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Summary (150 words) 53 

Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammatory disorder 54 

that affects millions worldwide. Genome-wide association studies (GWAS) have 55 

identified 200 IBD-associated loci, but few have been conclusively resolved to specific 56 

functional variants. Here we report fine-mapping of 94 IBD loci using high-density 57 

genotyping in 67,852 individuals. Of the 139 independent associations identified in these 58 

regions, 18 were pinpointed to a single causal variant with >95% certainty, and an 59 

additional 27 associations to a single variant with >50% certainty.  These 45 variants are 60 

significantly enriched for protein-coding changes (n=13), direct disruption of 61 

transcription factor binding sites (n=3) and tissue specific epigenetic marks (n=10), with 62 

the latter category showing enrichment in specific immune cells among associations 63 

stronger in CD and gut mucosa among associations stronger in UC.  The results of this 64 

study suggest that high-resolution, fine-mapping in large samples can convert many 65 

GWAS discoveries into statistically convincing causal variants, providing a powerful 66 

substrate for experimental elucidation of disease mechanisms.  67 

  68 
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Inflammatory bowel disease (IBD) is a chronic, debilitating disorder of the 69 

gastrointestinal tract with peak onset in adolescence and early adulthood. More than 1.4 70 

million people are affected in the USA alone1, with an estimated direct healthcare cost of 71 

$6.3 billion/year. IBD affects millions worldwide with a rising prevalence, particularly in 72 

pediatric and non-European ancestry populations2. IBD is comprised of two etiologically 73 

related subtypes, ulcerative colitis (UC) and Crohn’s disease (CD), which have distinct 74 

presentations and treatment courses. To date, 200 genomic loci have been associated with 75 

IBD3,4, but only a handful have been conclusively ascribed to a specific causal variant 76 

with direct insight into the underlying disease biology. This scenario is common to all 77 

genetically complex diseases, where the pace of identifying associated loci outstrips that 78 

of defining specific molecular mechanisms and extracting biological insight from each 79 

association.  80 

The widespread correlation structure of the human genome (known as linkage 81 

disequilibrium, or LD) often results in similar evidence for association among many 82 

nearby variants.  However, unless LD is perfect (r2 = 1), it is possible, with sufficiently 83 

large sample size, to statistically resolve causal variants from neighbors even at high 84 

levels of correlation (Extended Data Figure 1 and van de Bunt et al.5).  Novel statistical 85 

approaches applied to very large datasets have begun to address this problem6 but also 86 

require that the highly correlated variants are directly genotyped or imputed with 87 

certainty.  Truly high-resolution mapping data, when combined with increasingly 88 

sophisticated and comprehensive public databases annotating the putative protein-coding 89 

and regulatory function of DNA variants, are likely to reveal novel insights into disease 90 

pathogenesis7-9 and the mechanistic involvement of disease-associated variants. 91 
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 92 

Genetic architecture of IBD associated loci 93 

As part of a large collaborative effort led by the International IBD Genetics Consortium 94 

(IIBDGC), 67,852 study subjects of European ancestry, including 33,595 IBD (18,967 95 

CD and 14,628 UC) and 34,257 healthy controls were genotyped using the Illumina™ 96 

(San Diego, CA, USA) Immunochip. This custom genotyping array was designed to 97 

include all known variants from European individuals in the February 2010 release of the 98 

1000 Genomes Project10,11 in 186 high-density regions known to be associated to one or 99 

more of 12 immune-mediated diseases12. We evaluated ninety-seven of these regions 100 

previously associated with IBD3 and containing one or more associated variants (p < 10-6) 101 

in this data set. The major histocompatibility complex was excluded from these analyses 102 

as fine-mapping has been reported elsewhere13. Because fine-mapping uses subtle 103 

differences in strength of association between tightly correlated variants to infer which is 104 

most likely to be causal, it is particularly sensitive to data quality. We therefore 105 

performed stringent quality control (QC) to remove genotyping errors and batch effects, 106 

including manual cluster plot inspection for 905 variants (Methods). After QC, we 107 

imputed this dataset using the 1000 Genomes reference panel (December 2013, 108 

downloaded from IMPUTE214,15 website) to fill in missing variants or genotype data 109 

dropped in chip design or QC (Figure 1a).   110 

We applied three complementary Bayesian fine-mapping methods that used 111 

different priors and model selection strategies both to identify independent association 112 

signals within a region (Supplementary Methods), and to assign a posterior probability of 113 

causality to each variant (Figure 1a). For each independent association signal, we sorted 114 
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all variants by the posterior probability of association, and added variants to the ‘credible 115 

set’ of associated variants until the sum of their posterior probability exceeded 95%   – 116 

that is, the credible set contains the minimum list of DNA variants that are >95% likely to 117 

contain the causal variant (Figure 1b). These sets ranged in size from one to > 400 118 

variants.  We merged these results (Methods) and subsequently focused (Figure 1a) only 119 

on signals where an overlapping credible set of variants was identified by at least two of 120 

the three methods and all variants were either directly genotyped or well imputed 121 

(Methods).  Fluorescent signal intensity cluster plots were manually reviewed for all 122 

variants in credible sets with ten or fewer variants, and a second round of imputation and 123 

analysis was performed if any genotypes were removed based on this review.  124 

In 3 out of 97 regions, a consistent credible set could not be identified; when 125 

multiple independent effects exist in a region with several highly correlated signals, 126 

multiple distinct fine-mapping solutions may not be distinguishable (Supplementary 127 

Notes).  Sixty-eight of the remaining 94 regions contain a single credible set, while 26 128 

harbored two or more independent association signals, for a total of 139 independent 129 

associations defined across the 94 regions (Figure 2a).  Only IL23R and NOD2 (both 130 

previously established to contain multiple associated protein-coding variants16), contain 131 

more than three independent signals.  Consistent with previous reports3, the vast majority 132 

of signals are associated with both CD and UC.  However, many of these have 133 

significantly stronger association with one subtype than the other.  For the purposes of 134 

enrichment analyses below, we compare 79 signals that are more strongly associated with 135 

CD to 23 signals that are more strongly associated with UC (the remaining 37 are equally 136 

associated with both subtypes) (“list of credible sets” sheet, Supplementary Table 1).  137 
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Using a restricted maximum likelihood mixed model approach17, we evaluated the 138 

proportion of total variance in disease risk attributed to these 94 regions and how much of 139 

that is explained by the 139 specific associations. We estimated that 25% of CD risk was 140 

explained by the specific associations described here, out of a total of 28% explained by 141 

these loci (the corresponding numbers for UC are 17% out of 22%).  This indicates that 142 

our credible sets capture most of the IBD genetic risk at these loci.  The single strongest 143 

signals in each region contribute 76% of this variance explained and the remaining 144 

associations contribute 24% (Extended Data Figure 2b), highlighting the importance of 145 

secondary and tertiary associations in the articulation of GWAS results13,18.   146 

