following. 448 

� �
∑ ��

�
���…�
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�� are the nearest-neighbor distances of m randomly chosen points (sub-models), which demarcate the 449 

sampling window. �� are the minimum distances of the sub-models from m random points in the 450 

sampling window. To define the sampling window, we either took 25 to 75 percentile of the feature 451 

values or from δ to max.value-δ along each dimension, where δ denotes the standard deviation of the 452 

feature value (Dubes & Zeng 1987; Zeng & Richard C Dubes 1985; Zeng & Richard C. Dubes 1985). To 453 

estimate p-value, we repeat the above procedure 1000 times and measured the H value. The p-values 454 

ranges from 0.026 to less than 0.001. 455 

Clustering sub-models 456 

For a TF, we obtained sub-models in all cell types, and then clustered all sub-models using K-nearest 457 

neighbor (KNN), where each sub-model is an instance and the features of the instances are individual 458 

feature-importance obtained in the context of respective tissue-specific model. Before feeding into the 459 

KNN, we remove all the features whose cumulative importance over all sub-models is zero. The sub-460 

models are also clustered using XY-fused version of self-organizing map (Melssen et al. 2006) from 461 

kohonen R package (Wehrens 2015). To make it comparable to KNN, we assumed 100% weight for X 462 

map, i.e. sub-models will be clustered without preexisting label of which sub-models belonged to which 463 

cell. 464 

Assignment of sequences and target genes to the clusters 465 

A cluster of sub-models can be viewed as a new ensemble. We scored each binding site sequence 466 

against each cluster, and a sequence is assigned to a cluster when it is scored above a threshold (of 1) by 467 

the cluster. The choice of the threshold was based on the rationale that the intercept (Ridgeway 2015) 468 

of tissue-specific models are ~1, and for a high-confidence positive sequence, the model-score should be 469 

greater than the intercept. Each bound sequence (from all cell lines) is mapped to a set of clusters. For 470 

each bound sequence, the nearest gene on the genome is considered to be its putative target, as per 471 

convention (Zhu et al. 2010). Hence, each cluster corresponds to a set of target genes coming from 472 

different tissues. We arranged the target genes into an M-by-N array, where M is the number of cell 473 

lines and N is the number of clusters. The enriched pathway among the target genes of each cluster was 474 

determined using clusterProfiler R package (Yu et al. 2012). 475 

Measuring functional and expression coherence using Fisher test 476 

We downloaded the KEGG pathways (www.genome.jp/kegg). We use the following contingency table to 477 

determine whether the target genes from different cell lines that are assigned to the same cluster are 478 

more functionally related than the target genes coming from the same tissue but from different clusters. 479 

Gene pair across Cluster 

(Foreground) 

Cell line 

(Background) 

In same 

Pathway? 

Yes a c 

No b d 

 480 

In the M-by-N target gene array, we compared all gene-pairs along columns from different rows (same 481 

cluster, different tissues) and the gene-pairs along rows from different columns (same tissue, different 482 
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cluster) as the background. Then we apply the Fisher exact test in a cluster-centric fashion by comparing 483 

the fraction of foreground gene-pairs in the same pathway relative to the background.  484 

Expression coherence tests were designed similarly, based on the following contingency table. 485 

Gene pair across Cluster 

(Foreground) 

Tissue 

(Background) 

Co-expressed? 
Yes a c 

No b d 

 486 

A gene-pair is considered co-expressed if both of the genes are turned on (RNA-seq log2CPM > 1) in 487 

their respective tissues; CPM stands for Counts per Million. CPM, instead of the standard FPKM measure 488 

to quantify gene expression suffices for our purpose as we only compare a gene’s expression across 489 

samples, and not with other genes in the same sample. We showed similar trend of expression 490 

coherence with different expression threshold (log2CPM>=5) (Fig S5). 491 

Model variability, and Motif-divergenece 492 

Model variability is defined by its normalized-predictability across cell lines. For each model, n ROCAUC 493 

values are obtained on held-out dataset of n cell-lines. Cross-ROCAUC values are normalized by self-494 

