1 Association mapping of inflammatory bowel disease loci to single variant resolution

Hailiang Huang^{1,2}*§, Ming Fang^{3,4}*, Luke Jostins^{5,6}*, Maša Umićević Mirkov⁷, Gabrielle 2 Boucher⁸, Carl A Anderson⁷, Vibeke Andersen^{9,10}, Isabelle Cleynen¹¹, Adrian Cortes⁵, François Crins^{3,4}, Mauro D'Amato^{12,13}, Valérie Deffontaine^{3,4}, Julia Dimitrieva^{3,4}, Elisa Docampo^{3,4}, Mahmoud Elansary^{3,4}, Kyle Kai-How Farh^{1,2,14}, Andre Franke¹⁵, Ann-Stephan Gori^{3,4}, Philippe Goyette⁸, Jonas Halfvarson¹⁶, Talin Haritunians¹⁷, Jo Knight¹⁸, Ian C Lawrance^{19,20}, Charlie W Lees²¹, Edouard Louis²², Rob Mariman^{3,4}, Theo Meuwissen^{3,4}, Myriam Mni^{3,4}, Yukihide Momozawa^{3,4,23}, Miles Parkes²⁴, Sarah L 3 4 5 6 7 8 Spain^{25,26}, Emilie Théâtre^{3,4}, Gosia Trynka⁷, Jack Satsangi²¹, Suzanne van Sommeren²⁷, 9 Severine Vermeire^{11,28}, Ramnik J Xavier^{2,29}, International IBD Genetics Consortium[†], Rinse K Weersma²⁷, Richard H Duerr^{30,31}, Christopher G Mathew^{25,32}, John D Rioux^{8,33}, Dermot PB McGovern¹⁷, Judy H Cho³⁴, Michel Georges^{3,4}§, Mark J Daly^{1,2}§, Jeffrey C 10 11 12 13 Barrett⁷§ 14 ¹Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, 15 Boston, Massachusetts, USA. ²Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. ³Unit 16 of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research 17 Center, University of Liège, Liège, Belgium. ⁴Faculty of Veterinary Medicine, University of Liège, Liège, 18 Belgium. ⁵Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, UK. ⁶Christ 19 Church, University of Oxford, St Aldates, UK. ⁷Wellcome Trust Sanger Institute, Hinxton (Cambridge), 20 UK. ⁸Research Center, Montreal Heart Institute, Montréal, Québec, Canada. ⁹Medical Department, Viborg 21 Regional Hospital, Viborg, Denmark. ¹⁰Organ Center, Hospital of Southern Jutland Aabenraa, Aabenraa, $\overline{22}$ Denmark.¹¹Department of Clinical and experimental medicine, Translational Research in GastroIntestinal 23 24 Disorders (TARGID), Katholieke Universiteit (KU) Leuven, Leuven, Belgium. ¹²Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden. ¹³BioCruces Health Research 25 Institute and IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.¹⁴Illumina, San Diego, 26 California, USA. ¹⁵Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, 27 Germany. ¹⁶Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, 28 Sweden. ¹⁷F.Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai 29 Medical Center, Los Angeles, California, USA.¹⁸Campbell Family Mental Health Research Institute, 30 Centre for Addiction and Mental Health, Toronto, Ontario, Canada. ¹⁹Centre for Inflammatory Bowel 31 Diseases, Saint John of God Hospital, Subiaco, WA, Australia.²⁰Harry Perkins Institute for Medical 32 33 Research, School of Medicine and Pharmacology, University of Western Australia, Murdoch, WA, Australia.²¹Gastrointestinal Unit, Wester General Hospital University of Edinburgh, Edinburgh, UK. 34 ²²Division of Gastroenterology, Centre Hospitalier Universitaire (CHU) de Liège, Liège, Belgium. 35 ²³Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, 36 Japan. ²⁴Inflammatory Bowel Disease Research Group, Addenbrooke's Hospital, Cambridge, UK. 37 ²⁵Department of Medical and Molecular Genetics, King's College London, London, UK. ²⁶Centre for 38 Therapeutic Target Validation, Wellcome Trust Genome Campus, Hinxton (Cambridge), UK, ²⁷Department 39 of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands. 40 ²⁸Division of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium. ²⁹Gastroenterology 41 Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. ³⁰Division 42 of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School 43 of Medicine, Pittsburgh, Pennsylvania, USA. ³¹Department of Human Genetics, University of Pittsburgh 44 Graduate School of Public Health, Pittsburgh, Pennsylvania, USA. ³²Sydney Brenner Institute for 45 Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa. ³³Faculté de 46 Médecine, Université de Montréal, Montréal, Québec, Canada.³⁴Department of Genetics, Yale School of 47 Medicine, New Haven, Connecticut, USA. 48 *These authors contributed equally to this work. 49 These authors contributed equally to this work (corresponding authors). E-mails: 50 hhuang@atgu.mgh.harvard.edu (H.H.); michel.georges@ulg.ac.be (M.G.); mjdaly@atgu.mgh.harvard.edu

- 51 (M.J.D.) and jb26@sanger.ac.uk (J.C.B.)
- 52 †A full list of members and affiliations appears at the end of the paper.

53 Summary (150 words)

54	Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammatory disorder
55	that affects millions worldwide. Genome-wide association studies (GWAS) have
56	identified 200 IBD-associated loci, but few have been conclusively resolved to specific
57	functional variants. Here we report fine-mapping of 94 IBD loci using high-density
58	genotyping in 67,852 individuals. Of the 139 independent associations identified in these
59	regions, 18 were pinpointed to a single causal variant with >95% certainty, and an
60	additional 27 associations to a single variant with >50% certainty. These 45 variants are
61	significantly enriched for protein-coding changes (n=13), direct disruption of
62	transcription factor binding sites (n=3) and tissue specific epigenetic marks (n=10), with
63	the latter category showing enrichment in specific immune cells among associations
64	stronger in CD and gut mucosa among associations stronger in UC. The results of this
65	study suggest that high-resolution, fine-mapping in large samples can convert many
66	GWAS discoveries into statistically convincing causal variants, providing a powerful
67	substrate for experimental elucidation of disease mechanisms.
68	

69 Inflammatory bowel disease (IBD) is a chronic, debilitating disorder of the

70 gastrointestinal tract with peak onset in adolescence and early adulthood. More than 1.4 million people are affected in the USA alone¹, with an estimated direct healthcare cost of 71 72 \$6.3 billion/year. IBD affects millions worldwide with a rising prevalence, particularly in 73 pediatric and non-European ancestry populations². IBD is comprised of two etiologically 74 related subtypes, ulcerative colitis (UC) and Crohn's disease (CD), which have distinct 75 presentations and treatment courses. To date, 200 genomic loci have been associated with IBD^{3,4}, but only a handful have been conclusively ascribed to a specific causal variant 76 77 with direct insight into the underlying disease biology. This scenario is common to all 78 genetically complex diseases, where the pace of identifying associated loci outstrips that 79 of defining specific molecular mechanisms and extracting biological insight from each 80 association.

81 The widespread correlation structure of the human genome (known as linkage 82 disequilibrium, or LD) often results in similar evidence for association among many nearby variants. However, unless LD is perfect ($r^2 = 1$), it is possible, with sufficiently 83 84 large sample size, to statistically resolve causal variants from neighbors even at high levels of correlation (Extended Data Figure 1 and van de Bunt *et al.*⁵). Novel statistical 85 86 approaches applied to very large datasets have begun to address this problem⁶ but also 87 require that the highly correlated variants are directly genotyped or imputed with 88 certainty. Truly high-resolution mapping data, when combined with increasingly 89 sophisticated and comprehensive public databases annotating the putative protein-coding 90 and regulatory function of DNA variants, are likely to reveal novel insights into disease pathogenesis⁷⁻⁹ and the mechanistic involvement of disease-associated variants. 91

92

93 Genetic architecture of IBD associated loci

94	As part of a large collaborative effort led by the International IBD Genetics Consortium
95	(IIBDGC), 67,852 study subjects of European ancestry, including 33,595 IBD (18,967
96	CD and 14,628 UC) and 34,257 healthy controls were genotyped using the Illumina TM
97	(San Diego, CA, USA) Immunochip. This custom genotyping array was designed to
98	include all known variants from European individuals in the February 2010 release of the
99	1000 Genomes Project ^{10,11} in 186 high-density regions known to be associated to one or
100	more of 12 immune-mediated diseases ¹² . We evaluated ninety-seven of these regions
101	previously associated with IBD^3 and containing one or more associated variants (p < 10^{-6})
102	in this data set. The major histocompatibility complex was excluded from these analyses
103	as fine-mapping has been reported elsewhere ¹³ . Because fine-mapping uses subtle
104	differences in strength of association between tightly correlated variants to infer which is
105	most likely to be causal, it is particularly sensitive to data quality. We therefore
106	performed stringent quality control (QC) to remove genotyping errors and batch effects,
107	including manual cluster plot inspection for 905 variants (Methods). After QC, we
108	imputed this dataset using the 1000 Genomes reference panel (December 2013,
109	downloaded from IMPUTE2 ^{14,15} website) to fill in missing variants or genotype data
110	dropped in chip design or QC (Figure 1a).
111	We applied three complementary Bayesian fine-mapping methods that used
112	different priors and model selection strategies both to identify independent association
113	signals within a region (Supplementary Methods), and to assign a posterior probability of

114 causality to each variant (Figure 1a). For each independent association signal, we sorted

115	all variants by the posterior probability of association, and added variants to the 'credible
116	set' of associated variants until the sum of their posterior probability exceeded 95% $-$
117	that is, the credible set contains the minimum list of DNA variants that are >95% likely to
118	contain the causal variant (Figure 1b). These sets ranged in size from one to > 400
119	variants. We merged these results (Methods) and subsequently focused (Figure 1a) only
120	on signals where an overlapping credible set of variants was identified by at least two of
121	the three methods and all variants were either directly genotyped or well imputed
122	(Methods). Fluorescent signal intensity cluster plots were manually reviewed for all
123	variants in credible sets with ten or fewer variants, and a second round of imputation and
124	analysis was performed if any genotypes were removed based on this review.
125	In 3 out of 97 regions, a consistent credible set could not be identified; when
126	multiple independent effects exist in a region with several highly correlated signals,
127	multiple distinct fine-mapping solutions may not be distinguishable (Supplementary
128	Notes). Sixty-eight of the remaining 94 regions contain a single credible set, while 26
129	harbored two or more independent association signals, for a total of 139 independent
130	associations defined across the 94 regions (Figure 2a). Only IL23R and NOD2 (both
131	previously established to contain multiple associated protein-coding variants ¹⁶), contain
132	more than three independent signals. Consistent with previous reports ³ , the vast majority
133	of signals are associated with both CD and UC. However, many of these have
134	significantly stronger association with one subtype than the other. For the purposes of
135	enrichment analyses below, we compare 79 signals that are more strongly associated with
136	CD to 23 signals that are more strongly associated with UC (the remaining 37 are equally
137	associated with both subtypes) ("list of credible sets" sheet, Supplementary Table 1).

138	Using a restricted maximum likelihood mixed model approach ¹⁷ , we evaluated the
139	proportion of total variance in disease risk attributed to these 94 regions and how much of
140	that is explained by the 139 specific associations. We estimated that 25% of CD risk was
141	explained by the specific associations described here, out of a total of 28% explained by
142	these loci (the corresponding numbers for UC are 17% out of 22%). This indicates that
143	our credible sets capture most of the IBD genetic risk at these loci. The single strongest
144	signals in each region contribute 76% of this variance explained and the remaining
145	associations contribute 24% (Extended Data Figure 2b), highlighting the importance of
146	secondary and tertiary associations in the articulation of GWAS results ^{13,18} .
147	
148	Associations mapped to a single variant
149	For 18 independent signals, the 95% credible set consisted of a single variant (hereafter
150	referred to as 'single variant credible sets') and for 24 others, the credible set consisted of
151	two to five variants (Figure 2b). The single variant credible sets included five previously
152	reported coding variants: three in NOD2 (fs1007insC, R702W, G908R), a rare protective
153	allele in <i>IL23R</i> (V362I) and a splice variant in <i>CARD9</i> (c.IVS11+1G>C) 16,19 . The
154	remaining single variant credible sets were comprised of three missense variants (I170V
155	in SMAD3, I923V in IFIH1 and N289S in NOD2), four intronic variants (in IL2RA,
156	LRRK2, NOD2 and RTEL1/TNFRSF6B) and six intergenic variants (located 3.7kb
157	downstream of GPR35; 3.9kb upstream of PRDM1; within a EP300 binding site 39.9 kb
158	upstream of <i>IKZF1</i> ; 500 bp before the transcription start site of <i>JAK2</i> ; 9.4kb upstream of
159	NKX2-3; and 3.5kb downstream from HNF4A) (Table 1). A customizable browser
160	(https://atgu.shinyapps.io/Finemapping) enabling review of the detailed fine-mapping