 147 

Associations mapped to a single variant 148 

For 18 independent signals, the 95% credible set consisted of a single variant (hereafter 149 

referred to as ‘single variant credible sets’) and for 24 others, the credible set consisted of 150 

two to five variants (Figure 2b).  The single variant credible sets included five previously 151 

reported coding variants: three in NOD2 (fs1007insC, R702W, G908R), a rare protective 152 

allele in IL23R (V362I) and a splice variant in CARD9 (c.IVS11+1G>C) 16,19. The 153 

remaining single variant credible sets were comprised of three missense variants (I170V 154 

in SMAD3, I923V in IFIH1 and N289S in NOD2), four intronic variants (in IL2RA, 155 

LRRK2, NOD2 and RTEL1/TNFRSF6B) and six intergenic variants (located 3.7kb 156 

downstream of GPR35; 3.9kb upstream of PRDM1; within a EP300 binding site 39.9 kb 157 

upstream of IKZF1; 500 bp before the transcription start site of JAK2; 9.4kb upstream of 158 

NKX2-3; and 3.5kb downstream from HNF4A) (Table 1). A customizable browser 159 

(https://atgu.shinyapps.io/Finemapping) enabling review of the detailed fine-mapping 160 
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results in each region along with all annotations discussed below has been prepared.  Of 161 

note, while physical proximity does not guarantee functional relevance, the credible set of 162 

variants for 29 associated loci now resides within 50 kb of only a single gene – improved 163 

from only 3 so refined using an earlier HapMap-based definition.  Using the same 164 

definitions, the total number of potential candidate genes was reduced from 669 to 331.  165 

Examples of IBD candidate genes clearly prioritized in our data are described in the 166 

Supplementary Box. 167 

 168 

Sequence-level consequences of associated variants – protein coding variation  169 

We first annotated the possible functional consequences of the IBD variants by their 170 

effect on the amino acid sequences of proteins. Thirteen out of 45 variants that have 171 

>50% posterior probability are non-synonymous (Table 1 and Figure 2c), an 18-fold 172 

enrichment (p-value=2x10-13, Fisher’s exact test) relative to randomly drawn variants in 173 

our regions.  By contrast, only one variant with >50% probability is synonymous 174 

(p=0.42).  All common coding variants previously reported to affect IBD risk are 175 

included in a 95% credible set including: IL23R (R381Q, V362I and G149R); CARD9 176 

(c.IVS11+1G>C and S12N); NOD2 (S431L, R702W, V793M, N852S and G908R, 177 

fs1007insC); ATG16L1 (T300A);  PTPN22 (R620W); and FUT2 (W154X). While this 178 

enrichment of coding variation (Figure 3a) provides assurance about the accuracy of our 179 

approach, it does not suggest that 30% of all associations are caused by coding variants; 180 

rather, it is almost certainly the case that associated coding variants have stronger effect 181 

sizes, making them more amenable to fine mapping. 182 

 183 
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Sequence-level consequences of associated variants – non-coding variation  184 

We next examined the best understood non-coding aspect of DNA sequence: conserved 185 

nucleotides in high confidence binding site motifs of 84 transcription factor (TF) 186 

families20 (Methods). There was a significant positive correlation between TF motif 187 

disruption and IBD association posterior probability (p-value=0.006, binomial 188 

regression) (Figure 3a), including three variants with >50% probability (two >95%).  In 189 

the RTEL1/TNFRSF6B region, rs6062496 region is predicted to disrupt a TF binding site 190 

(TFBS) for EBF1 and overlaps DNaseI hypersensitivity clusters.  EBF1 is a TF involved 191 

in the maintenance of B cell identity and prevention of alternative fates in committed 192 

cells21.  The second example, rs74465132, is a low frequency (3.6%) protective variant 193 

that creates a binding site for EP300 less than 40kbp upstream of IKZF1 (zinc-finger 194 

DNA binding protein). The third notable example of TFBS disruption, although not in a 195 

single variant credible set, is detailed in the Supplementary Box for the association at 196 

SMAD3. 197 

Recent studies have shown that trait associated variants are enriched for 198 

epigenetic marks highlighting cell type specific regulatory regions 22,23. We compared our 199 

credible sets with ChIPseq peaks corresponding to chromatin immunoprecipitation with 200 

H3K4me1, H3K4me3 and H3K27ac in 120 adult and fetal tissues, assayed by the NIH 201 

Roadmap Epigenomics Mapping Consortium24 (Figure 3b).  Using a threshold of 202 

p=1.3x10-4 (0.05 corrected for 360 tests), we observed significant enrichment of 203 

H3K4me1 in 6 immune cell types and for H3K27ac in 3 gastrointestinal (GI) samples 204 

(sigmoid colon and colonic and rectal mucosa) (Figure 3b and Supplementary Table 2).  205 

Furthermore, the subset of signals that are more strongly associated with CD overlap 206 
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more with immune cell chromatin peaks, whereas UC signals overlap more with GI 207 

chromatin peaks (Supplementary Table 2). 208 

These three chromatin marks are correlated both within tissues (we observe 209 

additional signal in other marks in the tissues described above) and across related tissues.  210 

We therefore defined a set of “core immune peaks” for H3K4me1 and “core GI peaks” 211 

for H3K27ac as the set of overlapping peaks in all enriched immune cell and GI tissue 212 

types, respectively.  These two tracks (immune-K4me1 and gut-K27ac) are independently 213 

significant and capture the observed enrichment compared to “control peaks” made up of 214 

the same number of ChIPseq peaks across our 94 regions in non-immune and non-GI 215 

tissues (Figure 3c,d).  These two tracks summarize our epigenetic-GWAS overlap signal, 216 

and the combined excess over the baseline suggests that a substantial number of regions, 217 

particularly those not mapped to coding variants, may ultimately be explained by 218 

functional variation in recognizable enhancer/promoter elements. 219 

 220 

Overlap of IBD credible sets with expression QTLs 221 

Variants that change enhancer or promoter activity might precipitate changes in gene 222 

expression, and baseline expression of many genes has been found to be regulated by 223 

genetic variation25-27.  Indeed, these so-called expression quantitative trait loci (eQTLs) 224 

have been suggested to underlie a large proportion of GWAS associations 25,28.  We 225 

therefore searched for variants that are both in an IBD associated credible set with 50 or 226 

fewer variants and the most significantly associated eQTL variant for a gene in the 227 

GODOT study29 of peripheral blood mononuclear cells (PBMC) from 2,752 twins.  228 

