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ABSTRACT 

 

Selective breeding of dogs has resulted in repeated artificial selection on breed-specific 

morphological phenotypes. A number of quantitative trait loci associated with these phenotypes 

have been identified in genetic mapping studies. We analyzed the population genomic 

signatures observed around the causal mutations for 12 of these loci in 25 dog breeds, for 

which we genotyped 25 individuals in each breed. By measuring the population frequencies of 

the causal mutations in each breed, we identified those breeds in which specific mutations most 

likely experienced positive selection. These instances were then used as positive controls for 

assessing the performance of popular statistics to detect selection from population genomic 

data. We found that artificial selection during dog domestication has left characteristic 

signatures in the haplotype and nucleotide polymorphism patterns around selected loci that can 

be detected in the genotype data from a single population sample. However, the sensitivity and 

accuracy at which such signatures were detected varied widely between loci, the particular 

statistic used, and the choice of analysis parameters. We observed examples of both hard and 

soft selective sweeps and detected strong selective events that removed genetic diversity 

almost entirely over regions >10 Mbp. Our study demonstrates the power and limitations of 

selection scans in populations with high levels of linkage disequilibrium due to severe founder 

effects and recent population bottlenecks.  
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INTRODUCTION 

 

Identifying the molecular targets on which positive selection has acted constitutes one of the key 

challenges for modern population genetics. Ideally, positive selection is inferred directly from the 

frequency changes of selected alleles in a population over time (Malaspinas et al. 2012; Foll et 

al. 2014; Bank et al. 2014). However, such approaches require data on historic allele 

frequencies, otherwise they remain limited to situations of particularly rapid evolution that can be 

observed in real-time.  

 

Positive selection can also be detected from cross-population comparisons, based on 

the prediction that allele frequencies should differ between subpopulations if positive selection 

has acted in only one of them (Lewontin & Krakauer 1973; Sabeti et al. 2007; Akey et al. 2010). 

While such tests do not require time-course data, they remain limited to scenarios where 

selection acted only in a subset of individuals.  

 

The most broadly applicable strategy for identifying positive selection is to search for its 

signatures in a single population sample, taken at a single point in time. Approaches from this 

category aim to identify the characteristic signatures of selective sweeps (Maynard Smith & 

Haigh 1974; Kaplan et al. 1989; Barton 2000), which include a local trough in genetic diversity 

around the selected locus (Kim & Stephan 2002), characteristic biases in the frequency 

distributions of single nucleotide polymorphisms (SNPs) (Braverman et al. 1995; Fay & Wu 

2000), and the presence of a long haplotype that extends much farther than expected under 

neutrality (Sabeti et al. 2002). These signatures form the basis for most popular scans for 

selective sweeps (Vitti et al. 2013). 

 

However, positive selection may not always produce selective sweeps. The classic 

selective sweep model presupposes that adaptation occurs from a single de novo mutation 

(Hermisson & Pennings 2005). Yet adaptation could often proceed from alleles that are already 

present as standing genetic variation (SGV) (Orr & Betancourt 2001; Innan & Kim 2004; Barrett 

& Schluter 2008). This should be particularly common in the evolution of polygenic traits, such 

as body size, where multiple trait-affecting alleles may be segregating in the population at any 

time (Pritchard et al. 2010). 
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Whether adaptation from SGV still produced sweep-like signatures depends on the initial 

frequency and age of a selected allele at the time when positive selection commences 

(Przeworski et al. 2005; Pennings & Hermisson 2006b). If the selected allele has been around 

long enough to recombine onto different haplotypes prior to the onset of positive selection, 

several haplotypes may then increase in frequency simultaneously. In this case, diversity is not 

necessarily reduced in the vicinity of the selected site and SNP frequency spectra can actually 

become biased towards intermediate frequencies (Przeworski et al. 2005). Very similar patterns 

are produced when adaptation involves several de novo mutations that independently emerged 

on distinct haplotypes, which is expected in very large populations or when mutational target 

sizes are large (Pennings & Hermisson 2006a; Karasov et al. 2010; Messer & Petrov 2013). 

The patterns generated by adaptation from SGV and recurrent de novo mutation are commonly 

referred to as soft selective sweeps, in contrast to the classical hard selective sweep, where 

only a single haplotype rises in frequency (Hermisson & Pennings 2005).  

 

Most scans for positive selection have been designed and tested exclusively under the 

assumption of a hard selective sweep model and we do not know whether they provide a 

comprehensive picture of the mode and frequency of positive selection, or whether they identify 

only a subset of instances that is biased towards hard selective sweeps. Simulation studies 

have shown that selection scans quickly lose power for adaptation from SGV as the initial 

frequency of the selected allele increases (Przeworski et al. 2005; Teshima et al. 2006; Garud 

et al. 2015). However, it is unclear whether the alleles involved in adaptation from SGV are 

typically rare or frequent prior to the onset of selection.  