161	results in each region along with all annotations discussed below has been prepared. Of
162	note, while physical proximity does not guarantee functional relevance, the credible set of
163	variants for 29 associated loci now resides within 50 kb of only a single gene - improved
164	from only 3 so refined using an earlier HapMap-based definition. Using the same
165	definitions, the total number of potential candidate genes was reduced from 669 to 331.
166	Examples of IBD candidate genes clearly prioritized in our data are described in the
167	Supplementary Box.
168	
169	Sequence-level consequences of associated variants – protein coding variation
170	We first annotated the possible functional consequences of the IBD variants by their
171	effect on the amino acid sequences of proteins. Thirteen out of 45 variants that have
172	>50% posterior probability are non-synonymous (Table 1 and Figure 2c), an 18-fold
173	enrichment (p-value= $2x10^{-13}$, Fisher's exact test) relative to randomly drawn variants in
174	our regions. By contrast, only one variant with >50% probability is synonymous
175	(p=0.42). All common coding variants previously reported to affect IBD risk are
176	included in a 95% credible set including: IL23R (R381Q, V362I and G149R); CARD9
177	(c.IVS11+1G>C and S12N); NOD2 (S431L, R702W, V793M, N852S and G908R,
178	fs1007insC); ATG16L1 (T300A); PTPN22 (R620W); and FUT2 (W154X). While this
179	enrichment of coding variation (Figure 3a) provides assurance about the accuracy of our
180	approach, it does not suggest that 30% of all associations are caused by coding variants;
181	rather, it is almost certainly the case that associated coding variants have stronger effect
182	sizes, making them more amenable to fine mapping.
183	

184 Sequence-level consequences of associated variants – non-coding variation

185 We next examined the best understood non-coding aspect of DNA sequence: conserved 186 nucleotides in high confidence binding site motifs of 84 transcription factor (TF) families²⁰ (Methods). There was a significant positive correlation between TF motif 187 188 disruption and IBD association posterior probability (p-value=0.006, binomial 189 regression) (Figure 3a), including three variants with >50% probability (two >95%). In 190 the *RTEL1/TNFRSF6B* region, rs6062496 region is predicted to disrupt a TF binding site 191 (TFBS) for EBF1 and overlaps DNaseI hypersensitivity clusters. EBF1 is a TF involved 192 in the maintenance of B cell identity and prevention of alternative fates in committed $cells^{21}$. The second example, rs74465132, is a low frequency (3.6%) protective variant 193 194 that creates a binding site for EP300 less than 40kbp upstream of IKZF1 (zinc-finger 195 DNA binding protein). The third notable example of TFBS disruption, although not in a 196 single variant credible set, is detailed in the Supplementary Box for the association at 197 SMAD3. 198 Recent studies have shown that trait associated variants are enriched for

199 epigenetic marks highlighting cell type specific regulatory regions ^{22,23}. We compared our 200 credible sets with ChIPseq peaks corresponding to chromatin immunoprecipitation with 201 H3K4me1, H3K4me3 and H3K27ac in 120 adult and fetal tissues, assayed by the NIH Roadmap Epigenomics Mapping Consortium²⁴ (Figure 3b). Using a threshold of 202 203 $p=1.3 \times 10^{-4}$ (0.05 corrected for 360 tests), we observed significant enrichment of 204 H3K4me1 in 6 immune cell types and for H3K27ac in 3 gastrointestinal (GI) samples 205 (sigmoid colon and colonic and rectal mucosa) (Figure 3b and Supplementary Table 2). 206 Furthermore, the subset of signals that are more strongly associated with CD overlap

207 more with immune cell chromatin peaks, whereas UC signals overlap more with GI208 chromatin peaks (Supplementary Table 2).

209 These three chromatin marks are correlated both within tissues (we observe 210 additional signal in other marks in the tissues described above) and across related tissues. 211 We therefore defined a set of "core immune peaks" for H3K4me1 and "core GI peaks" 212 for H3K27ac as the set of overlapping peaks in all enriched immune cell and GI tissue 213 types, respectively. These two tracks (immune-K4me1 and gut-K27ac) are independently 214 significant and capture the observed enrichment compared to "control peaks" made up of 215 the same number of ChIPseq peaks across our 94 regions in non-immune and non-GI 216 tissues (Figure 3c,d). These two tracks summarize our epigenetic-GWAS overlap signal, 217 and the combined excess over the baseline suggests that a substantial number of regions, 218 particularly those not mapped to coding variants, may ultimately be explained by 219 functional variation in recognizable enhancer/promoter elements.

220

221 Overlap of IBD credible sets with expression QTLs

222 Variants that change enhancer or promoter activity might precipitate changes in gene 223 expression, and baseline expression of many genes has been found to be regulated by genetic variation²⁵⁻²⁷. Indeed, these so-called expression quantitative trait loci (eQTLs) 224 have been suggested to underlie a large proportion of GWAS associations^{25,28}. We 225 226 therefore searched for variants that are both in an IBD associated credible set with 50 or 227 fewer variants and the most significantly associated eQTL variant for a gene in the GODOT study²⁹ of peripheral blood mononuclear cells (PBMC) from 2,752 twins. 228 229 Sixty-eight of the 76 regions with signals fine-mapped to < 50 variants harbor at least one

230	significant eQTL (defined as influencing expression of a gene within 1 Mb of the region
231	with a p-value $< 10^{-5}$). Despite this apparent abundance of eQTLs in fine-mapped
232	regions, only 3 credible sets overlap eQTLs, compared with 3.7 expected by chance
233	(Methods). Data from a more recent independent study (Westra et al.) ³⁰ using PBMCs
234	from 8,086 individuals did not yield a substantively different outcome, demonstrating a
235	modest but non-significant enrichment (8 observed overlaps, 4.2 expected by chance,
236	p=0.07). Using a more lenient definition of overlap which requires the lead eQTL variant
237	to be in LD ($R^2 > 0.4$) with an IBD credible set variant increased the number of potential
238	overlaps but again these numbers were not greater than chance expectation (GODOT:
239	observed 14, expected 12.2; Westra et al.: observed 11, expected 9.1).
240	As PBMCs are a heterogeneous collection of immune cell populations, cell type-
241	specific signals, or signals corresponding to genes expressed most prominently in non-
242	immune tissues, may be missed. We therefore tested the enrichment of eQTLs that
243	overlap credible sets in 5 primary T cell populations (CD4+, CD8+, CD19+, CD14+ and
244	CD15+), platelets, and 3 distinct intestinal locations (rectum, colon and ileum) isolated
245	from 350 healthy individuals (ULg dataset, Methods). We observed a significant
246	enrichment of credible SNP/eQTL overlaps in CD4+ cells and ileum (Extended Table 1):
247	3 and 2 credible sets overlapped eQTLs, respectively, compared to 0.4 and 0.3 expected
248	by chance (p-value=0.007 and 0.025). An enrichment was also observed for the naïve
249	CD14+ cells from another study ³¹ (Knight dataset, Extended Data Table 1): eight
250	overlaps observed compared to 2.7 expected by chance (p-value=0.005). We did not
251	observe enrichment of overlaps in stimulated (with interferon or lipopolysaccharide)
252	CD14+ cells from the same source (Extended Data Table 1).

253	To more deeply investigate eQTL overlaps we applied two colocalization
254	approaches (one based on permutations, one Bayesian, Methods) to eQTL datasets where
255	primary genotype and expression data were available (ULg dataset). We confirmed
256	greater than expected overlap with eQTLs in CD4+ and ileum described above (Figure 4
257	and Extended Data Table 1). The number of colocalizations in other purified cell
258	types/tissues was largely indistinguishable from what we expect under the null using
259	either method, except for moderate enrichment in rectum (4 observed and 1.4 expected,
260	p=0.039) and colon (3 observed and 0.8 expected, p=0.04). Of these robust
261	colocalizations, only two correspond to an IBD variant with causal probability $> 50\%$
262	(Table 1 and Extended Data Figure 3a).
263	
264	Discussion
264 265	Discussion We have performed fine-mapping of 94 previously reported genetic risk loci for IBD.
265	We have performed fine-mapping of 94 previously reported genetic risk loci for IBD.
265 266	We have performed fine-mapping of 94 previously reported genetic risk loci for IBD. Rigorous quality control followed by a integration of three novel fine-mapping methods
265 266 267	We have performed fine-mapping of 94 previously reported genetic risk loci for IBD. Rigorous quality control followed by a integration of three novel fine-mapping methods was employed to generate a list of genetic variants accounting for 139 independent
265 266 267 268	We have performed fine-mapping of 94 previously reported genetic risk loci for IBD. Rigorous quality control followed by a integration of three novel fine-mapping methods was employed to generate a list of genetic variants accounting for 139 independent associations across these loci. These associations account for more than 80% of the total
265 266 267 268 269	We have performed fine-mapping of 94 previously reported genetic risk loci for IBD. Rigorous quality control followed by a integration of three novel fine-mapping methods was employed to generate a list of genetic variants accounting for 139 independent associations across these loci. These associations account for more than 80% of the total variance explained by these loci. Our results substantially improve on previous fine-
265 266 267 268 269 270	We have performed fine-mapping of 94 previously reported genetic risk loci for IBD. Rigorous quality control followed by a integration of three novel fine-mapping methods was employed to generate a list of genetic variants accounting for 139 independent associations across these loci. These associations account for more than 80% of the total variance explained by these loci. Our results substantially improve on previous fine- mapping efforts using a preset LD threshold (e.g. $r^2 > 0.6^{32}$) (Figure 5) by formally
265 266 267 268 269 270 271	We have performed fine-mapping of 94 previously reported genetic risk loci for IBD. Rigorous quality control followed by a integration of three novel fine-mapping methods was employed to generate a list of genetic variants accounting for 139 independent associations across these loci. These associations account for more than 80% of the total variance explained by these loci. Our results substantially improve on previous fine- mapping efforts using a preset LD threshold (e.g. $r^2 > 0.6^{32}$) (Figure 5) by formally modeling the posterior probability of association of every variant. Much of this

are fine-mapped to \leq 5 variants – this improves to 53% if the sample size were to double again.

277	Additionally, the high-density of genotyping also aids in improved resolution.						
278	For instance, the primary association at IL2RA has now been mapped to a single variant						
279	associated with CD, rs61839660. This variant was not present in the Hapmap 3 reference						
280	panel and was therefore not reported in earlier studies ^{3,33} (nearby tagging variants,						
281	rs12722489 and rs12722515, were reported instead). Imputation using the 1000 genomes						
282	reference panel and the largest assembled GWAS dataset ³ did not separate rs61839660						
283	from its neighbors (unpublished results), due to the loss of information in imputation						
284	using the limited reference. Only direct genotyping, available in the immunochip high-						
285	density regions, permitted the conclusive identification of this as the causal variant.						
286	Accurate fine-mapping should, in many instances, ultimately point to the same						
287	variant across diseases in shared loci. Among our single-variant credible sets, we fine-						
288	mapped a UC association to a rare missense variant (I923V) in IFIH1, which is also						
289	associated with type 1 diabetes $(T1D)^{34}$ with an opposite direction of effect						
290	(Supplementary Box). The intronic variant noted above (rs61839660, AF=9%) in IL2RA						
291	was also similarly associated with T1D, again with a discordant directional effect ³⁵						
292	(Supplementary Box). Simultaneous high-resolution fine-mapping in multiple diseases						
293	should therefore better clarify both shared and distinct biology.						
294	High-resolution fine-mapping demonstrates that causal variants are significantly						
295	enriched for variants that alter protein coding variants or disrupt transcription factor						
296	binding motifs. Enrichment was also observed in H3K4me1 marks in immune related						
297	cell types and H3K27ac marks in sigmoid colon and rectal mucosal tissues – with CD						

298	loci demonstrating a stronger immune signature and UC loci more enriched for gut
299	tissues. By contrast, overall enrichment of eQTLs is quite modest compared with prior
300	reports and not seen in excess of chance in our well-refined credible sets. This result
301	underscores not only the importance of the high-resolution mapping but also the careful
302	incorporation of the high background rate of eQTLs. It is worth noting that evaluating
303	the overlap between two distinct mapping results is fundamentally different than
304	comparing genetic mapping results to fixed genomic features, and depends on both
305	mappings being well-resolved. While these data strongly challenge the paradigm that
306	easily surveyed baseline eQTLs explain a large proportion of non-coding GWAS signals,
307	the modest excesses observed in smaller but cell-specific data sets suggest that much
308	larger tissue or cell-specific studies (and under the correct stimuli or developmental time
309	points) will resolve the contribution of eQTLs to GWAS hits.
310	Resolving multiple independent associations may often help target the causal gene
311	more precisely. For example, the SMAD3 locus hosts a non-synonymous variant and a
312	variant disrupting the conserved transcription factor binding site (also overlapping the
313	H3K27ac marker in gut tissues), unambiguously articulating a role in disease and
314	providing an allelic series for further experimental inquiry. Similarly, the TYK2 locus has
315	been mapped to a non-synonymous variant and a variant disrupting a conserved
316	transcription factor binding site (Extended Data Figure 5).
317	One-hundred and sixteen associations have been fine-mapped to \leq 50 variants.
318	Among them, 27 associations contain coding variants, 20 contain variants disrupting
319	transcription factor binding motifs, and 45 are within histone H3K4me1 or H3K27ac
320	marked DNA regions. However, 40 non-coding associations were not mapped to any

known function (Extended Data Figure 3b) despite extensive efforts to integrate with allavailable annotation, epigenetic and eQTL data.