Sixty-eight of the 76 regions with signals fine-mapped to < 50 variants harbor at least one 229 
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significant eQTL (defined as influencing expression of a gene within 1 Mb of the region 230 

with a p-value < 10-5).  Despite this apparent abundance of eQTLs in fine-mapped 231 

regions, only 3 credible sets overlap eQTLs, compared with 3.7 expected by chance 232 

(Methods).  Data from a more recent independent study (Westra et al.)30 using PBMCs 233 

from 8,086 individuals did not yield a substantively different outcome, demonstrating a 234 

modest but non-significant enrichment (8 observed overlaps, 4.2 expected by chance, 235 

p=0.07).  Using a more lenient definition of overlap which requires the lead eQTL variant 236 

to be in LD (R2 > 0.4) with an IBD credible set variant increased the number of potential 237 

overlaps but again these numbers were not greater than chance expectation (GODOT: 238 

observed 14, expected 12.2; Westra et al.: observed 11, expected 9.1). 239 

As PBMCs are a heterogeneous collection of immune cell populations, cell type-240 

specific signals, or signals corresponding to genes expressed most prominently in non-241 

immune tissues, may be missed.  We therefore tested the enrichment of eQTLs that 242 

overlap credible sets in 5 primary T cell populations (CD4+, CD8+, CD19+, CD14+ and 243 

CD15+), platelets, and 3 distinct intestinal locations (rectum, colon and ileum) isolated 244 

from 350 healthy individuals (ULg dataset, Methods). We observed a significant 245 

enrichment of credible SNP/eQTL overlaps in CD4+ cells and ileum (Extended Table 1): 246 

3 and 2 credible sets overlapped eQTLs, respectively, compared to 0.4 and 0.3 expected 247 

by chance (p-value=0.007 and 0.025).  An enrichment was also observed for the naïve 248 

CD14+ cells from another study31 (Knight dataset, Extended Data  Table 1): eight 249 

overlaps observed compared to 2.7 expected by chance (p-value=0.005).  We did not 250 

observe enrichment of overlaps in stimulated (with interferon or lipopolysaccharide) 251 

CD14+ cells from the same source (Extended Data Table 1).  252 
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To more deeply investigate eQTL overlaps we applied two colocalization 253 

approaches (one based on permutations, one Bayesian, Methods) to eQTL datasets where 254 

primary genotype and expression data were available (ULg dataset).  We confirmed 255 

greater than expected overlap with eQTLs in CD4+ and ileum described above (Figure 4 256 

and Extended Data Table 1).  The number of colocalizations in other purified cell 257 

types/tissues was largely indistinguishable from what we expect under the null using 258 

either method, except for moderate enrichment in rectum (4 observed and 1.4 expected, 259 

p=0.039) and colon (3 observed and 0.8 expected, p=0.04).  Of these robust 260 

colocalizations, only two correspond to an IBD variant with causal probability > 50% 261 

(Table 1 and Extended Data Figure 3a).  262 

 263 

Discussion 264 

We have performed fine-mapping of 94 previously reported genetic risk loci for IBD.  265 

Rigorous quality control followed by a integration of three novel fine-mapping methods 266 

was employed to generate a list of genetic variants accounting for 139 independent 267 

associations across these loci.  These associations account for more than 80% of the total 268 

variance explained by these loci.  Our results substantially improve on previous fine-269 

mapping efforts using a preset LD threshold (e.g. r2> 0.632) (Figure 5) by formally 270 

modeling the posterior probability of association of every variant.  Much of this 271 

resolution derives from the very large sample size we employed, because the number of 272 

variants in a credible set significantly decreases with increasing test statistics (p-value = 273 

0.0069, Extended Data Figure 4).  For example, at 10% allele frequency, 31% of signals 274 
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are fine-mapped to ≤ 5 variants – this improves to 53% if the sample size were to double 275 

again. 276 

Additionally, the high-density of genotyping also aids in improved resolution.  277 

For instance, the primary association at IL2RA has now been mapped to a single variant 278 

associated with CD, rs61839660.  This variant was not present in the Hapmap 3 reference 279 

panel and was therefore not reported in earlier studies3,33 (nearby tagging variants, 280 

rs12722489 and rs12722515, were reported instead).  Imputation using the 1000 genomes 281 

reference panel and the largest assembled GWAS dataset3 did not separate rs61839660 282 

from its neighbors (unpublished results), due to the loss of information in imputation 283 

using the limited reference.  Only direct genotyping, available in the immunochip high-284 

density regions, permitted the conclusive identification of this as the causal variant. 285 

Accurate fine-mapping should, in many instances, ultimately point to the same 286 

variant across diseases in shared loci.  Among our single-variant credible sets, we fine-287 

mapped a UC association to a rare missense variant (I923V) in IFIH1, which is also 288 

associated with type 1 diabetes (T1D)34  with an opposite direction of effect 289 

(Supplementary Box). The intronic variant noted above (rs61839660, AF=9%) in IL2RA 290 

was also similarly associated with T1D, again with a discordant directional effect35 291 

(Supplementary Box). Simultaneous high-resolution fine-mapping in multiple diseases 292 

should therefore better clarify both shared and distinct biology. 293 

High-resolution fine-mapping demonstrates that causal variants are significantly 294 

enriched for variants that alter protein coding variants or disrupt transcription factor 295 

binding motifs.  Enrichment was also observed in H3K4me1 marks in immune related 296 

cell types and H3K27ac marks in sigmoid colon and rectal mucosal tissues – with CD 297 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2015. ; https://doi.org/10.1101/028688doi: bioRxiv preprint 

https://doi.org/10.1101/028688


loci demonstrating a stronger immune signature and UC loci more enriched for gut 298 

tissues.  By contrast, overall enrichment of eQTLs is quite modest compared with prior 299 

reports and not seen in excess of chance in our well-refined credible sets.  This result 300 

underscores not only the importance of the high-resolution mapping but also the careful 301 

incorporation of the high background rate of eQTLs.  It is worth noting that evaluating 302 

the overlap between two distinct mapping results is fundamentally different than 303 

comparing genetic mapping results to fixed genomic features, and depends on both 304 

mappings being well-resolved.  While these data strongly challenge the paradigm that 305 

easily surveyed baseline eQTLs explain a large proportion of non-coding GWAS signals, 306 

the modest excesses observed in smaller but cell-specific data sets suggest that much 307 

larger tissue or cell-specific studies (and under the correct stimuli or developmental time 308 

points) will resolve the contribution of eQTLs to GWAS hits.  309 

Resolving multiple independent associations may often help target the causal gene 310 

more precisely. For example, the SMAD3 locus hosts a non-synonymous variant and a 311 

variant disrupting the conserved transcription factor binding site (also overlapping the 312 