ROCAUC value. Mathematically, ��	����	�
�  

∑ ���
������,������	

���
���
 . 495 

Motif-divergence is defined by the following equation. ��
��. ���.���� � ∑
�����,�

�������
�,������ . Here, 496 

���
�,� � 1/������	�
��,� and ���  is the information content of ith motif. Similarity between two pwms 497 

is calculated following the normalized version of the sum of column correlations (Pietrokovski 1996). 498 

Identification of co-factors 499 

EMT provides importance of all features in discriminating the foreground from the background. We 500 

retained all features with nonzero importance. From the initial set, we removed any motif that has 60% 501 

pwm-similarity (consensus overlap) for at least 50% of the binding site locations with any of the 502 

reference motifs. Next, we calculated enrichment of the motif in the foreground binding sites relative to 503 

control sites. We retained the motifs with greater than 1.2-fold enrichment and p-value <= 0.05. The 504 

resulting motifs were considered as cofactor. For further analysis, we considered tissue specific 505 

cofactors by removing common motifs across tissue. For unique-relaxed set we excluded co-factors that 506 

are common across all cell-lines, and for unique-strict set co-factors common to any two cell lines were 507 

excluded. The functional tissue-specificity measure for a TF is determined using the cardinality-508 

variability of unique-strict co-factors.  509 

Gene expression and differential gene expression 510 

For gene expression, we used RNA-seq data downloaded from ENCODE (Supplementary Table 4). For 511 

each tissue, we obtained between 2 and 4 RNA-seq samples depending on the availability and obtained 512 

the number of reads aligned to the gene. We corrected for batch effect using ComBat tool (Leek & 513 

Storey 2007). To estimate differential expression between two set of cell lines (those in which a TF is 514 
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deemed a co-factor, and those where it is not), we used linear model from R package, limma (Smyth 515 

2005).  516 

Enrichment of same family TFs and heterodimerizing TFs 517 

We collected the family name of each PWM and the list of heterodimerizing PWMs based on semi-518 

automated inspection of TRANSFAC 2011 annotations, based on keywords and further reading of the 519 

description. For hyper-geometric test of family-enrichment, we compared how many co-factors belong 520 

to the family of reference motifs relative to the 981 motifs. Heterodimer enrichment was tested 521 

similarly. 522 

Cluster specific TF-interactions mapping 523 

Cluster-specific co-factors are identified by treating a cluster as a new ensemble of sub-models. We 524 

computed an aggregated relative importance of the features, considering the decision trees of the new 525 

ensemble corresponding to a cluster. Since the set of decision tree has been changed from the original 526 

set of trees from the EMT, some of the detected co-factors may be false positives. We took the 527 

intersection of the features (with non-zero importance) with the ‘enriched-nonoverlapped’ (or ‘distinct-528 

relaxed’ or ‘distinct-strict’) co-factors of the original EMT. The corresponding enriched GO terms are 529 

determined using a R package called clusterProfiler (Yu et al. 2012). 530 

Tissue-specific pwm for the reference TF 531 

We obtained relative feature importance of the reference motifs from the Noninteraction models and 532 

compared them with random expectation. To calculate the random expectation, 1000 Noninteraction 533 

models are learned based on randomly sampled 4k sites from among all binding sites across cell-lines. 534 

From 1000 models 1000 relative feature importance is calculated. Each set of relative importance is 535 

assumed a point in p-dimensional space where p is the number of reference motifs. We considered the 536 

relative importance vectors as data points from multivariate normal distribution and for each vector we 537 

calculated the Mahalanobis distances from the centroid which follows a chi-square distribution (Slotani 538 

1964). The degrees of freedom (d) for the chi-squared distribution is determined using maximum 539 

likelihood estimate and a P-value is generated from a chi-square distribution function of d degrees of 540 

freedom. 541 

 542 

Figures 543 

Figure 1: (A). Schematic of TRISECT pipeline. Different colors represent different binding rules or sub-544 

models. Rows (a, b, c) represent cell types. Green, pink and yellow colors indicate cell type-specific sub-545 

models. Each EMT is represented by a bucket of sub-models (top right). Star denotes sub-models and 546 

diamond denotes the corresponding data point after transformation into reduced feature space. The 547 

sub-models across all cell types are clustered. Cyan is common between cell types a and b, light-brown is 548 

common between cell types b and c, and purple is common across all three cell types. (B). Accuracy 549 