323	The best-resolved associations - 45 variants having >50% posterior probabilities
324	for being causal (Table 1) – are similarly significantly enriched for variants with known
325	or presumed function from genome annotation. Of these, 13 variants cause non-
326	synonymous change in amino acids, 3 disrupt a conserved TF binding motif, 10 are
327	within histone H3K4me1 or H3K27ac marked DNA regions in disease-relevant tissues,
328	and 2 co-localize with a significant cis-eQTL (Extended Data Figure 3a).
329	This analysis leaves, however, 21 non-coding variants, all of which have
330	extremely high probabilities to be causal (5 are in the >95% list), that are not located
331	within known motifs, annotated elements, nor in any experimentally determined ChIPseq
332	peaks or eQTL credible sets yet discovered. While we have identified a statistically
333	compelling set of genuine associations (often intronic or within 10 kb of strong candidate
334	genes), we can make little inference about function. For example, the single variant
335	credible set only 500 bp from the transcription start site of JAK2 has no annotation,
336	eQTL or ChIPseq peak of note. This underscores the incompleteness of our knowledge
337	regarding the function of non-coding DNA and its role in disease. That the majority of
338	the best refined non-coding associations have no available annotation is perhaps sobering
339	with respect to how well we may be able to currently interpret non-coding variation in
340	medical sequencing efforts. It does suggest, however, that detailed fine-mapping of
341	GWAS signals down to single variants, combined with emerging high-throughput
342	genome-editing methodology, may be among the most effective ways to advance to a
343	greater understanding of the biology of the non-coding genome.

344 List of Figures

345 Figure 1. Procedures in the fine-mapping analysis. a, Flowchart of fine-mapping steps. 346 Dashed line means the imputation has been performed only once after manual inspection 347 (not iteratively). **b**, **An** example output from fine-mapping. This region has been mapped 348 to two independent signals. For each signal, fine-mapping reports the phenotype it is 349 associated with, the variants it is fine-mapped to and their posterior probabilities. 350 Figure 2. Summary of fine-mapped associations. a, sixty-eight loci hosting a single 351 association and 26 loci hosting multiple independent associations. b, Number of variants 352 in credible sets. 18 associations were fine-mapped to a single variant, and 116 to ≤ 50 353 variants. Only credible sets having ≤ 50 variants were advanced for set-enrichment 354 analyses (epigenetics and eQTL). c, distribution of the posterior probability in credible 355 sets having ≤ 50 variants. 45 variants have posterior probability > 50% and were 356 advanced for variant-based enrichment analyses (coding, TFBS disruption and 357 epigenetics). 358 Figure 3. Functional annotation of causal variants. a, Proportion of variants that are 359 protein coding, disrupting/creating transcription factor binding motifs or synonymous. **b**, 360 Epigenetic peaks overlapping credible variants in various cell lines. Sample categories were taken from the Roadmap Epigenomics Consortium³⁶. Significant cell line-peak 361

and pairs have been marked with asterisks. **c**, Proportion of credible variants that overlap

363 H4K4Me1 peaks. d, Proportion of credible variants that overlap H3K27ac peaks. In

panels **a**, **c** and **d**, the vertical dotted lines mark the 50% probability and the horizontal

365 dashed lines show the background proportions of each functional category.

Figure 4. Number of credible sets that colocalize eQTLs. The violin plot shows the

- 367 distribution of the number of colocalizations by chance (background) and the solid points
- 368 shows the observed number of colocalizations. P-values of the enrichment were shown
- 369 next to the solid points. Both the background and the observed numbers were calculated
- 370 using the permutation based approach (Methods).

371 **Figure 5. Fine-mapping improved the resolution of genetic associations.** We

- 372 compare the numbers of variants that are mapped in each independent signal using the
- 373 fine-mapping approach (y axis) and the $R^2 > 0.6$ cut-off (x axis). Fine-mapping maps
- 374 most signals to smaller numbers of variants.
- 375

bioRxiv preprint doi: https://doi.org/10.1101/028688; this version posted October 8, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

376 List of Tables

377	Table 1: Summary of variants having posterior probability >50%. Variants were sorted
378	by their posterior probabilities. AF: allele frequency. PROB: posterior probability for
379	being a causal variant. FUNC: functional annotations including coding (C), Epegenetic
380	peaks (E), disrupting transcription factor binding sites (T) and colocalization with eQTL

381 (Q).

VARIANT	CHR	POSITION	TRAIT	AF	PROB	FUNC	ANNOTATION
Signals mapped to a single variant							
rs7307562	12	40724960	CD	0.398	0.999		LRRK2 (intronic)
rs2066844	16	50745926	CD	0.063	0.999	С	NOD2(R702W)
rs2066845	16	50756540	CD	0.022	0.999	С	NOD2(G908R)
rs6017342	20	43065028	UC	0.544	0.999	E	HNF4A (downstream), Gut_H3K27ac
rs61839660	10	6094697	CD	0.094	0.999	E	IL2RA (intronic), Immune_H3K4me1
rs5743293	16	50763781	CD	0.964	0.999	С	fs1007insC
rs6062496	20	62329099	IBD	0.587	0.996	Т	RTEL1- TNFRSF6B (ncRNA_intronic), EBF1 TFBS
rs141992399	9	139259592	IBD	0.005	0.995	С	CARD9(1434+1G>C)
rs35667974	2	163124637	UC	0.021	0.994	С	IFIH1(I923V)
rs74465132	7	50304782	IBD	0.034	0.994	T,E	IKZF1 (upstream), EP300 TFBS, Immune H3K4me1
rs4676408	2	241574401	UC	0.508	0.994		GPR35 (downstream)
rs5743271	16	50744688	CD	0.007	0.993	С	NOD2(N289S)
rs10748781	10	101283330	IBD	0.55	0.990	E	NKX2-3 (upstream), Gut_H3K27ac
rs35874463	15	67457698	IBD	0.054	0.989	C,E	SMAD3(l170V), Gut_H3K27ac
rs72796367	16	50762771	CD	0.023	0.983		NOD2 (intronic)
rs1887428	9	4984530	IBD	0.603	0.974		JAK2 (upstream)
rs41313262	1	67705900	CD	0.014	0.973	С	IL23R <mark>(V362I)</mark>
rs28701841	6	106530330	CD	0.116	0.971		PRDM1 (upstream)
Signals mapped to \geq 2 variants but the lead variant have posterior probability > 50%							
rs76418789	1	67648596	CD	0.006	0.937	С	IL23R(G149R)
rs7711427	5	40414886	CD	0.633	0.919		
rs1736137	21	16806695	CD	0.407	0.879		

bioRxiv preprint doi: https://doi.org/10.1101/028688; this version posted October 8, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

rs104895444	16	50746199	CD	0.003	0.865	С	NOD2(V793M)
rs56167332	5	158827769	IBD	0.353	0.845		IL12B
rs104895467	16	50750810	CD	0.002	0.833	С	NOD2(N852S)
rs630923	11	118754353	CD	0.153	0.820		
rs3812565	9	139272502	IBD	0.402	0.815	Q	eQTL of INPP5E in CD4 and CD8; CARD9 in CD14, SEC16A in CD15
rs4655215	1	20137714	UC	0.763	0.784	Е	Gut_H3K27ac
rs145530718	19	10568883	CD	0.023	0.762		
rs6426833	1	20171860	UC	0.555	0.752		
chr20:43258079	20	43258079	CD	0.041	0.736		
rs17229679	2	199560757	UC	0.028	0.716		
rs4728142	7	128573967	UC	0.448	0.664	Е	Immune_H3K4me1
rs2143178	22	39660829	IBD	0.157	0.662	T,E	NFKB TFBS, Gut_H3K27ac
rs34536443	19	10463118	CD	0.038	0.649	С	TYK2(P1104A)
rs138425259	16	50663477	UC	0.009	0.648		
rs146029108	9	139329966	CD	0.036	0.643		
rs12722504	10	6089777	CD	0.26	0.615		
rs60542850	19	10488360	IBD	0.17	0.591		
rs2188962	5	131770805	CD	0.44	0.590	E,Q	Gut_H3K27ac, eQTL of SLC22A5 in CD14, CD15 and IL
rs2019262	1	67679990	IBD	0.4	0.586		
rs3024493	1	206943968	IBD	0.171	0.537	Е	Immune_H3K4me1
rs7915475	10	64381668	CD	0.304	0.528		
rs77981966	2	43777964	CD	0.077	0.521		
rs9889296	17	32570547	CD	0.264	0.512		
rs2476601	1	114377568	CD	0.908	0.508	С	PTPN22(W620R)

382

383 Supplemental Materials

384

Extended Data Figure 1, Power (y axis) to distinguish which variant in a correlated pair
 (strength of correlation shown by color) is causal increases with the significance of the

association (x axis), and therefore with sample size and effect size. The vertical dashed

388 line flags the genome-wide significance level. To estimate the relationship between the 389 strength of association and our ability to fine-map it, we assumed that the association ha

- 389 strength of association and our ability to fine-map it, we assumed that the association has 390 only two possible causal variants, and we define the signal as successfully fine-mapped if
- 391 the ratio of Bayes factors between the true causal variant and the non-causal variant is
- 392 greater than 10° (a 91% posterior, assuming equal priors). Using equation (8) in
- 393 Supplementary Methods, we have

$$\log BF = \log \frac{\Pr(\boldsymbol{Y} | \text{SNP1})}{\Pr(\boldsymbol{Y} | \text{SNP2})} \approx \log \frac{\Pr(\boldsymbol{Y} | \text{SNP1}, \theta_1^*)}{\Pr(\boldsymbol{Y} | \text{SNP2}, \theta_2^*)}$$

394 in which θ^* is maximum likelihood estimate of the parameter values. The log-likelihood

ratio follows a chi-square distribution:

$$\log BF \sim -\frac{1}{2}(\chi^{2}_{\text{SNP1}} - \chi^{2}_{\text{SNP2}}) = -\frac{1}{2}\lambda(1 - r^{2})$$

in which λ is the chi-square statistic of the lead variant and *r* is the correlation coefficient between the two variants. Because of the additive property of the chi-square distribution, logBF follows a non-central chi-square distribution with 1 degree of freedom and noncentrality parameter $\lambda(1 - r^2)/2$. Therefore, the power can calculated as the probability that logBF > log(10), given by the CDF of the non-central chi-squared distribution.

401

402 Extended Data Figure 2, a, Genomic distance that variants in 95% credible set span. b,
403 Variance explained normalized to the primary association in each locus.
404

405 **Extended Data Figure 3. a,** Functional annotation for 45 variants having posterior 406 probability > 50%. **b,** Functional annotation for 116 associations that are fine-mapped to 407 \leq 50 variants.

408

Extended Data Figure 4, a, Number of variants in credible set decreases with the
significance of the signal. b, Number of variants in credible set increases with the minor
allele frequency of the signal. The solid line shows the fitted trend in both panels, and
the shaded region shows the variance of the trend.

413

414 Extended Data Figure 5, SMAD3 (a) and TYK2 (b) regions after fine-mapping. The 415 implicated region has been reduced to a smaller number of genes (shown in black). Color 416 ticks are variants mapped to their functions and black ticks are variants not mapped to a 417 function. The width of the tick scales with the posterior probability.

418

419 **Extended Data Figure 6**, Tissue and cell line specific expression for genes *SBNO2*, 420 *H* 10 *H* 10 *H* 20 *KSP1 PPDM1 SMAD3 SMAD7 JEHH H* 20 *A PETH h* and

420 *IL10, IL19, LRRK2, KSR1, PRDM1, SMAD3, SMAD7, IFIH1, IL2RA, RETL1* and *TNEPSEGP* **Loft papels** Expression levels of selected series determined in a

421 *TNFRSF6B.* Left panels. Expression levels of selected genes were determined in a panel 422 of human tissues (bone marrow, heart, skeletal muscle (Sk. Muscle), uterus, liver, fetal

422 bi human fissues (bone marrow, nearl, skeletar muscle (Sk. Muscle), uterus, nver, ref 423 liver (F. Liver), spleen, thymus, thyroid, prostate, brain, lung, small intestine (Sm.