H3K27ac marker in gut tissues), unambiguously articulating a role in disease and 313 

providing an allelic series for further experimental inquiry.  Similarly, the TYK2 locus has 314 

been mapped to a non-synonymous variant and a variant disrupting a conserved 315 

transcription factor binding site (Extended Data Figure 5).   316 

One-hundred and sixteen associations have been fine-mapped to ≤ 50 variants.  317 

Among them, 27 associations contain coding variants, 20 contain variants disrupting 318 

transcription factor binding motifs, and 45 are within histone H3K4me1 or H3K27ac 319 

marked DNA regions.  However, 40 non-coding associations were not mapped to any 320 
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known function (Extended Data Figure 3b) despite extensive efforts to integrate with all 321 

available annotation, epigenetic and eQTL data.  322 

The best-resolved associations - 45 variants having >50% posterior probabilities 323 

for being causal (Table 1) – are similarly significantly enriched for variants with known 324 

or presumed function from genome annotation. Of these, 13 variants cause non-325 

synonymous change in amino acids, 3 disrupt a conserved TF binding motif, 10 are 326 

within histone H3K4me1 or H3K27ac marked DNA regions in disease-relevant tissues, 327 

and 2 co-localize with a significant cis-eQTL (Extended Data Figure 3a). 328 

This analysis leaves, however, 21 non-coding variants, all of which have 329 

extremely high probabilities to be causal (5 are in the >95% list), that are not located 330 

within known motifs, annotated elements, nor in any experimentally determined ChIPseq 331 

peaks or eQTL credible sets yet discovered.  While we have identified a statistically 332 

compelling set of genuine associations (often intronic or within 10 kb of strong candidate 333 

genes), we can make little inference about function.  For example, the single variant 334 

credible set only 500 bp from the transcription start site of JAK2 has no annotation, 335 

eQTL or ChIPseq peak of note.  This underscores the incompleteness of our knowledge 336 

regarding the function of non-coding DNA and its role in disease.  That the majority of 337 

the best refined non-coding associations have no available annotation is perhaps sobering 338 

with respect to how well we may be able to currently interpret non-coding variation in 339 

medical sequencing efforts.  It does suggest, however, that detailed fine-mapping of 340 

GWAS signals down to single variants, combined with emerging high-throughput 341 

genome-editing methodology, may be among the most effective ways to advance to a 342 

greater understanding of the biology of the non-coding genome.  343 
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List of Figures 344 

Figure 1. Procedures in the fine-mapping analysis.  a, Flowchart of fine-mapping steps. 345 

Dashed line means the imputation has been performed only once after manual inspection 346 

(not iteratively). b, An example output from fine-mapping.  This region has been mapped 347 

to two independent signals.  For each signal, fine-mapping reports the phenotype it is 348 

associated with, the variants it is fine-mapped to and their posterior probabilities. 349 

Figure 2. Summary of fine-mapped associations. a, sixty-eight loci hosting a single 350 

association and 26 loci hosting multiple independent associations. b, Number of variants 351 

in credible sets.  18 associations were fine-mapped to a single variant, and 116 to ≤ 50 352 

variants.  Only credible sets having ≤ 50 variants were advanced for set-enrichment 353 

analyses (epigenetics and eQTL).  c, distribution of the posterior probability in credible 354 

sets having ≤ 50 variants.  45 variants have posterior probability > 50% and were 355 

advanced for variant-based enrichment analyses (coding, TFBS disruption and 356 

epigenetics). 357 

Figure 3. Functional annotation of causal variants.  a, Proportion of variants that are 358 

protein coding, disrupting/creating transcription factor binding motifs or synonymous.  b, 359 

Epigenetic peaks overlapping credible variants in various cell lines. Sample categories 360 

were taken from the Roadmap Epigenomics Consortium36.  Significant cell line-peak 361 

pairs have been marked with asterisks. c,  Proportion of credible variants that overlap 362 

H4K4Me1 peaks. d, Proportion of credible variants that overlap H3K27ac peaks.  In 363 

panels a, c and d, the vertical dotted lines mark the 50% probability and the horizontal 364 

dashed lines show the background proportions of each functional category. 365 
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Figure 4. Number of credible sets that colocalize eQTLs.  The violin plot shows the 366 

distribution of the number of colocalizations by chance (background) and the solid points 367 

shows the observed number of colocalizations.  P-values of the enrichment were shown 368 

next to the solid points.  Both the background and the observed numbers were calculated 369 

using the permutation based approach (Methods). 370 

Figure 5. Fine-mapping improved the resolution of genetic associations.  We 371 

compare the numbers of variants that are mapped in each independent signal using the 372 

fine-mapping approach (y axis) and the R2 > 0.6 cut-off (x axis).  Fine-mapping maps 373 

most signals to smaller numbers of variants. 374 

  375 
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List of Tables 376 

Table 1: Summary of variants having posterior probability >50%. Variants were sorted 377 

by their posterior probabilities.  AF: allele frequency.  PROB: posterior probability for 378 

being a causal variant. FUNC: functional annotations including coding (C), Epegenetic 379 

peaks (E), disrupting transcription factor binding sites (T) and colocalization with eQTL 380 

(Q).   381 

VARIANT CHR POSITION TRAIT AF PROB FUNC ANNOTATION 

Signals mapped to a single variant 

rs7307562 12 40724960 CD 0.398 0.999  LRRK2 (intronic) 

rs2066844 16 50745926 CD 0.063 0.999 C NOD2(R702W) 

rs2066845 16 50756540 CD 0.022 0.999 C NOD2(G908R) 

rs6017342 20 43065028 UC 0.544 0.999 E HNF4A (downstream), 

Gut_H3K27ac 

rs61839660 10 6094697 CD 0.094 0.999 E IL2RA (intronic), 

Immune_H3K4me1 

rs5743293 16 50763781 CD 0.964 0.999 C fs1007insC 

rs6062496 20 62329099 IBD 0.587 0.996 T RTEL1-

TNFRSF6B (ncRNA_intronic),  

EBF1 TFBS 

rs141992399 9 139259592 IBD 0.005 0.995 C CARD9(1434+1G>C) 

rs35667974 2 163124637 UC 0.021 0.994 C IFIH1(I923V) 

rs74465132 7 50304782 IBD 0.034 0.994 T,E IKZF1 (upstream),  

EP300 TFBS,  

Immune_H3K4me1 

rs4676408 2 241574401 UC 0.508 0.994  GPR35 (downstream) 

rs5743271 16 50744688 CD 0.007 0.993 C NOD2(N289S) 

rs10748781 10 101283330 IBD 0.55 0.990 E NKX2-3 (upstream), 

Gut_H3K27ac 

rs35874463 15 67457698 IBD 0.054 0.989 C,E SMAD3(I170V),  

Gut_H3K27ac 

rs72796367 16 50762771 CD 0.023 0.983  NOD2 (intronic) 

rs1887428 9 4984530 IBD 0.603 0.974  JAK2 (upstream) 

rs41313262 1 67705900 CD 0.014 0.973 C IL23R(V362I) 

rs28701841 6 106530330 CD 0.116 0.971  PRDM1 (upstream) 