(ROCAUC) distribution for 6 choices of feature sets for EMT. (C). Comparison of accuracy between all 550 

pairs of 6 feature-set choices. Nodes are labeled with feature type and mean accuracy. Directional edges 551 

are labeled with Wilcoxon p-value. 552 
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Figure 2: Prediction accuracy comparison of EMT against svm-kmer and svm trained using both kmer 553 

and DNase (kmer+DNase), where (A) EMT is trained using kmerRC features, and (B) EMT is trained using 554 

pwm hits with 1kb stringency (pwm1k). Each point represent a TF. Except for 3~4 TFs (blue), EMT 555 

outperform svm in all other cases. For some TFs (green), sequence based EMT outperforms 556 

sequence+chromatin based model as well. 557 

Figure 3: Assessing the existence of sub-models shared across cell types. (A&B). Cluster membership 558 

matrix using k-nearest neighbor clustering. Each row represents a cluster and column represents a cell 559 

type. Each element in the matrix denotes the number of sub-models in the cluster coming from each cell 560 

type. Some clusters consist of sub-models from multiple cells (cluster#20 in B), while some other consist 561 

of sub-models from a single cell type (cluster#6 in A). (C&D). Boxplot of dh-ratio and Hopkins statistic for 562 

135 TF-cell pairs based on sub-models of TF-cell type pair, and pooling all sub-models for each TF. 563 

Figure 4: Functional and Expression coherence of sub-model clusters. (A&B) Fraction of multi-cell 564 

clusters found to be coherent using k-nearest neighbor (KNN) and XY-Fused (XYF) self-organizing map 565 

respectively. Mapped.targets denotes when genes are assigned to cluster based on TRISECT pipeline, 566 

random.targets indicates the clusters consisting of random genes among all targets and random.genes 567 

indicates the cluster consisting of random genes. 568 

Figure 5: Association between number of interaction partners and model-accuracy. (A) The trend of 569 

model accuracy with increasing sequence size for TF ZNF143 (selected arbitarily for illustration). (B). 570 

Comparison of cross-validation prediction accuracy for Interaction and Noninteraction models. (C). 571 

Comparison of model variability  in log scale (cross-cell type performance variability) for Interaction and 572 

Noninteraction models. (D). Distribution of the fraction of test sequences that fall in one of the four 573 

categories: Overlapped_true (respectively, overlapped_false) denotes the  correctly (respectively, 574 

incorrectly) classified sequences having at least 50% overlap between the training sequences in one cell 575 

type and the test sequences in another cell type.  Nonoverlapped_true (respectively, 576 

nonoverlapped_false) denotes correctly (respectively, incorrectly) classified sequences that do not 577 

overlap with any sequence in the training set. 578 

Figure 6: Functional validation of putative co-factors. (A). Identified co-factors have higher expression in 579 

the cell lines they are detected in. For a TF motif detected as a co-factor in n cell lines, and not in 580 

another m cell lines, we calculated fold difference in the TF’s expression between the two sets of cell 581 

lines. Each boxplot corresponds to all co-factors of a TF in X-axis. (B). As an example, for ATF3, GO 582 

enrichment analysis of co-factors in four cell types recapitulate the known cell type-specific biological 583 

roles. 584 

Figure 7: EMT model heterogeneity is associated with cell type-specificity of co-factors. (A) The plot 585 

shows for each TF the variability of co-factor cardinality across cell types. Each point is further labeled 586 

with cell type where the relevant TF has specific usage, based on literature and has largest number of 587 

co-factors. TBP and CTCF are the most ubiquitous TFs. (B) Normalized ROCAUC difference of Interaction 588 

and NonInteraction models for a specific TF-cell type pair correlates with co-factor cardinality. (C-D) 589 

Cross-cell type variability in motif usage for the reference TF in the NonInteraction model, for JUN and 590 

TBP as two extreme examples. JUN shows different binding specificity in different cell types, while TBP 591 

does not. 592 

 593 
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