424 Intestine) and colon) and human cell lines using a custom made Agilent expression array.

425 The cell lines represent models of human T lymphocytes (Jurkat), monocytes (THP-1), 426 erythroleukemia cells (K562), promyelocytic cells (HL-60), colonic epithelial cells 427 (HCT-15, HT-29, Caco-2), and cells from embryonic kidney (HEK-293). In addition, 428 models of differentiated colonic epithelium (Caco-2 differentiated for 21 days in culture 429 (Caco-2 diff.)), activated T lymphocytes (Jurkat cells stimulated with PMA (40ng/ml) 430 and ionomycin (lug/ml) for 6 hrs (Jurkat stim.)), and macrophages (derived from THP-1 431 differentiated for 24 hrs (THP-1 diff.) with IFN- γ (400U/ml) and TNF- α (10ng/ml)) were 432 examined. Intensity values for each tissue/cell line represent the geometric mean with 433 geometric standard deviation of 3 independent measurements; each measurement 434 represents the geometric mean of all probes (one per exon) for each gene followed by a 435 median normalization across all genes on the array. The dotted line indicates the 436 threshold level for detection of basal expression. The reference sample (Ref.) is 437 composed of a mixture RNAs derived from 10 different human tissues. **Right panels.** 438 Expression levels of selected genes were determined in a panel of primary immune cells 439 (neutrophils, monocytes, $\gamma\delta$ T cells, B cells, NK cells, CD4⁺ T cells, CD8⁺ T cells) 440 isolated from healthy donors, as well as monocyte in vitro derived macrophages without 441 and with 24 hours of stimulation using 1 ug/ml of lipopolysaccharide 442 (macrophages+LPS). The results presented in the left and right panels were generated 443 and analyzed separately and therefore the expression values are not directly comparable. 444 445 **Extended Data Table 1**, The number IBD credible sets that colocalize with expression

- 446 QTLs using the naïve, permutation-based and Bayesian-based approaches.
- 447

448 Acknowledgements M.J.D. and R.J.X. acknowledge grant supports from P30DK43351, 449 U01DK062432, R01DK64869, Helmsley grant 2015PG-IBD001 and CCFA. C.A.A. and 450 J.C.B are supported by Wellcome Trust grant 098051. M.G. acknowledges grant support 451 from WELBIO (CAUSIBD), BELSPO (BeMGI), Fédération Wallonie-Bruxelles (ARC 452 IBD@Ulg), and Région Wallonne (CIBLES, FEDER). H.H. acknowledges the 453 ASHG/Charles J. Epstein Trainee Award. J.L. acknowledges Wellcome Trust grant 454 098759/Z/12/Z. D.M. is supported by the Olle Engkvist Foundation and Swedish 455 Research Council (grants 2010-2976 and 2013-3862). R.K.W. is supported by a VIDI 456 grant (016.136.308) from the Netherlands Organization for Scientific Research (NWO). 457 J.D.R. holds a Canada Research Chair and this work was supported by grants from the 458 U.S. National Institute of Diabetes and Digestive and Kidney Diseases (DK064869; 459 DK062432), a grant (CIHR #GPG-102170) from the Canadian Institutes of Health 460 Research to the "CIHR Emerging Team in Integrative Biology of Inflammatory 461 Diseases", and a Large-Scale Applied Research Project in Genomics and Personalized 462 *Health* grant (GPH-129341) co-funded by the Government of Canada through Genome 463 Canada and the Ministère de l'économie, de l'innovation et de l'exportation du Québec 464 through Génome Québec as well as the Canadian Institutes of Health Research and 465 Crohn's Colitis Canada. J.H.C. is funded by U01 DK62429, U01 DK062422, and the 466 Sanford J. Grossman Charitable Trust. R.H.D. holds the Inflammatory Bowel Disease 467 Genetic Research Chair at the University of Pittsburgh and acknowledges grant support 468 from U01DK062420 and R01CA141743. E.D. benefitted from a Marie-Curie Fellowship 469 and A-S.G a from fellowships from the FNRS and Fonds Léon Fredericq. J.H. is 470 supported by the Örebro University Hospital Research Foundation and the Swedish 471 Research Council (grant no. 521 2011 2764). M.P. acknowledges the NIHR Biomedical 472 Research Centre awards to Guy's & St Thomas' NHS Trust / King's College London and 473 to Addenbrooke's Hospital / University of Cambridge School of Clinical Medicine. 474 D.E.: this work was supported by the German Federal Ministry of Education and 475 Research (BMBF) within the framework of the e:Med research and funding concept 476 (SysInflame grant 01ZX1306A). This project received infrastructure support from the 477 DFG Excellence Cluster No. 306 "Inflammation at Interfaces". A.F. receives an 478 endowment professorship by the Foundation for Experimental Medicine (Zuerich, 479 Switzerland).

480

481 Author Contributions Overall project supervision and management: M.J.D. J.C.B, M.G. 482 Fine-mapping algorithms: H.H., M.F., L.J. TFBS analyses: H.H., K.F. Epigenetic 483 analyses: M.U.M., G.T. eOTL dataset generation: E.L., E.T., J.D., E.D., M.E., R.M., 484 M.M., Y.M., V.D., A.G. eQTL analyses: M.F., J.D., L.J., A.C. Variance component 485 analysis: T.M., M.F. Contribution to overall statistical analyses: G.B. Primary drafting of 486 the manuscript: M.J.D., J.C.B, M.G., H.H., L.J. Major contribution to drafting of the 487 manuscript: M.F., M.U.M., J.H.C., D.P.M., J.D.R., C.G.M., R.H.D., R.K.W. The 488 remaining authors contributed to the study conception, design, genotyping QC and/or 489 writing of the manuscript. All authors saw, had the opportunity to comment on, and 490 approved the final draft.

491

492 **Competing Financial Interests** The authors declare no competing financial interests.

493

bioRxiv preprint doi: https://doi.org/10.1101/028688; this version posted October 8, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

494 Methods

495 Genotyping and QC

496 We genotyped 35,197 unaffected and 35,346 affected individuals (20,155 Crohn's 497 disease and 15,191 ulcerative colitis) using the Immunochip array. Genotypes were called using optiCall³⁷ for 192,402 autosomal variants before QC. We removed variants 498 499 with missing data rate >2% across the whole dataset, or >10% in any one batch, and variants that failed (FDR $< 10^{-5}$ in either the whole dataset or at least two batches) tests 500 501 for: a) Hardy-Weinberg equilibrium; b) differential missingness between cases and 502 controls; c) significant heterogeneity in allele frequency across controls from different 503 batches. We also removed noncoding variants that were not in the 1000 Genomes Phase I 504 integrated variant set (March 2012 release), or the HapMap phase 2 or 3 releases, as these 505 mostly represent false positives included on Immunochip from the 1000 Genomes pilot, 506 which often genotype poorly. Where a variant failed in exactly one batch we set all 507 genotypes to missing for that batch (to be reimputed later) and included the site if it 508 passed in the remainder of the batches. We removed individuals that had >2% missing 509 data, had significantly higher or lower (defined as FDR<0.01) inbreeding coefficient (F), 510 or were duplicated or related (PI_HAT \ge 0.4, calculated from the LD pruned dataset 511 described below), by sequentially removing the individual with the largest number of 512 related samples until no related samples remain. After QC, there were 67,852 European-513 derived samples with valid diagnosis (healthy control, Crohn's disease or ulcerative 514 colitis), and 161,681 genotyped variants available for downstream analyses. 515 Linkage-disequilibrium pruning and principal components analysis

516 From the clean dataset we removed variants in long range LD^{38} or with MAF < 0.05, and

517 then pruned 3 times using the '--indep' option in PLINK (with window size of 50, step

- 518 size of 5 and VIF threshold of 1.25). This pruned dataset (18,123 variants) was used to
- 519 calculate the relatedness of the individuals and the principal components. Principal
- 520 component axes were generated within controls using this LD pruned dataset. The axes
- 521 were then projected to cases to generate the principal components for all samples. The
- analysis was performed using our in-house C code
- 523 (https://github.com/hailianghuang/efficientPCA) and LAPACK package³⁹ for efficiency.

524 **Imputation**

- 525 Imputation was performed separately in each Immunochip high-density region (184 total)
- from the 1000 Genomes Phase I integrated haplotype reference panel, downloaded from
- 527 the IMPUTE2 website (Dec 2013 release). We used SHAPEIT (v2.r769)^{40,41} to pre-phase
- 528 the genotypes, followed by IMPUTE2 $(2.3.0)^{14,15}$ to perform the imputation. There were
- 529 388,432 variants having good imputation quality (INFO > 0.4) and were used in the fine-
- 530 mapping analysis.

531 Manual cluster plot inspection

532 Variants that had posterior probability greater than 50% or in credible sets mapped to \leq

- 533 10 variants were manually inspected using Evoker $v2.2^{42}$. Each variant was inspected by
- 534 3 independent reviewers (10 reviewers participated) and scored as pass, fail or maybe.
- 535 We remove variants that received one or more fails, or received less than 2 passes. 650
- out of 905 inspected variants passed this inspection. A further cluster plot inspection
- 537 flagged two additional failed variants after removing the failed variants from the first
- inspection and redoing the imputation and analysis.

539 Establishing a p-value threshold

540	We used a multiple	ple testing corre	ected p-value	threshold for	associations of	10^{-6} , which was
• • •						

- 541 established by permutation. We generated 200 permuted datasets by randomly shuffling
- 542 phenotypes across samples and carried out association analyses for each permutation
- 543 across all 161,681 variants in our high-density regions. We stored (i) the ensuing
- 544 161,681 x 200 point-wise p-values (α_s), as well as (ii) the 200 "best" p-values (α_B) of
- each permuted datasets. We then computed the empirical, family-wise p-value
- 546 (α_M) (corrected for multiple testing) for each of the 161,681 x 200 tests as its rank/200
- 547 with respect to the 200 α_B . We then estimated the number of independent tests
- performed in the studied regions, *n*, as the slope of the regression of $log(1-\alpha_M)$ on $log(1-\alpha_M)$
- 549 α_s), knowing that $\alpha_M = 1 (1 \alpha_s)^n$.

550 **Detecting and fine-mapping association signals**

551 We used three fine-mapping methods to detect independent signals and create credible 552 sets across 103 high-density regions (Supplementary Methods). Signals identified by 553 different methods were merged if their credible sets shared one or more variants. In order 554 to adjudicate differences between methods, we first assigned each candidate signal to the 555 combination of a lead variant and trait (CD, UC or IBD) that maximizes the marginal 556 likelihood from equation (8) in Supplementary Methods. At loci with >1 signal, we fixed 557 the signals reported by all three methods, and then tested all possible combinations of 558 signals reported by one or two methods, selecting whichever combination has the highest 559 joint marginal likelihood. We consider signals to be confidently fine-mapped, and take 560 them forward for subsequent analysis, if they a) are in loci where the lead variant has p < p 10^{-6} , b) have a ratio of Bayes factors for the best model and the second best model greater 561 562 than 10, c) are reported by more than one method and d) passed cluster plot inspection.

563 **Phenotype assignment of signals**

 multinomial model used for fine-mapping method 2 (the method best able to assess evidence of sharing in the presence of potentially correlated effect sizes). For the lead variant for each credible set, we calculate the marginal likelihoods as in equation 13 from Supplementary Methods, restricting either β_{UC} = 0 (for the CD-only model) or β_{CD} = 0 (for the UC-only model), as well as using the unconstrained prior (for the associated to both model), and select the model with the highest marginal likelihood. We then calculate the log Bayes factor in favor of sharing, i.e. the log of ratio of marginal likelihoods between the associated-to-both model and the best of the single-phenotype associated models. 	564	We assign each signal as CD-specific, UC-specific or shared, using the Bayesian
567 variant for each credible set, we calculate the marginal likelihoods as in equation 13 from 568 Supplementary Methods, restricting either $\beta_{UC} = 0$ (for the CD-only model) or $\beta_{CD} =$ 569 0 (for the UC-only model), as well as using the unconstrained prior (for the associated to 570 both model), and select the model with the highest marginal likelihood. We then calculate 571 the log Bayes factor in favor of sharing, i.e. the log of ratio of marginal likelihoods 572 between the associated-to-both model and the best of the single-phenotype associated	565	multinomial model used for fine-mapping method 2 (the method best able to assess
Supplementary Methods, restricting either $\beta_{UC} = 0$ (for the CD-only model) or $\beta_{CD} =$ 0 (for the UC-only model), as well as using the unconstrained prior (for the associated to both model), and select the model with the highest marginal likelihood. We then calculate the log Bayes factor in favor of sharing, i.e. the log of ratio of marginal likelihoods between the associated-to-both model and the best of the single-phenotype associated	566	evidence of sharing in the presence of potentially correlated effect sizes). For the lead
 569 0 (for the UC-only model), as well as using the unconstrained prior (for the associated to 570 both model), and select the model with the highest marginal likelihood. We then calculate 571 the log Bayes factor in favor of sharing, i.e. the log of ratio of marginal likelihoods 572 between the associated-to-both model and the best of the single-phenotype associated 	567	variant for each credible set, we calculate the marginal likelihoods as in equation 13 from
 both model), and select the model with the highest marginal likelihood. We then calculate the log Bayes factor in favor of sharing, i.e. the log of ratio of marginal likelihoods between the associated-to-both model and the best of the single-phenotype associated 	568	Supplementary Methods, restricting either $\beta_{UC} = 0$ (for the CD-only model) or $\beta_{CD} =$
 the log Bayes factor in favor of sharing, i.e. the log of ratio of marginal likelihoods between the associated-to-both model and the best of the single-phenotype associated 	569	0 (for the UC-only model), as well as using the unconstrained prior (for the associated to
572 between the associated-to-both model and the best of the single-phenotype associated	570	both model), and select the model with the highest marginal likelihood. We then calculate
	571	the log Bayes factor in favor of sharing, i.e. the log of ratio of marginal likelihoods
573 models.	572	between the associated-to-both model and the best of the single-phenotype associated
	573	models.

574 Estimating the variance explained by the fine-mapping

575 We used a mixed model framework to estimate the total risk variance attributable to the 576 IBD risk loci, and to the signals identified in the fine-mapping. We the GCTA software package⁴³ to compute a gametic relationship matrix (G-matrix) using genotype dosage 577 578 information for the genotyped variants in the high-density regions (which we will call G_{HD}). We then fit a variety of variance component models by restricted maximum 579 580 likelihood analysis using an underlying liability threshold model implemented with the DMU package⁴⁴. The first model is a standard heritability mixed-model that includes 581 582 fixed effects for five principal components (to correct for stratification) and a random 583 effect summarizing the contribution of all variants in the fine-mapping regions, such that 584 the liabilities across all individuals are distributed according to

 $\boldsymbol{L} \sim \boldsymbol{N}(\beta_1 \boldsymbol{P} \boldsymbol{C}_1 + \dots + \beta_5 \boldsymbol{P} \boldsymbol{C}_5, \ \lambda_1 \boldsymbol{G}_{HD} + (1 - \lambda_1) \boldsymbol{I}),$

where λ_1 is thus the variance explained by all variants in fine-mapping regions, which we estimate. We then fitted a model that included an additional random effect for the contribution of the lead variants have been specifically identified (with G-matrix

588 $G_{Signals}$), such that liability is distributed

$$\boldsymbol{L} \sim \boldsymbol{N}(\beta_1 P C_1 + \dots + \beta_5 P C_5, \, \lambda'_1 \mathbf{G}_{HD} + \lambda_2 \mathbf{G}_{Signals} + \, (1 - \lambda'_1 - \lambda_2) \boldsymbol{I})$$

The variance explained by the signals under consideration is then given by the reduction in the variance explained by all variants in the fine-mapping regions between the two models ($\lambda_1 - \lambda'_1$). We used this approach to estimated what fraction of this variance was accounted for by (i) the single strongest signals in each region (as would be typically done prior to fine-mapping), or (ii) the all signals identified in fine-mapping. We used Cox and Snell's method⁴⁵ to estimate the variance explained across independent signals (Extended Data Figure 2b) for computational efficiency.