Signals mapped to ≥ 2 variants but the lead variant have posterior probability > 50%  

rs76418789 1 67648596 CD 0.006 0.937 C IL23R(G149R) 

rs7711427 5 40414886 CD 0.633 0.919   

rs1736137 21 16806695 CD 0.407 0.879   
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rs104895444 16 50746199 CD 0.003 0.865 C NOD2(V793M) 

rs56167332 5 158827769 IBD 0.353 0.845  IL12B 

rs104895467 16 50750810 CD 0.002 0.833 C NOD2(N852S) 

rs630923 11 118754353 CD 0.153 0.820   

rs3812565 9 139272502 IBD 0.402 0.815 Q eQTL of INPP5E  in CD4 and CD8;  

CARD9 in CD14, SEC16A  in CD15  

rs4655215 1 20137714 UC 0.763 0.784 E Gut_H3K27ac 

rs145530718 19 10568883 CD 0.023 0.762   

rs6426833 1 20171860 UC 0.555 0.752   

chr20:43258079 20 43258079 CD 0.041 0.736   

rs17229679 2 199560757 UC 0.028 0.716   

rs4728142 7 128573967 UC 0.448 0.664 E Immune_H3K4me1 

rs2143178 22 39660829 IBD 0.157 0.662 T,E NFKB TFBS, Gut_H3K27ac 

rs34536443 19 10463118 CD 0.038 0.649 C TYK2(P1104A) 

rs138425259 16 50663477 UC 0.009 0.648   

rs146029108 9 139329966 CD 0.036 0.643   

rs12722504 10 6089777 CD 0.26 0.615   

rs60542850 19 10488360 IBD 0.17 0.591   

rs2188962 5 131770805 CD 0.44 0.590 E,Q Gut_H3K27ac,  

eQTL of SLC22A5 in CD14, CD15 

and IL 

rs2019262 1 67679990 IBD 0.4 0.586   

rs3024493 1 206943968 IBD 0.171 0.537 E Immune_H3K4me1 

rs7915475 10 64381668 CD 0.304 0.528   

rs77981966 2 43777964 CD 0.077 0.521   

rs9889296 17 32570547 CD 0.264 0.512   

rs2476601 1 114377568 CD 0.908 0.508 C PTPN22(W620R) 

  382 
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Supplemental Materials 383 

 384 

Extended Data Figure 1, Power (y axis) to distinguish which variant in a correlated pair 385 

(strength of correlation shown by color) is causal increases with the significance of the 386 

association (x axis), and therefore with sample size and effect size.  The vertical dashed 387 

line flags the genome-wide significance level.  To estimate the relationship between the 388 

strength of association and our ability to fine-map it, we assumed that the association has 389 

only two possible causal variants, and we define the signal as successfully fine-mapped if 390 

the ratio of Bayes factors between the true causal variant and the non-causal variant is 391 

greater than 10 (a 91% posterior, assuming equal priors).  Using equation (8) in 392 

Supplementary Methods, we have 393 

logBF � log Pr	
 |SNP1�
Pr	
 |SNP2� � log Pr	
 |SNP1, ��

� �
Pr	
 |SNP2, ��

��  

in which �� is maximum likelihood estimate of the parameter values.  The log-likelihood 394 

ratio follows a chi-square distribution: 395 

logBF~ � 1
2 	�����

� � �����
� � � � 1

2 �	1 � ��� 

in which λ is the chi-square statistic of the lead variant and r is the correlation coefficient 396 

between the two variants.  Because of the additive property of the chi-square distribution, 397 

logBF follows a non-central chi-square distribution with 1 degree of freedom and non-398 

centrality parameter  �	1 � ���/2.  Therefore, the power can calculated as the probability 399 

that logBF > log(10), given by the CDF of the non-central chi-squared distribution. 400 

 401 

Extended Data Figure 2, a, Genomic distance that variants in 95% credible set span.  b, 402 

Variance explained normalized to the primary association in each locus.  403 

 404 

Extended Data Figure 3. a, Functional annotation for 45 variants having posterior 405 

probability > 50%. b, Functional annotation for 116 associations that are fine-mapped to 406 

≤ 50 variants. 407 

 408 

Extended Data Figure 4, a, Number of variants in credible set decreases with the 409 

significance of the signal.  b, Number of variants in credible set increases with the minor 410 

allele frequency of the signal.  The solid line shows the fitted trend in both panels, and 411 

the shaded region shows the variance of the trend.   412 

 413 

Extended Data Figure 5, SMAD3 (a) and TYK2 (b) regions after fine-mapping. The 414 

implicated region has been reduced to a smaller number of genes (shown in black).  Color 415 

ticks are variants mapped to their functions and black ticks are variants not mapped to a 416 

function.  The width of the tick scales with the posterior probability. 417 

 418 

Extended Data Figure 6,  Tissue and cell line specific expression for genes SBNO2, 419 

IL10, IL19, LRRK2, KSR1, PRDM1, SMAD3, SMAD7, IFIH1, IL2RA, RETL1 and 420 

TNFRSF6B.  Left panels. Expression levels of selected genes were determined in a panel 421 

of human tissues (bone marrow, heart, skeletal muscle (Sk. Muscle), uterus, liver, fetal 422 

liver (F. Liver), spleen, thymus, thyroid, prostate, brain, lung, small intestine (Sm. 423 

Intestine) and colon) and human cell lines using a custom made Agilent expression array. 424 
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The cell lines represent models of human T lymphocytes (Jurkat), monocytes (THP-1), 425 

erythroleukemia cells (K562), promyelocytic cells (HL-60), colonic epithelial cells 426 

(HCT-15, HT-29, Caco-2), and cells from embryonic kidney (HEK-293). In addition, 427 

models of differentiated colonic epithelium (Caco-2 differentiated for 21 days in culture 428 

(Caco-2 diff.)), activated T lymphocytes (Jurkat cells stimulated with PMA (40ng/ml) 429 

and ionomycin (1ug/ml) for 6 hrs (Jurkat stim.)), and macrophages (derived from THP-1 430 

differentiated for 24 hrs (THP-1 diff.) with IFN-γ (400U/ml) and TNF-α (10ng/ml)) were 431 

examined. Intensity values for each tissue/cell line represent the geometric mean with 432 

geometric standard deviation of 3 independent measurements; each measurement 433 

represents the geometric mean of all probes (one per exon) for each gene followed by a 434 

median normalization across all genes on the array. The dotted line indicates the 435 

threshold level for detection of basal expression. The reference sample (Ref.) is 436 

composed of a mixture RNAs derived from 10 different human tissues.  Right panels. 437 