596 **Overlap between transcription factor binding motifs and causal variants**

597 For each motif in the ENCODE TF ChIP-seq data (<u>http://compbio.mit.edu/encode-</u>

598 <u>motifs/</u>, accessed Nov 2014) 20 , we calculated the overall information content (IC) as the

sum of IC for each position⁴⁶, and only considered motifs with overall IC \geq 14 bits

600 (equivalent to 7 perfectly conserved positions). For every variant in a high-density region

- 601 we determined if it creates or disrupts a motif at a high-information site (IC \ge 1.8). For
- 602 each credible set that contains a motif-affecting variant, we calculated a p-value as
- 603 $1 (1 f)^n$, where *n* is the size of the credible set and *f* is the proportion of all variants
- 604 in the high-density region that disrupt or a create a motif in that TF family.
- 605 **Overlap between epigenetic signatures and causal variants**

606	For each combination of 120 tissues and three histone marks (H3K4me1, H3K4me3 and
607	H3K27ac) from the Roadmap Epigenome Project we calculated an overlap score, equal
608	to the sum of fine-mapping posterior probabilities for all variants in peaks of that histone
609	mark in that tissue. We generated a null distribution of this score for each tissue/mark by
610	shifting chromatin marks randomly over the high-density regions (shifting the peaks
611	from their actual position by a random number of bases while keeping inter-peak spacing
612	the same) and calculating the overlap score for each permutation. To summarize these
613	correlated results across many cell and tissue types we defined a set of "core" H3K4me1
614	immune and H3K27ac gut peaks as sets of overlapping peaks in cells that showed the
615	strongest enrichment ($p < 10^{-4}$). Intersects were made using bedtools v2.24.0 default
616	settings ⁴⁷ . We selected 6 immune cell types for H3K4me1 and 3 gut cell types for
617	H3K27ac (Supplementary Table 2). We also chose controls (Supplementary Table 2)
618	from non-immune and non-gut cell types with similar density of peaks in the fine-
619	mapped regions as compared to immune/gut cell types to confirm the tissue-specificity of
620	the overlap. We used the phenotype assignments (described above) in dissecting the
621	enrichment for the CD and UC signals. Sixty-five CD and 21 UC signals were used in
622	this analysis.
623	Published eQTL summary statistics

- 624 We used eQTL summary statistics from two published studies:
- Peripheral blood eQTLs from the GODOT study⁴⁸ of 2,752 twins, reporting loci with
 MAF>0.5%.
- CD14+ monocyte eQTLs from Table S2 in Fairfax *et al.*³¹, comprised of 432
- 628 European individuals, measured in a naïve state and after stimulation with interferon-

629 γ (for 2 or 24 hours) or lipopolysaccharide. Reports loci with MAF>4% and

630 FDR<0.05.

631 **Processing and quality control of new eQTL ULg dataset**

- 632 A detailed description of the ULg dataset is in preparation (Momozawa et al., in
- 633 preparation). Briefly, we collected venous blood and intestinal biopsies at three locations
- 634 (ileum, transverse colon and rectum) from 350 healthy individuals of European descent,
- average age 54 (range 17-87), 56% female. SNPs were genotyped on Illumina Human
- 636 OmniExpress v1.0 arrays interrogating 730,525 variants, and SNPs and individuals were
- 637 subject to standard QC procedures using call rate, Hardy-Weinberg equilibrium, $MAF \ge$
- 638 0.05, and consistency between declared and genotype-based sex as criteria. We further

639 imputed genotypes at ~7 million variants on the entire cohort using the Impute2 software

- 640 package¹⁴ and the 1,000 Genomes Project as reference population (Phase 3 integrated
- 641 variant set, released 12 Oct 2014)^{11,15}. From the blood, we purified CD4+, CD8+,
- 642 CD19+, CD14+ and CD15+ cells by positive selection, and platelets (CD45-negative) by
- 643 negative selection. RNA from all leucocyte samples and intestinal biopsies was
- 644 hybridized on Illumina Human HT-12 arrays v4. After standard QC, raw fluorescent
- 645 intensities were variance stabilized⁴⁹ and quantile normalized⁵⁰ using the lumi R
- 646 package⁵¹, and were corrected for sex, age, smoking status, number of probes with
- 647 expression level significantly above background as fixed effects and array number
- 648 (sentrix id) as random effect. For each probe with measureable expression (detection p-
- value < 0.05 in > 25% of samples we tested for cis-eQTLs at all variants within a 500
- 650 kilobase window. The nominal p-value of the best SNP within a cis-window was Sidak-
- 651 corrected for the window-specific number of independent tests, and we estimated false

- discovery rates (q-values) from the resulting p-values across all probes using the qvalue
- 653 R package⁵². 480 cis-eQTL with FDR ≤ 0.10 with the lead SNPs within the 97 high-
- density regions (94 fine-mapped plus 3 unresolved) were retained for further analyses.
- 655 Naïve co-localization using lead SNPs
- 656 We calculated the proportion of IBD credible sets that contain a lead eQTL variant in a
- 657 particular tissue. This value is then compared to a background rate:

$$\frac{1}{|S|} \sum_{i \in S} (1 - (1 - N_i^{-1})^{C_i})$$

658 where N_i is the total number of variants in region *i* in 1000 Genomes with an allele

659 frequency greater than a certain threshold (equal to the threshold used for the original

660 eQTL study), C_i is the number of these variants that lie in IBD credible sets, and S is a set

of regions that have at least one significant eQTL (|S| is the number of regions in this

set). P-values can then be calculated assuming a binomial distribution with probability

663 equal to the background rate and the number of trials equal to |S|.

664 Frequentist co-localization using conditional p-values

665 We next used conditional association to test for evidence of co-localization, as described

666 in Nica et al.²⁵. This method compares the p-value of association for the lead SNP of an

667 eQTL before and after conditioning on the SNP with the highest posterior in the credible

set, and measures the drop in log(1/p). An empirical p-value for this drop is then

669 calculated by comparing it to the drop for all variants (with MAF \ge 0.05) in the high-

670 density region. An empirical p-value ≤ 0.05 was considered as evidence that the

- 671 corresponding credible set is co-localized with the corresponding cis-eQTL. To evaluate
- 672 whether our 139 credible sets affected cis-eQTL more often than expected by chance we
- 673 counted the number of credible sets affecting at least one cis-eQTL with p-value ≤ 0.05 ,

674 and compared how often this number was matched or exceeded by 1,000 sets of 139 lead 675 variants that were randomly selected yet distributed amongst the 94 loci in accordance

676 with the real credible sets.

677 **Bayesian co-localization using Bayes factors**

- 678 Finally, we used the Bayesian co-localization methodology described by Giambartolomei et al⁵³, modified to use the credible sets and posteriors generated by our fine-mapping
- 679
- 680 methods. The method takes as input a pair of IBD and eQTL signals, with corresponding
- credible sets S^{IBD} and S^{eQTL} , and posteriors for each variant p_i^{IBD} and p_i^{eQTL} (with 681
- $p_i^X = 0 \forall i \notin S^X$). Credible sets and posteriors were generated for eQTL signals using 682
- 683 the Bayesian quantitative association mode in SNPTest (with default parameters), with
- 684 credible sets in regions with multiple independent signals generated conditional on all
- 685 other signals. Our method calculates a Bayes factor summarizing the evidence in favor of
- 686 a colocalized model (i.e. a single underlying causal variant between the IBD and eQTL
- 687 signals) compared to a non-colocalized model (where different causal variants are driving

688 the two signals), given by the ratio of marginal likelihoods

$$BF = \frac{L(Colocalized)}{L(Not \ colocalized)}$$

The marginal likelihood for the colocalized model (i.e. hypothesis H_4 in Giambartolomei 690 691 et al) is given by

$$L(Colocalized) \propto \frac{1}{N} \sum_{i \in S^{IBD} \bigcup S^{eQTL}} p_i^{IBD} p_i^{eQTL}$$

692 and the likelihood for the model where the signals are not colocalized (i.e., hypothesis 693 H_3) is given by:

$$L(Not \ colocalized) \propto \frac{1}{N^2 - N} \sum_{i,j \in S^{IBD} \cap S^{eQTL}, i \neq j} p_i^{IBD} p_j^{eQTL}$$

In both cases, N is the total number of variants in the region. We only count towards N

695 variants that have $r^2 > 0.2$ with either the lead eQTL variant or the lead IBD variant.

696 Permutation analysis. To measure enrichment in colocalization Bayes factors compared

to the null, we carried out a permutation analysis. In this analysis, we randomly

reassigned eQTL signals to new fine-mapping regions to generate a set of simulated null

699 datasets. This is carried out using the following scheme:

1. Estimate the standarized effect size β_a for each eQTL signal g, equal to standard

deviation increase in gene expression for each dose of the minor allele.

2. Randomly reassign each eQTL signal to a new fine-mapping region, and then select a

new causal variant with a minor allele frequency within 1 percentage point of the lead

variant from the real signal. If multiple such variants exist, select one at random. If no

such variants exist, pick the variant with the closest minor allele frequency.

706 3. Generate new simulated gene expression signals for each individual from

707 Normal($\beta_q x_i, 1 - \beta_q^2$) where x_i is the individual's minor allele dosage at the new

causal variant and f is the minor allele frequency.

4. Carry out fine-mapping and calculate colocalization Bayes factors for each pair of

- 710 (real) IBD signal and (simulated) eQTL signal.
- 5. Repeat stages 2-4 1000 times for each tissue type
- 712 We can use these permuted Bayes factors to calculate p-values for each IBD credible set,
- given by the proportion of time the permuted BFs were as large or greater than the one

bioRxiv preprint doi: https://doi.org/10.1101/028688; this version posted October 8, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- observed in the real dataset. To generate a high-quality set of colocalized eQTL and IBD
- signals, we take all signals that have BF > 2, p < 0.01 and r^2 between hits of >0.8.