Expression levels of selected genes were determined in a panel of primary immune cells 438 

(neutrophils, monocytes, γδ T cells, B cells, NK cells, CD4+ T cells, CD8+ T cells) 439 

isolated from healthy donors, as well as monocyte in vitro derived macrophages without 440 

and with 24 hours of stimulation using 1 ug/ml of lipopolysaccharide 441 

(macrophages+LPS).  The results presented in the left and right panels were generated 442 

and analyzed separately and therefore the expression values are not directly comparable. 443 

 444 

Extended Data Table 1, The number IBD credible sets that colocalize with expression 445 

QTLs using the naïve, permutation-based and Bayesian-based approaches.   446 
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Methods 494 

Genotyping and QC 495 

We genotyped 35,197 unaffected and 35,346 affected individuals (20,155 Crohn’s 496 

disease and 15,191 ulcerative colitis) using the Immunochip array.  Genotypes were 497 

called using optiCall37 for 192,402 autosomal variants before QC. We removed variants 498 

with missing data rate >2% across the whole dataset, or >10% in any one batch, and 499 

variants that failed (FDR < 10-5 in either the whole dataset or at least two batches) tests 500 

for: a) Hardy-Weinberg equilibrium; b) differential missingness between cases and 501 

controls; c) significant heterogeneity in allele frequency across controls from different 502 

batches. We also removed noncoding variants that were not in the 1000 Genomes Phase I 503 

integrated variant set (March 2012 release), or the HapMap phase 2 or 3 releases, as these 504 

mostly represent false positives included on Immunochip from the 1000 Genomes pilot, 505 

which often genotype poorly. Where a variant failed in exactly one batch we set all 506 

genotypes to missing for that batch (to be reimputed later) and included the site if it 507 

passed in the remainder of the batches. We removed individuals that had >2% missing 508 

data, had significantly higher or lower (defined as FDR<0.01) inbreeding coefficient (F), 509 

or were duplicated or related (PI_HAT ≥ 0.4, calculated from the LD pruned dataset 510 

described below), by sequentially removing the individual with the largest number of 511 

related samples until no related samples remain. After QC, there were 67,852 European-512 

derived samples with valid diagnosis (healthy control, Crohn’s disease or ulcerative 513 

colitis), and 161,681 genotyped variants available for downstream analyses. 514 

Linkage-disequilibrium pruning and principal components analysis 515 

From the clean dataset we removed variants in long range LD38 or with MAF < 0.05, and 516 

then pruned 3 times using the ‘--indep’ option in PLINK (with window size of 50, step 517 
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size of 5 and VIF threshold of 1.25).  This pruned dataset (18,123 variants) was used to 518 

calculate the relatedness of the individuals and the principal components.  Principal 519 

component axes were generated within controls using this LD pruned dataset. The axes 520 

were then projected to cases to generate the principal components for all samples.  The 521 

analysis was performed using our in-house C code 522 

(https://github.com/hailianghuang/efficientPCA) and LAPACK package39 for efficiency. 523 

Imputation 524 

Imputation was performed separately in each Immunochip high-density region (184 total) 525 

from the 1000 Genomes Phase I integrated haplotype reference panel, downloaded from 526 

the IMPUTE2 website (Dec 2013 release). We used SHAPEIT (v2.r769)40,41 to pre-phase 527 

the genotypes, followed by IMPUTE2 (2.3.0)14,15 to perform the imputation.  There were 528 

388,432 variants having good imputation quality (INFO > 0.4) and were used in the fine-529 

mapping analysis.  530 

Manual cluster plot inspection  531 

Variants that had posterior probability greater than 50% or in credible sets mapped to ≤ 532 

10 variants were manually inspected using Evoker v2.242.  Each variant was inspected by 533 

3 independent reviewers (10 reviewers participated) and scored as pass, fail or maybe.  534 

We remove variants that received one or more fails, or received less than 2 passes.  650 535 

out of 905 inspected variants passed this inspection.  A further cluster plot inspection 536 

flagged two additional failed variants after removing the failed variants from the first 537 

inspection and redoing the imputation and analysis. 538 

Establishing a p-value threshold 539 
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We used a multiple testing corrected p-value threshold for associations of 10-6, which was 540 

established by permutation. We generated 200 permuted datasets by randomly shuffling 541 

phenotypes across samples and carried out association analyses for each permutation 542 

across all 161,681 variants in our high-density regions.  We stored (i) the ensuing 543 

161,681 x 200 point-wise p-values (��), as well as (ii) the 200 “best” p-values (��) of 544 

each permuted datasets.  We then computed the empirical, family-wise p-value 545 

(�	)(corrected for multiple testing) for each of the 161,681 x 200 tests as its rank/200 546 

with respect to the 200 ��.  We then estimated the number of independent tests 547 

performed in the studied regions, n, as the slope of the regression of log(1-�	) on log(1-548 

��), knowing that �	 � 1 � 	1 � ���
 .   549 

Detecting and fine-mapping association signals 550 

We used three fine-mapping methods to detect independent signals and create credible 551 

sets across 103 high-density regions (Supplementary Methods).  Signals identified by 552 

different methods were merged if their credible sets shared one or more variants.  In order 553 

to adjudicate differences between methods, we first assigned each candidate signal to the 554 

combination of a lead variant and trait (CD, UC or IBD) that maximizes the marginal 555 

likelihood from equation (8) in Supplementary Methods.  At loci with >1 signal, we fixed 556 

the signals reported by all three methods, and then tested all possible combinations of 557 

signals reported by one or two methods, selecting whichever combination has the highest 558 

joint marginal likelihood.  We consider signals to be confidently fine-mapped, and take 559 

them forward for subsequent analysis, if they a) are in loci where the lead variant has p < 560 

10-6, b) have a ratio of Bayes factors for the best model and the second best model greater 561 

than 10, c) are reported by more than one method and d) passed cluster plot inspection. 562 
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Phenotype assignment of signals 563 

We assign each signal as CD-specific, UC-specific or shared, using the Bayesian 564 

multinomial model used for fine-mapping method 2 (the method best able to assess 565 

evidence of sharing in the presence of potentially correlated effect sizes). For the lead 566 

variant for each credible set, we calculate the marginal likelihoods as in equation 13 from 567 

Supplementary Methods, restricting either βUC = 0 (for the CD-only model) or βCD = 568 