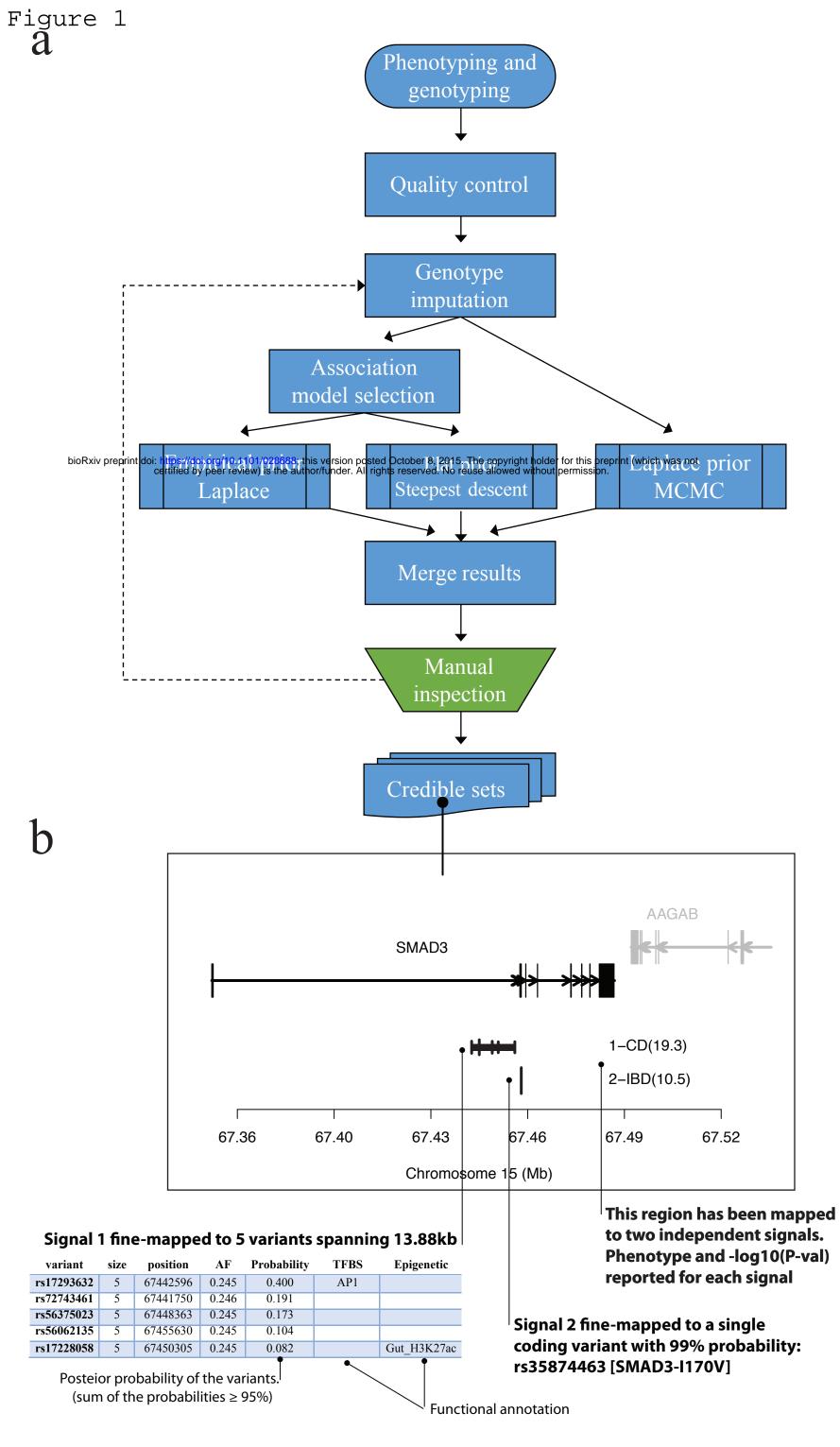
716

717 **References**

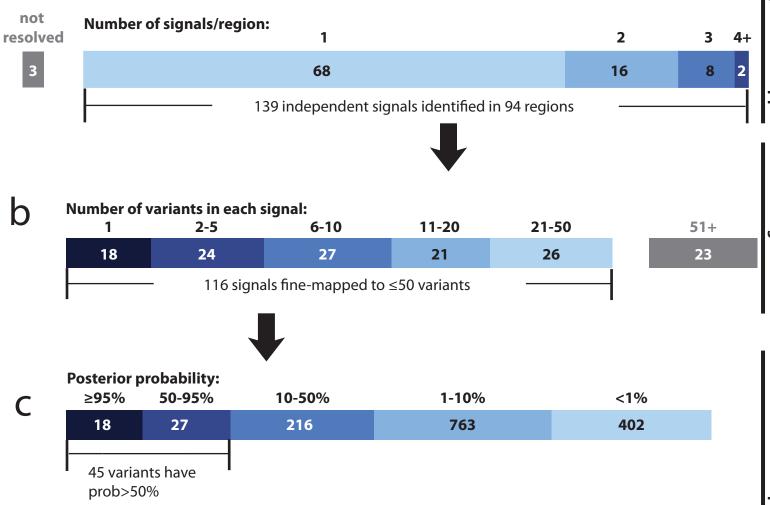
718 1. Kappelman, M. D. et al. Direct health care costs of Crohn's disease and ulcerative 719 colitis in US children and adults. *Gastroenterology* **135**, 1907–1913 (2008). 720 2. Molodecky, N. A. et al. Increasing incidence and prevalence of the inflammatory 721 bowel diseases with time, based on systematic review. Gastroenterology 142, 46-722 54.e42- quiz e30 (2012). 723 Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of 3. 724 inflammatory bowel disease. Nature 491, 119–124 (2012). 725 4. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for 726 inflammatory bowel disease and highlight shared genetic risk across populations. 727 Nat Genet (2015). doi:10.1038/ng.3359 728 5. van de Bunt, M. et al. Evaluating the Performance of Fine-Mapping Strategies at 729 Common Variant GWAS Loci. PLoS Genet 11, e1005535 (2015). 730 Maller, J. B. et al. Bayesian refinement of association signals for 14 loci in 3 6. 731 common diseases. Nat Genet 44, 1294–1301 (2012). 732 7. Yang, J. et al. FTO genotype is associated with phenotypic variability of body 733 mass index. Nature 490, 267–272 (2012). 734 8. International Multiple Sclerosis Genetics Consortium (IMSGC) et al. Analysis of 735 immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. 736 Nat Genet 45, 1353–1360 (2013). 737 9. Onengut-Gumuscu, S. et al. Fine mapping of type 1 diabetes susceptibility loci and 738 evidence for colocalization of causal variants with lymphoid gene enhancers. Nat 739 Genet 47, 381–386 (2015). 740 10. 1000 Genomes Project Consortium et al. An integrated map of genetic variation 741 from 1,092 human genomes. *Nature* **491**, 56–65 (2012). 742 1000 Genomes Project Consortium. A map of human genome variation from 11. 743 population-scale sequencing. Nature 467, 1061–1073 (2010). 744 12. Jostins, L. Using Next-Generation Genomic Datasets In Disease Association. (The 745 University of Cambridge, 2012). 746 Govette, P. et al. High-density mapping of the MHC identifies a shared role for 13. 747 HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in 748 ulcerative colitis. Nat Genet (2015). doi:10.1038/ng.3176 749 14. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype 750 imputation method for the next generation of genome-wide association studies. 751 PLoS Genet 5, e1000529 (2009). 752 15. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of 753 genomes. G3 (Bethesda) 1, 457–470 (2011). 754 Rivas, M. A. et al. Deep resequencing of GWAS loci identifies independent rare 16. 755 variants associated with inflammatory bowel disease. Nat Genet 43, 1066-1073 756 (2011). 757 17. Yang, J. et al. Genome partitioning of genetic variation for complex traits using 758 common SNPs. Nat Genet 43, 519–525 (2011). 759 Huang, H., Chanda, P., Alonso, A., Bader, J. S. & Arking, D. E. Gene-based tests 18. 760 of association. PLoS Genet 7, e1002177 (2011). 761 Momozawa, Y. et al. Resequencing of positional candidates identifies low 19.

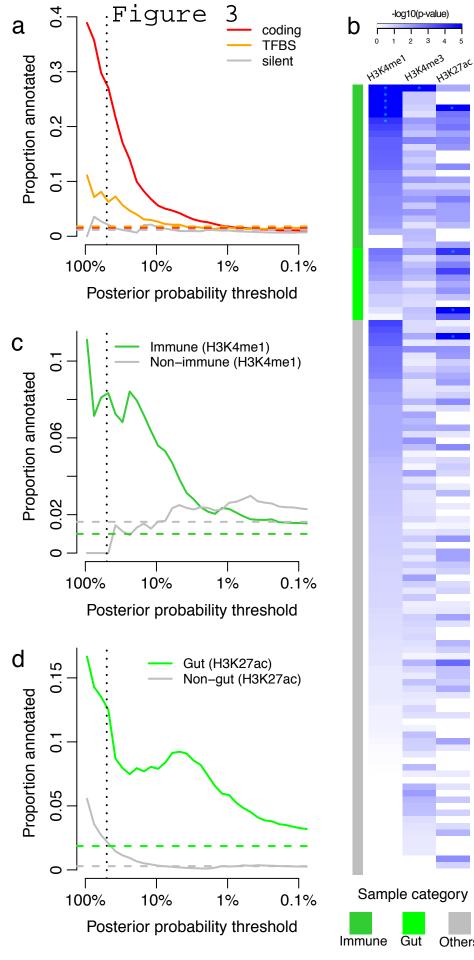
762		frequency IL23R coding variants protecting against inflammatory bowel disease.
763		Nat Genet 43 , 43–47 (2011).
764	20.	Kheradpour, P. & Kellis, M. Systematic discovery and characterization of
765		regulatory motifs in ENCODE TF binding experiments. Nucleic Acids Res 42,
766		2976–2987 (2014).
767	21.	Nechanitzky, R. et al. Transcription factor EBF1 is essential for the maintenance
768		of B cell identity and prevention of alternative fates in committed cells. <i>Nat</i> .
769		Immunol. 14, 867–875 (2013).
770	22.	Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping
771		complex trait variants. Nat Genet 45, 124–130 (2013).
772	23.	Farh, K. KH. et al. Genetic and epigenetic fine mapping of causal autoimmune
773		disease variants. <i>Nature</i> 518 , 337–343 (2015).
774	24.	Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat
775		Biotechnol 28, 1045–1048 (2010).
776	25.	Nica, A. C. et al. Candidate causal regulatory effects by integration of expression
777		QTLs with complex trait genetic associations. PLoS Genet 6, e1000895 (2010).
778	26.	Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional
779		variation in humans. Nature 501, 506–511 (2013).
780	27.	Wallace, C. et al. Statistical colocalization of monocyte gene expression and
781		genetic risk variants for type 1 diabetes. Human Molecular Genetics 21, 2815-
782		2824 (2012).
783	28.	Trynka, G. et al. Dense genotyping identifies and localizes multiple common and
784		rare variant association signals in celiac disease. Nat Genet 43, 1193–1201 (2011).
785	29.	Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple
786		tissues in twins. Nat Genet 44, 1084–1089 (2012).
787	30.	Westra, HJ. et al. Systematic identification of trans eQTLs as putative drivers of
788		known disease associations. Nat Genet 45, 1238–1243 (2013).
789	31.	Fairfax, B. P. et al. Innate immune activity conditions the effect of regulatory
790		variants upon monocyte gene expression. Science (New York, NY) 343, 1246949-+
791		(2014).
792	32.	Schizophrenia Working Group of the Psychiatric Genomics Consortium.
793		Biological insights from 108 schizophrenia-associated genetic loci. Nature 511,
794		421–427 (2014).
795	33.	Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of
796		confirmed Crohn's disease susceptibility loci. Nat Genet 42, 1118–1125 (2010).
797	34.	Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J. A. Rare variants of
798		IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes.
799		Science (New York, NY) 324 , 387–389 (2009).
800	35.	Huang, J., Ellinghaus, D., Franke, A., Howie, B. & Li, Y. 1000 Genomes-based
801		imputation identifies novel and refined associations for the Wellcome Trust Case
802	0.6	Control Consortium phase 1 Data. Eur. J. Hum. Genet. 20, 801–805 (2012).
803	36.	Consortium, R. E. <i>et al.</i> Integrative analysis of 111 reference human epigenomes.
804	27	<i>Nature</i> 518 , 317–330 (2015).
805	37.	Shah, T. S. <i>et al.</i> optiCall: a robust genotype-calling algorithm for rare, low-
806	20	frequency and common variants. <i>Bioinformatics</i> 28 , 1598–1603 (2012).
807	38.	Price, A. L. et al. Long-Range LD Can Confound Genome Scans in Admixed

808		Populations. Am J Hum Genet 83, 132–135 (2008).
809	39.	Anderson, E. et al. LAPACK Users' Guide. (Society for Industrial and Applied
810		Mathematics, 1999).
811	40.	Delaneau, O., Marchini, J. & Zagury, JF. A linear complexity phasing method for
812		thousands of genomes. Nature Methods 9, 179–181 (2011).
813	41.	Delaneau, O., Zagury, JF. & Marchini, J. Improved whole-chromosome phasing
814		for disease and population genetic studies. <i>Nature Methods</i> 10 , 5–6 (2012).
815	42.	Morris, J. A., Randall, J. C., Maller, J. B. & Barrett, J. C. Evoker: a visualization
816		tool for genotype intensity data. <i>Bioinformatics</i> 26 , 1786–1787 (2010).
817	43.	Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: A Tool for
818		Genome-wide Complex Trait Analysis. <i>The American Journal of Human Genetics</i>
819		88 , 76–82 (2011).
820	44.	Madsen, P., Su, G., Labouriau, R. & Christensen, F. DMU-a package for analyzing
821		multivariate mixed models. Proceedings of the Ninth World Congress on Genetics
822		Applied to Livestock Production (2010).
823	45.	Cox, D. R. & Snell, E. J. Analysis of Binary Data, Second Edition. (CRC Press,
824		1989).
825	46.	D'haeseleer, P. What are DNA sequence motifs? Nat Biotechnol 24, 423–425
826		(2006).
827	47.	Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing
828		genomic features. <i>Bioinformatics</i> 26 , 841–842 (2010).
829	48.	Wright, F. A. <i>et al.</i> Heritability and genomics of gene expression in peripheral
830		blood. Nat Genet 46 , 430–437 (2014).
831	49.	Lin, S. M., Du, P., Huber, W. & Kibbe, W. A. Model-based variance-stabilizing
832		transformation for Illumina microarray data. Nucleic Acids Res 36, e11-e11
833		(2008).
834	50.	Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of
835		normalization methods for high density oligonucleotide array data based on
836		variance and bias. <i>Bioinformatics</i> 19 , 185–193 (2003).
837	51.	Du, P., Kibbe, W. A. & Lin, S. M. lumi: a pipeline for processing Illumina
838		microarray. Bioinformatics 24, 1547–1548 (2008).
839	52.	Dabney, A., Storey, J. D. & Warnes, G. Q-value estimation for false discovery rate
840		control. <i>R package version</i> 1 , (2006).
841	53.	Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic
842		association studies using summary statistics. <i>PLoS Genet</i> 10 , e1004383 (2014).
843		
844		