0 (for the UC-only model), as well as using the unconstrained prior (for the associated to 569 

both model), and select the model with the highest marginal likelihood. We then calculate 570 

the log Bayes factor in favor of sharing, i.e. the log of ratio of marginal likelihoods 571 

between the associated-to-both model and the best of the single-phenotype associated 572 

models.  573 

Estimating the variance explained by the fine-mapping 574 

We used a mixed model framework to estimate the total risk variance attributable to the 575 

IBD risk loci, and to the signals identified in the fine-mapping. We the GCTA software 576 

package43 to compute a gametic relationship matrix (G-matrix) using genotype dosage 577 

information for the genotyped variants in the high-density regions (which we will call 578 

���). We then fit a variety of variance component models by restricted maximum 579 

likelihood analysis using an underlying liability threshold model implemented with the 580 

DMU package44. The first model is a standard heritability mixed-model that includes 581 

fixed effects for five principal components (to correct for stratification) and a random 582 

effect summarizing the contribution of all variants in the fine-mapping regions, such that 583 

the liabilities across all individuals are distributed according to  584 

� � �	 �!"� # $ #  
!"
,  ����� # 	1 � ���% �, 
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where  �� is thus the variance explained by all variants in fine-mapping regions, which 585 

we estimate. We then fitted a model that included an additional random effect for the 586 

contribution of the lead variants have been specifically identified (with G-matrix 587 

����
���), such that liability is distributed 588 

� � �	 �!"� # $ #  
!"
,  �&���� #  ������
��� #  	1 � �&� – ���% � 

The variance explained by the signals under consideration is then given by the reduction 589 

in the variance explained by all variants in the fine-mapping regions between the two 590 

models ( �� �  �&�). We used this approach to estimated what fraction of this variance 591 

was accounted for by (i) the single strongest signals in each region (as would be typically 592 

done prior to fine-mapping), or (ii) the all signals identified in fine-mapping. We used 593 

Cox and Snell’s method45 to estimate the variance explained across independent signals 594 

(Extended Data Figure 2b) for computational efficiency.  595 

Overlap between transcription factor binding motifs and causal variants 596 

For each motif in the ENCODE TF ChIP-seq data (http://compbio.mit.edu/encode-597 

motifs/, accessed Nov 2014) 20, we calculated the overall information content (IC) as the 598 

sum of IC for each position46, and only considered motifs with overall IC ≥ 14 bits 599 

(equivalent to 7 perfectly conserved positions). For every variant in a high-density region 600 

we determined if it creates or disrupts a motif at a high-information site (IC ≥ 1.8). For 601 

each credible set that contains a motif-affecting variant, we calculated a p-value as 602 

1 � 	1 � (�
, where n is the size of the credible set and f is the proportion of all variants 603 

in the high-density region that disrupt or a create a motif in that TF family.  604 

Overlap between epigenetic signatures and causal variants 605 
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For each combination of 120 tissues and three histone marks (H3K4me1, H3K4me3 and 606 

H3K27ac) from the Roadmap Epigenome Project we calculated an overlap score, equal 607 

to the sum of fine-mapping posterior probabilities for all variants in peaks of that histone 608 

mark in that tissue. We generated a null distribution of this score for each tissue/mark by 609 

shifting chromatin marks randomly over the high-density regions  (shifting the peaks 610 

from their actual position by a random number of bases while keeping inter-peak spacing 611 

the same) and calculating the overlap score for each permutation. To summarize these 612 

correlated results across many cell and tissue types we defined a set of “core” H3K4me1 613 

immune and H3K27ac gut peaks as sets of overlapping peaks in cells that showed the 614 

strongest enrichment (p<10-4).  Intersects were made using bedtools v2.24.0 default 615 

settings47.  We selected 6 immune cell types for H3K4me1 and  3 gut cell types for 616 

H3K27ac (Supplementary Table 2).  We also chose controls (Supplementary Table 2) 617 

from non-immune and non-gut cell types with similar density of peaks in the fine-618 

mapped regions as compared to immune/gut cell types to confirm the tissue-specificity of 619 

the overlap. We used the phenotype assignments (described above) in dissecting the 620 

enrichment for the CD and UC signals. Sixty-five CD and 21 UC signals were used in 621 

this analysis.  622 

Published eQTL summary statistics  623 

We used eQTL summary statistics from two published studies: 624 

• Peripheral blood eQTLs from the GODOT study48 of 2,752 twins, reporting loci with 625 

MAF>0.5%. 626 

• CD14+ monocyte eQTLs from Table S2 in Fairfax et al.31, comprised of 432 627 

European individuals, measured in a naïve state and after stimulation with interferon-628 
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γ (for 2 or 24 hours) or lipopolysaccharide. Reports loci with MAF>4% and 629 

FDR<0.05. 630 

Processing and quality control of new eQTL ULg dataset 631 

A detailed description of the ULg dataset is in preparation (Momozawa et al., in 632 

preparation).  Briefly, we collected venous blood and intestinal biopsies at three locations 633 

(ileum, transverse colon and rectum) from 350 healthy individuals of European descent, 634 

average age 54 (range 17-87), 56% female. SNPs were genotyped on Illumina Human 635 

OmniExpress v1.0 arrays interrogating 730,525 variants, and SNPs and individuals were 636 

subject to standard QC procedures using call rate, Hardy-Weinberg equilibrium, MAF ≥ 637 

0.05, and consistency between declared and genotype-based sex as criteria.  We further 638 

imputed genotypes at ∼7 million variants on the entire cohort using the Impute2 software 639 

package14 and the 1,000 Genomes Project as reference population (Phase 3 integrated 640 

variant set, released 12 Oct 2014) 11,15.  From the blood, we purified CD4+, CD8+, 641 

CD19+, CD14+ and CD15+ cells by positive selection, and platelets (CD45-negative) by 642 

negative selection. RNA from all leucocyte samples and intestinal biopsies was 643 

hybridized on Illumina Human HT-12 arrays v4.  After standard QC, raw fluorescent 644 

intensities were variance stabilized49 and quantile normalized50 using the lumi R 645 

package51, and were corrected for sex, age, smoking status, number of probes with 646 

expression level significantly above background as fixed effects and array number 647 

(sentrix id) as random effect.  For each probe with measureable expression (detection p-648 

value < 0.05 in >25% of samples) we tested for cis-eQTLs at all variants within a 500 649 

kilobase window.  The nominal p-value of the best SNP within a cis-window was Sidak-650 

corrected for the window-specific number of independent tests, and we estimated false 651 
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discovery rates (q-values) from the resulting p-values across all probes using the qvalue 652 

R package52.  480 cis-eQTL with FDR ≤ 0.10 with the lead SNPs within the 97 high-653 

density regions (94 fine-mapped plus 3 unresolved) were retained for further analyses.  654 

Naïve co-localization using lead SNPs  655 

We calculated the proportion of IBD credible sets that contain a lead eQTL variant in a 656 

particular tissue.  This value is then compared to a background rate: 657 

1
|)| * 	1 � 	1 � +�

������
���

 

where +�  is the total number of variants in region , in 1000 Genomes with an allele 658 

frequency greater than a certain threshold (equal to the threshold used for the original 659 

eQTL study), "�  is the number of these variants that lie in IBD credible sets, and ) is a set 660 

of regions that have at least one significant eQTL (|)| is the number of regions in this 661 

set).  P-values can then be calculated assuming a binomial distribution with probability 662 

equal to the background rate and the number of trials equal to |)|.  663 

Frequentist co-localization using conditional p-values 664 

We next used conditional association to test for evidence of co-localization, as described 665 

in Nica et al.25. This method compares the p-value of association for the lead SNP of an 666 

eQTL before and after conditioning on the SNP with the highest posterior in the credible 667 

set, and measures the drop in log(1/p). An empirical p-value for this drop is then 668 

calculated by comparing it to the drop for all variants (with MAF ≥ 0.05) in the high-669 

density region. An empirical p-value ≤ 0.05 was considered as evidence that the 670 

corresponding credible set is co-localized with the corresponding cis-eQTL.  To evaluate 671 

whether our 139 credible sets affected cis-eQTL more often than expected by chance we 672 

counted the number of credible sets affecting at least one cis-eQTL with p-value  ≤ 0.05, 673 
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and compared how often this number was matched or exceeded by 1,000 sets of 139 lead 674 

variants that were randomly selected yet distributed amongst the 94 loci in accordance 675 

with the real credible sets. 676 

Bayesian co-localization using Bayes factors 677 

Finally, we used the Bayesian co-localization methodology described by Giambartolomei 678 

et al53, modified to use the credible sets and posteriors generated by our fine-mapping 679 

methods. The method takes as input a pair of IBD and eQTL signals, with corresponding 680 

credible sets  )���   and  )����, and posteriors for each variant -�
��� and -�

����  (with 681 

-�
� � 0 / , 0 )�).  Credible sets and posteriors were generated for eQTL signals using 682 

the Bayesian quantitative association mode in SNPTest (with default parameters), with 683 

credible sets in regions with multiple independent signals generated conditional on all 684 

other signals. Our method calculates a Bayes factor summarizing the evidence in favor of 685 

a colocalized model (i.e. a single underlying causal variant between the IBD and eQTL 686 

signals) compared to a non-colocalized model (where different causal variants are driving 687 

the two signals), given by the ratio of marginal likelihoods  688 

12 � ���������� �!"

��#�$ �������� �!"
. 689 

The marginal likelihood for the colocalized model (i.e. hypothesis 3% in Giambartolomei 690 

et al) is given by 691 

4	"565786,9:;� <  1
+ * -�

���-�
����

� � ����& �����

 

and the likelihood for the model where the signals are not colocalized (i.e., hypothesis 692 

3') is given by: 693 
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4	+5= 7565786,9:;� <  1
+� � + * -�

���-(
����

�,( � ����* �����,� +(

 

In both cases, N is the total number of variants in the region. We only count towards N 694 

variants that have �� > 0.2 with either the lead eQTL variant or the lead IBD variant. 695 

Permutation analysis.  To measure enrichment in colocalization Bayes factors compared 696 

to the null, we carried out a permutation analysis. In this analysis, we randomly 697 

reassigned eQTL signals to new fine-mapping regions to generate a set of simulated null 698 

datasets. This is carried out using the following scheme:  699 

1. Estimate the standarized effect size  � for each eQTL signal @, equal to standard 700 

deviation increase in gene expression for each dose of the minor allele. 701 

2. Randomly reassign each eQTL signal to a new fine-mapping region, and then select a 702 

new causal variant with a minor allele frequency within 1 percentage point of the lead 703 

variant from the real signal. If multiple such variants exist, select one at random. If no 704 

such variants exist, pick the variant with the closest minor allele frequency. 705 

3. Generate new simulated gene expression signals for each individual from 706 

Normal( �A( , 1 �  �
��  where A(  is the individual’s minor allele dosage at the new 707 

causal variant and f is the minor allele frequency. 708 

4. Carry out fine-mapping and calculate colocalization Bayes factors for each pair of 709 

(real) IBD signal and (simulated) eQTL signal. 710 

5. Repeat stages 2-4 1000 times for each tissue type 711 

We can use these permuted Bayes factors to calculate p-values for each IBD credible set, 712 

given by the proportion of time the permuted BFs were as large or greater than the one 713 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2015. ; https://doi.org/10.1101/028688doi: bioRxiv preprint 

https://doi.org/10.1101/028688


observed in the real dataset. To generate a high-quality set of colocalized eQTL and IBD 714 

signals, we take all signals that have BF > 2, p < 0.01 and �� between hits of >0.8.  715 

  716 
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Extended Data Figure 5
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Extended Data Figure 6
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dataset method observed Expected p0value
CD4 Naïve 3 0.4 0.007
CD8 Naïve 1 0.3 0.296
CD14 Naïve 0 0.2 1.000
CD15 Naïve 1 0.2 0.199
CD19 Naïve 0 0.1 1.000
platelets Naïve 0 0.0 1.000
Ileum Naïve 2 0.3 0.025
colon Naïve 1 0.2 0.206
rectum Naïve 1 0.2 0.187
CD14@naïve Naïve 8 2.7 0.005
CD14=IFN=stimulated Naïve 4 3.2 0.559
CD14=LPS=2h=stimulated Naïve 1 2.1 0.726
CD14=LPS=24h=stimulated Naïve 5 2.5 0.107
CD4 Bayesian 4 1.0 0.010
CD8 Bayesian 1 0.8 0.566
CD14 Bayesian 1 0.9 0.595
CD15 Bayesian 0 0.7 1.000
CD19 Bayesian 0 0.6 1.000
platelets Bayesian 0 0.1 1.000
ileum Bayesian 2 0.4 0.069
colon Bayesian 3 0.8 0.040
rectum Bayesian 2 0.6 0.124
CD4 Permutation 6 1.9 0.013
CD8 Permutation 3 1.5 0.186
CD14 Permutation 4 2.3 0.180
CD15 Permutation 1 1.8 0.863
CD19 Permutation 0 1.4 1.000
platelets Permutation 0 0.1 1.000
ileum Permutation 4 1.1 0.018
colon Permutation 3 1.7 0.216
rectum Permutation 4 1.4 0.039

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2015. ; https://doi.org/10.1101/028688doi: bioRxiv preprint 

Extended Data Table 1

https://doi.org/10.1101/028688