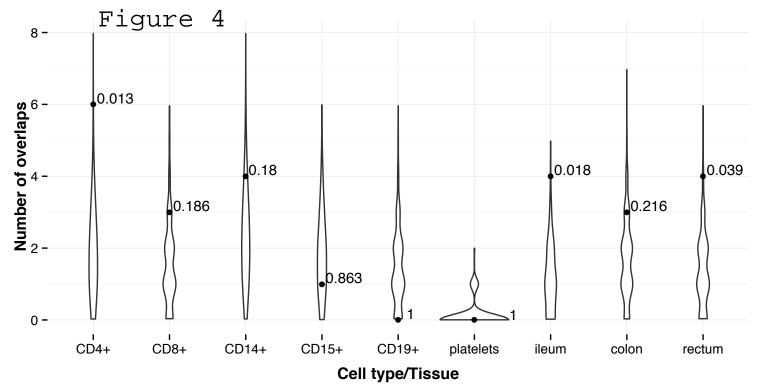

845 Acknowledgements (original data): We thank all the subjects who contributed samples 846 and the physicians and nursing staff who helped with recruitment globally. UK case 847 collections were supported by the National Association for Colitis and Crohn's disease; 848 Wellcome Trust grant 098051 (L.J., C.A.A., J.C.B.); Medical Research Council UK; the 849 Catherine McEwan Foundation; an NHS Research Scotland career fellowship (R.K.R.); 850 Peninsula College of Medicine and Dentistry, Exeter; the National Institute for Health 851 Research, through the Comprehensive Local Research Network, and through 852 Biomedical Research Centre awards to Guy's & Saint Thomas' National Health Service 853 Trust, King's College London, Addenbrooke's Hospital, University of Cambridge School 854 of Clinical Medicine and to the University of Manchester and Central Manchester 855 Foundation Trust. The British 1958 Birth Cohort DNA collection was funded by Medical 856 Research Council grant G0000934 and Wellcome Trust grant 068545/Z/02, and the 857 UK National Blood Service controls by the Wellcome Trust. The Wellcome Trust 858 Case Control Consortium projects were supported by Wellcome Trust grants 859 083948/Z/07/ Z, 085475/B/08/Z and 085475/Z/08/Z. North American collections and 860 data processing were supported by funds to the National Institute of Diabetes, Digestive 861 and Kidney diseases (NIDDK) IBD Genetics Consortium, which is funded by the 862 following grants: DK062431 (S.R.B.), DK062422 (J.H.C.), DK062420 (R.H.D.), 863 DK062432 (J.D.R.), DK062423 (M.S.S.), DK062413 (D.P.M.), DK076984 (M.J.D.), 864 DK084554 (M.J.D. and D.P.M.) and DK062429 (J.H.C.). The funding source which 865 enabled our recruitment of New Zealand subjects for the IIBDGC was the New Zealand 866 Ministry of Business, Innovation and Employment.

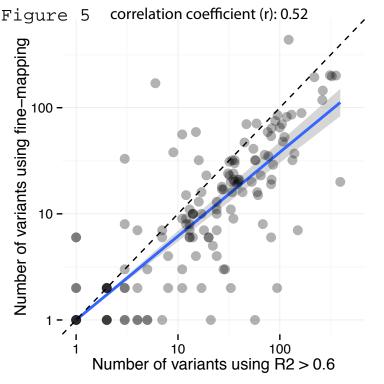
867

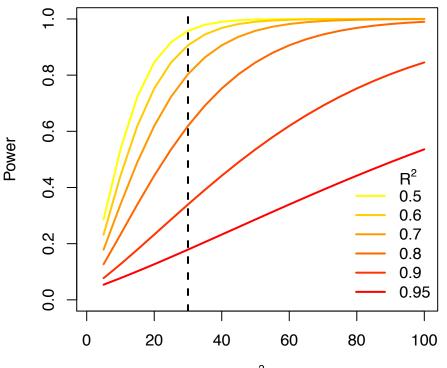

868 Members of the International Inflammatory Bowel Disease Genetics Consortium: Clara Abraham³⁵, Jean-Paul Achkar^{36,37}, Tariq Ahmad³⁸, Leila Amininejad^{39,40}, Ashwin N Ananthakrishnan^{29,41}, Vibeke Andersen^{9,10,42}, Carl A Anderson⁷, Jane M Andrews⁴³, 869 870 Vito Annese^{44,45}, Guy Aumais^{33,46}, Leonard Baidoo³⁰, Robert N Baldassano⁴⁷, Peter A 871 Bampton⁴⁸, Murray Barclay⁴⁹, Jeffrey C Barrett⁷, Theodore M Bayless⁵⁰, Johannes 872 Bethge⁵¹, Alain Bitton⁵², Gabrielle Boucher⁸, Stephan Brand⁵³, Berenice Brandt⁵¹, Steven R Brant⁵⁰, Carsten Büning⁵⁴, Angela Chew^{20,55}, Judy H Cho³⁴, Isabelle Cleynen¹¹, Ariella Cohain⁵⁶, Anthony Croft⁵⁷, Mark J Daly^{1,2}, Mauro D'Amato^{12,13}, Silvio Danese⁵⁸, Dirk De Jong⁵⁹, Martine De Vos⁶⁰, Goda Denapiene⁶¹, Lee A Denson⁶², Kathy L Devaney²⁹, 873 874 875 876 Olivier Dewit⁶³, Renata D'Inca⁶⁴, Marla Dubinsky⁶⁵, Richard H Duerr^{30,31}, Cathryn Edwards⁶⁶, David Ellinghaus¹⁵, Jonah Essers^{67,68}, Lynnette R Ferguson⁶⁹, Eleonora A 877 878 Festen²⁷, Philip Fleshner¹⁷, Tim Florin⁷⁰, Denis Franchimont^{39,40}, Andre Franke¹⁵, Karin Fransen⁷¹, Richard Gearry^{49,72}, Michel Georges^{3,4}, Christian Gieger⁷³, Jürgen Glas^{53,74}, Philippe Goyette⁸, Todd Green^{2,67}, Anne M Griffiths⁷⁵, Stephen L Guthery⁷⁶, Hakon Hakonarson⁴⁷, Jonas Halfvarson¹⁶, Katherine Hanigan⁵⁷, Talin Haritunians¹⁷, Ailsa 879 880 881 882 Hart⁷⁷, Chris Hawkey⁷⁸, Nicholas K Hayward⁷⁹, Matija Hedl³⁵, Paul Henderson^{80,81}, Xinli Hu⁸², Hailiang Huang^{1,2}, Jean-Pierre Hugot⁸³, Ken Y Hui³⁴, Marcin Imielinski⁴⁷, Andrew Ippoliti¹⁷, Laimas Jonaitis⁸⁴, Luke Jostins^{5,6}, Tom H Karlsen^{85,86,87}, Nicholas A 883 884 885 Kennedy²¹, Mohammed Azam Khan^{88,89}, Gediminas Kiudelis⁸⁴, Krupa Krishnaprasad⁹⁰, Subra Kugathasan⁹¹, Limas Kupcinskas⁹², Anna Latiano⁴⁴, Debby Laukens⁶⁰, Ian C Lawrance^{19,20}, James C Lee²⁴, Charlie W Lees²¹, Marcis Leja⁹³, Johan Van Limbergen⁷⁵, 886 887 888 Paolo Lionetti⁹⁴, Jimmy Z Liu⁷, Edouard Louis²², Gillian Mahy⁹⁵, John Mansfield⁹⁶, 889 Dunecan Massey²⁴, Christopher G Mathew^{25,32}, Dermot PB McGovern¹⁷, Raquel 890


Milgrom⁹⁷, Mitja Mitrovic^{71,98}, Grant W Montgomery⁷⁹, Craig Mowat⁹⁹, William Newman^{88,89}, Aylwin Ng^{29,100}, Siew C Ng¹⁰¹, Sok Meng Evelyn Ng³⁵, Susanna Nikolaus⁵¹, Kaida Ning³⁵, Markus No then¹⁰², Ioannis Oikonomou³⁵, Orazio Palmieri⁴⁴, Miles Parkes²⁴, Anne Phillips⁹⁹, Cyriel Y Ponsioen¹⁰³, Urõs Potocnik^{98,104}, Natalie J Prescott²⁵, Deborah D Proctor³⁵, Graham Radford-Smith^{57,105}, Jean-Francois Rahier¹⁰⁶, 891 892 893 894 895 Soumya Raychaudhuri⁸², Miguel Regueiro³⁰, Florian Rieder³⁶, John D Rioux^{8,33}, Stephan 896 Soumya Raychaudhuri⁸², Miguel Regueiro³⁰, Florian Rieder³⁶, John D Rioux^{8,33}, Stephan Ripke^{1,2}, Rebecca Roberts⁴⁹, Richard K Russell⁸⁰, Jeremy D Sanderson¹⁰⁷, Miquel Sans¹⁰⁸, Jack Satsangi²¹, Eric E Schadt⁵⁶, Stefan Schreiber^{15,51}, Dominik Schulte⁵¹, L Philip Schumm¹⁰⁹, Regan Scott³⁰, Mark Seielstad^{110,111}, Yashoda Sharma³⁵, Mark S Silverberg⁹⁷, Lisa A Simms⁵⁷, Jurgita Skieceviciene⁸⁴, Sarah L Spain^{25,26}, A. Hillary Steinhart⁹⁷, Joanne M Stempak⁹⁷, Laura Stronati¹¹², Jurgita Sventoraityte⁹², Stephan R Targan¹⁷, Kirstin M Taylor¹⁰⁷, Anje ter Velde¹⁰³, Emilie Theatre^{3,4}, Leif Torkvist¹¹³, Mark Tremelling¹¹⁴, Andrea van der Meulen¹¹⁵, Suzanne van Sommeren²⁷, Eric Vasiliauskas¹⁷, Severine Vermeire^{11,28}, Hein W Verspaget¹¹⁵, Thomas Walters^{75,116}, Kai Wang⁴⁷, Ming-Hsi Wang^{36,50}, Rinse K Weersma²⁷, Zhi Wei¹¹⁷, David Whiteman⁷⁹, Cisca Wijmenga⁷¹, David C Wilson^{80,81}, Juliane Winkelmann^{118,119}, Ramnik J Xavier^{2,29}, Bin Zhang⁵⁶, Clarence K Zhang¹²⁰, Hu Zhang^{121,122}, Wei Zhang³⁵, Hongyu Zhao¹²⁰, Zhen Z Zhao⁷⁹ 897 898 899 900 901 902 903 904 905 906 907 908 909 Connecticut, USA. ³⁶Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, USA. ³⁷Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA. ³⁸Peninsula College of Medicine and Dentistry, Exeter, UK. 910 911 912 ³⁹Department of Gastroenterology, Erasmus Hospital, Brussels, Belgium. ⁴⁰Department of 913 Gastroenterology, Free University of Brussels, Brussels, Belgium.⁴¹Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA.⁴²Institute of Regional Health Research, University of 914 915 Southern Denmark, Odense, Denmark. ⁴³Inflammatory Bowel Disease Service, Department of 916 Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia.⁴⁴Unit of 917 Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza (IRCCS-CSS) Hospital, San Giovanni Rotondo, Italy. ⁴⁵Strutture Organizzative Dipartimentali (SOD) 918 919 Gastroenterologia 2, Azienda Ospedaliero Universitaria (AOU) Careggi, Florence, Italy. ⁴⁶Department of 920 Gastroenterology, Ho [] pital Maisonneuve-Rosemont, Montréal, Québec, Canada. ⁴⁷Center for Applied 921 Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA. 48Department of 922 Gastroenterology and Hepatology, Flinders Medical Centre and School of Medicine, Flinders University, 923 Adelaide, Australia.⁴⁹Department of Medicine, University of Otago, Christchurch, New Zealand. 924 ⁵⁰Meyerhoff Inflammatory Bowel Disease Center, Department of medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. ⁵¹Department for General Internal Medicine, Christian-925 926 Albrechts-University, Kiel, Germany.⁵²Division of Gastroenterology, Royal Victoria Hospital, Montréal, 927 Ouébec, Canada. ⁵³Department of Medicine II, Ludwig-Maximilians-University Hospital Munich-928 Grosshadern, Munich, Germany.⁵⁴Department of Gastroenterology, Campus Charité Mitte, 929 Universitatsmedizin Berlin, Berlin, Germany.⁵⁵IBD unit, Fremantle Hospital, Fremantle, Australia. 930 ⁵⁶Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, 931 USA. ⁵⁷Inflammatory Bowel Diseases, Genetics and Computational Biology, Queensland Institute of 932 Medical Research, Brisbane, Australia. ⁵⁸IBD Center, Department of Gastroenterology, Istituto Clinico 933 Humanitas, Milan, Italy. ⁵⁹Department of Gastroenterology and Hepatology, Radboud University Nijmegen 934 Medical Centre, Nijmegen, The Netherlands. ⁶⁰Department of Hepatology and Gastroenterology, Ghent 935 University Hospital, Ghent, Belgium. ⁶¹Center of hepatology, Gastroenterology and Dietetics, Vilnius University, Vilnius, Lithuania. ⁶²Pediatric Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA. ⁶³Department of Gastroenterology, Université Catholique de Louvain 936 937 938 (UCL) Cliniques Universitaires Saint-Luc, Brussels, Belgium. ⁶⁴Division of Gastroenterology, University 939 Hospital Padua, Padua, Italy. ⁶⁵Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, 940 California, USA. ⁶⁶Department of Gastroenterology, Torbay Hospital, Torbay, Devon, UK. ⁶⁷Center for 941 Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, 942 Massachusetts, USA. ⁶⁸Pediatrics, Harvard Medical School, Boston, Massachusetts, USA. ⁶⁹Faculty of

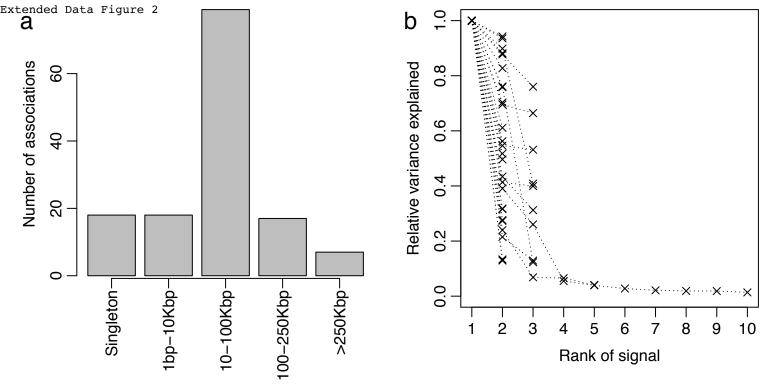
943 Medical & Health Sciences, School of Medical Sciences, The University of Auckland, Auckland, New 944 Zealand. ⁷⁰Department of Gastroenterology, Mater Health Services, Brisbane, Australia. ⁷¹Department of 945 Genetics, University Medical Center Groningen, Groningen, The Netherlands. ⁷²Department of 946 Gastroenterology, Christchurch Hospital, Christchurch, New Zealand. ⁷³Institute of Genetic Epidemiology, 947 Helmholtz Zentrum Mu nchen - German Research Center for Environmental Health, Neuherberg, 948 Germany.⁷⁴Department of Preventive Dentistry and Periodontology, Ludwig-Maximilians-University 949 Hospital Munich-Grosshadern, Munich, Germany.⁷⁵Division of Pediatric Gastroenterology, Hepatology 950 and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada. ⁷⁶Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA. ⁷⁷Department of Medicine, St Mark's Hospital, 951 952 Harrow, Middlesex, UK. 78Nottingham Digestive Diseases Centre, Queens Medical Centre, Nottingham, 953 UK. ⁷⁹Molecular Epidemiology, Genetics and Computational Biology, Queensland Institute of Medical 954 Research, Brisbane, Australia.⁸⁰Paediatric Gastroenterology and Nutrition, Royal Hospital for Sick 955 Children, Edinburgh, UK.⁸¹Child Life and Health, University of Edinburgh, Edinburgh, Scotland, UK. 956 ⁸²Division of Rheumatology Immunology and Allergy, Brigham and Women's Hospital, Boston, 957 Massachusetts, USA. 83 Université Paris Diderot, Sorbonne Paris-Cité, Paris, France. 84 Academy of 958 Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania.⁸⁵Research Institute of Internal 959 Medicine, Department of Transplantation Medicine, Division of Cancer, Surgery and Transplantation, Oslo 960 University Hospital Rikshospitalet, Oslo, Norway. ⁸⁶Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer, Surgery and Transplantation, Oslo University Hospital 961 Rikshospitalet, Oslo, Norway.⁸⁷K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.⁸⁸Genetic Medicine, Manchester Academic Health Science Centre, 962 963 964 Manchester, UK. 89The Manchester Centre for Genomic Medicine, University of Manchester, Manchester, 965 UK. ⁹⁰QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Australia. 966 ⁹¹Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA. ⁹²Department of 967 Gastroenterology, Kaunas University of Medicine, Kaunas, Lithuania.⁹³Faculty of medicine, University of 968 Latvia, Riga, Latvia.⁹⁴Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino 969 (NEUROFARBA), Universit[^] di Firenze Strutture Organizzative Dipartimentali (SOD) Gastroenterologia e 970 Nutrizione Ospedale pediatrico Meyer, Firenze, Italy.⁹⁵Department of Gastroenterology, The Townsville 971 Hospital, Townsville, Australia.⁹⁶Institute of Human Genetics, Newcastle University, Newcastle upon 972 Tyne, UK. ⁹⁷Inflammatory Bowel Disease Centre, Mount Sinai Hospital, Toronto, Ontario, Canada. 973 ⁹⁸Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of 974 Maribor, Maribor, Slovenia.⁹⁹Department of Medicine, Ninewells Hospital and Medical School, Dundee, 975 UK. ¹⁰⁰Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard 976 Medical School, Boston, Massachusetts, USA.¹⁰¹Department of Medicine and Therapeutics, Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong. ¹⁰²Department of Genomics Life & Brain Center, University Hospital Bonn, Bonn, Germany. ¹⁰³Department of Gastroenterology, Academic Medical Center, Amsterdam, The Netherlands. ¹⁰⁴Faculty for Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia. ¹⁰⁵Department of Gastroenterology, Royal Brisbane and 977 978 979 980 Womens Hospital, Brisbane, Australia.¹⁰⁶Department of Gastroenterology, Université Catholique de 981 982 Louvain (UCL) Centre Hospitalier Universitaire (CHU) Mont-Godinne, Mont-Godinne, Belgium. 983 ¹⁰⁷Department of Gastroenterology, Guy's & St Thomas' NHS Foundation Trust, St-Thomas Hospital, 984 London, UK. ¹⁰⁸Department of Digestive Diseases, Hospital Quiron Teknon, Barcelona, Spain. ¹⁰⁹Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA. ¹¹⁰Human Genetics, Genome Institute of Singapore, Singapore. ¹¹¹Institute for Human Genetics, University of 985 986 California, San Francisco, San Francisco, California, USA.¹¹²Department of Biology of Radiations and 987 988 Human Health, Agenzia nazionale per le nuove tecnologie l'energia e lo sviluppo economico sostenibile 989 (ENEA), Rome, Italy.¹¹³Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden. ¹¹⁴Gastroenterology & General Medicine, Norfolk and Norwich University Hospital, Norwich, UK. ¹¹⁵Department of Gastroenterology, Leiden University Medical Center, Leiden, 990 991 992 The Netherlands. ¹¹⁶Faculty of medicine, University of Toronto, Toronto, Ontario, Canada. ¹¹⁷Department 993 of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, USA. ¹¹⁸Institute of 994 Human Genetics, Technische Universita It Mu nchen, Munich, Germany.¹¹⁹Department of Neurology, Technische Universita It Mu Inchen, Munich, Germany.¹²⁰Department of Biostatistics, School of Public Health, Yale University, New Haven, Connecticut, USA.¹²¹Department of Gastroenterology, West China 995 996 997 Hospital, Chengdu, Sichuan, China.¹²²State Key Laboratory of Biotherapy, Sichuan University West China 998 University of Medical Sciences (WCUMS), Chengdu, Sichuan, China

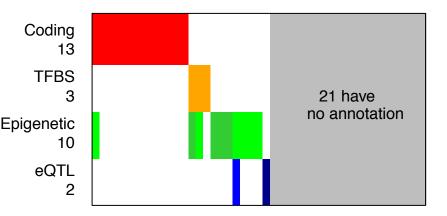


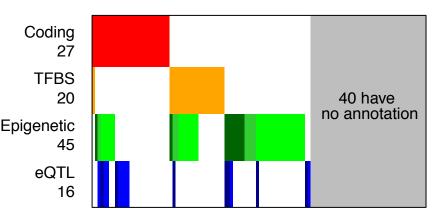

a Figure 2

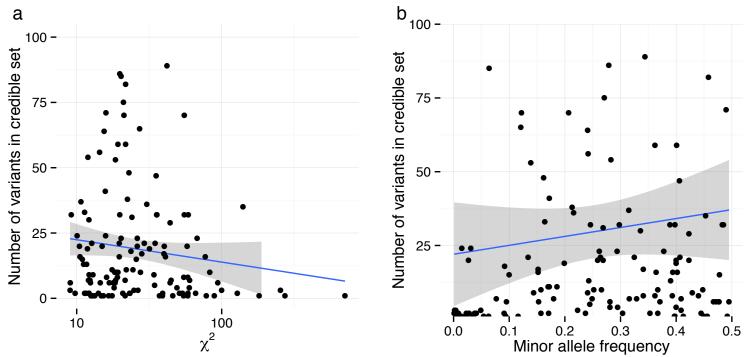


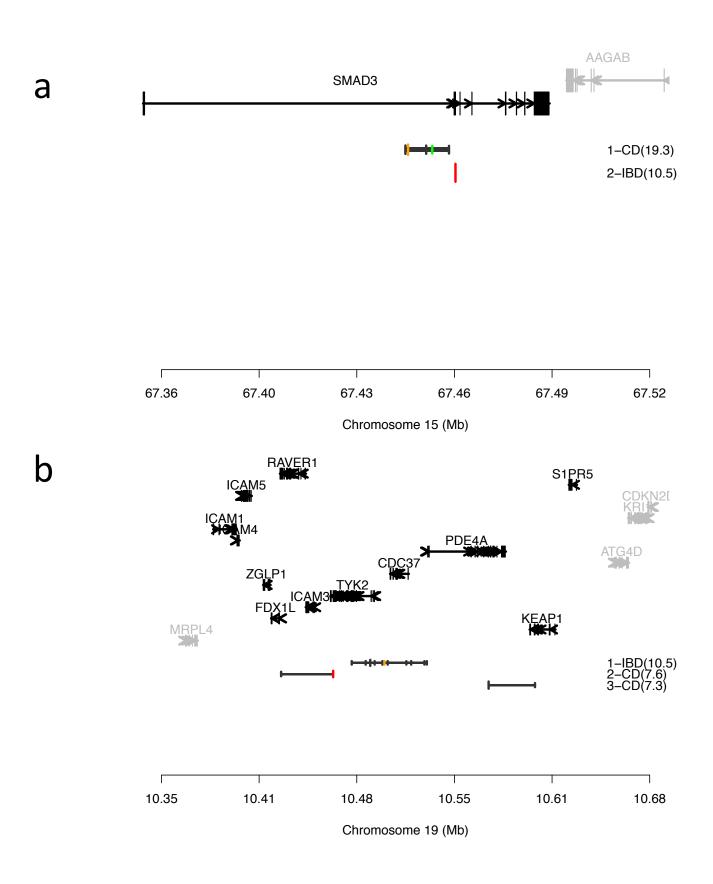
Others

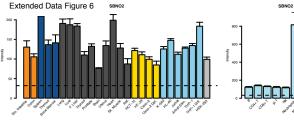


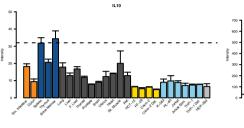

Extended Data Figure 1

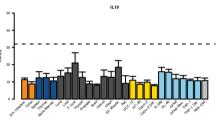

 χ^2

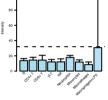

a) Functional annotation for 45 variants having posterior probability > 50%

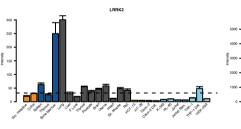

b) Functional annotation for 116 associations that are mapped to < 50 variants

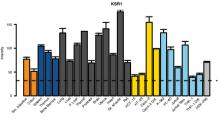


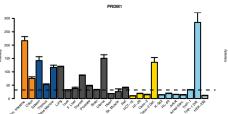

Extended Data Figure 4

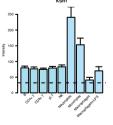


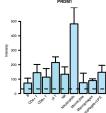

Extended bioRxiv preprintedot https://doi.org/10.1101/028688; this version posted October 8, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

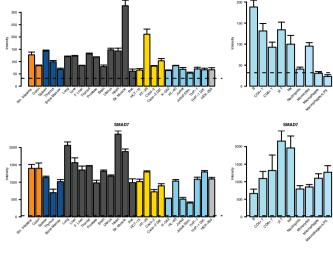


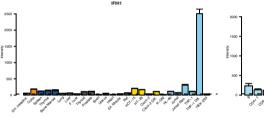


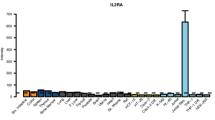


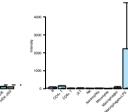

IL19


IL10

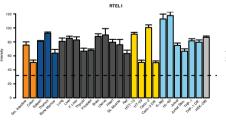


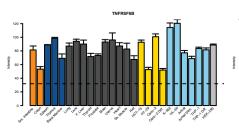


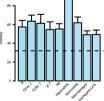


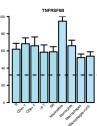


MAD3








II.2RA

SMAD3

Extended DioRxivIpreprint doi: https://doi.org/10.1101/028688; this version posted October 8, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

dataset	method	observed	Expected	p-value
CD4	Naïve	3	0.4	0.007
CD8	Naïve	1	0.3	0.296
CD14	Naïve	0	0.2	1.000
CD15	Naïve	1	0.2	0.199
CD19	Naïve	0	0.1	1.000
platelets	Naïve	0	0.0	1.000
lleum	Naïve	2	0.3	0.025
colon	Naïve	1	0.2	0.206
rectum	Naïve	1	0.2	0.187
CD14 naïve	Naïve	8	2.7	0.005
CD14 IFN stimulated	Naïve	4	3.2	0.559
CD14 LPS 2h stimulated	Naïve	1	2.1	0.726
CD14 LPS 24h stimulated	Naïve	5	2.5	0.107
CD4	Bayesian	4	1.0	0.010
CD8	Bayesian	1	0.8	0.566
CD14	Bayesian	1	0.9	0.595
CD15	Bayesian	0	0.7	1.000
CD19	Bayesian	0	0.6	1.000
platelets	Bayesian	0	0.1	1.000
ileum	Bayesian	2	0.4	0.069
colon	Bayesian	3	0.8	0.040
rectum	Bayesian	2	0.6	0.124
CD4	Permutation	6	1.9	0.013
CD8	Permutation	3	1.5	0.186
CD14	Permutation	4	2.3	0.180
CD15	Permutation	1	1.8	0.863
CD19	Permutation	0	1.4	1.000
platelets	Permutation	0	0.1	1.000
ileum	Permutation	4	1.1	0.018
colon	Permutation	3	1.7	0.216
rectum	Permutation	4	1.4	0.039