 

Here we use a set of known quantitative trait loci (QTLs) in the domestic dog (Canis 

lupus familiaris) as positive controls to examine the performance of popular selection scans in a 

real biological system. Our positive control loci were identified by genome-wide association 

studies, rather than selection scans, and thus are not necessarily biased towards hard selective 

sweeps from the outset. We focus specifically on a subset of QTLs for which we know the 

causal mutations and could thus measure their frequencies in individual dog breeds. This 

information allowed us to assess which mutations have likely experienced positive selection in 

which breeds. 

 

There are over 400 dog breeds today that have been bred for highly specific and diverse 

physical traits, including coat color, size, skull shape, and behavioral traits such as obedience, 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2015. ; https://doi.org/10.1101/028647doi: bioRxiv preprint 

https://doi.org/10.1101/028647
http://creativecommons.org/licenses/by-nc/4.0/


 5 

herding, and hunting. Modern dogs were the first animal to be domesticated, before cattle and 

horses, and domestication from their wolf ancestors goes back at least 15,000 years. Breeding 

programs throughout history, however, have resulted in periodic population bottlenecks, 

inbreeding, high levels of linkage disequilibrium in individual breeds, and a prevalence of 

inherited diseases such as cancer, heart disease, and hip dysplasia, among others (Lindblad-

Toh et al. 2005). These features make purebred dogs a particularly challenging system for 

population genetic analysis.  

 

RESULTS 

 

A set of 12 positive controls for studying the signatures of positive selection in dogs 

 

The molecular basis of morphological phenotypes selected during domestication of dog breeds 

has been extensively studied, and dozens of QTL for breed-specific phenotypes have been 

identified, which often explain surprisingly high fractions of phenotypic variance (Rimbault et al. 

2013). We compiled a set of 12 known QTLs distributed across nine chromosomes of the dog 

genome for which we know the specific mutations that are likely causal for breed-specific traits 

(Table 1). Our set includes mutations affecting body size (IGF1R, STC2, GHR, and IGF1 

(Rimbault et al. 2013)), fur type (MC5R (Hayward et al., under review) and KRT71 (Cadieu et al. 

2009)), coat color (MC1R and TYRP1 (Schmutz & Melekhovets 2012)), hair length (FGF5 

(Cadieu et al. 2009)), lip morphology (CHRNB1 (Baxter et al., in preparation)), ear morphology 

(MSRB3 (Boyko et al. 2010)), and snout length (BMP3 (Schoenebeck & Ostrander 2013)). 

These loci are representative of loci that show evidence of strong selection based on elevated 

levels of divergence between breeds (Boyko et al. 2010; Akey et al. 2010; Vaysse et al. 2011). 

Some QTLs known to be associated with breed-specific morphological traits were intentionally 

excluded from our analysis, because the causal mutations were either not well-tagged by 

markers in our data set (e.g. the insertion in the 3’UTR of RSPO2 associated with a furnishings 

phenotype (Cadieu et al. 2009)), or the locus was very close to another locus (e.g. the size-

related locus HMGA2 (Rimbault et al. 2013) that is only 300 kbp away from MSRB3). 

 

We analyzed the population genetic signatures we observed around these 12 loci in 

population samples from 25 dog breeds, spanning a broad range of morphological variation 

(Table 1). For each of the 25 breeds, we genotyped a random sample of 25 dogs at ~180,000 

SNP markers, using a semi-custom SNP array (Methods). For six of the 12 loci, the known/likely 
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causal mutations are included on the chip. Genotypes were then phased and imputed on the 

whole set, yielding 50 haploid genomes for each of the 25 breeds (1250 genomes over the 

whole data set, see Methods). We polarized SNPs using allele information from Culpeo Foxes 

for SNPs where such information was available (99.46%) and assumed the minor allele to be 

the derived allele otherwise. To assess whether a particular mutation was likely under positive 

selection in a particular breed, we estimated population frequencies for the focal mutation at 

each of the 12 loci in each of the 25 breeds (Table 1, Methods).  

  

Genome-wide selection scans in 25 dog breeds 

 

We first used the hapFLK statistic (Fariello et al. 2013) to confirm that our 12 positive controls 

indeed show signatures of positive selection in cross-population comparisons. hapFLK was 

developed to detect differences in haplotype frequencies across many populations, using an 

FST-based framework that also incorporates information about the hierarchical structure of the 

populations. Figure 1 shows the results from our genome-wide hapFLK scan including all 25 

breeds (only the chromosomes that contain positive controls are shown). Each of our 12 

controls is associated with a significant peak (P<0.05) in the hapFLK scan, with 7 of the 12 

detected as extreme outliers (P<0.001). Figure S1 shows the underlying hierarchical breed 

structure inferred by hapFLK. 

 

To test whether positive selection at our control loci has also left detectable signatures in 

the patterns of genetic variation in individual breeds, we ran genome-wide scans using seven 

popular statistics for identifying sweep signatures from a single population sample. We studied 

both SNP frequency-based and haplotype-based statistics. 

 

 Tajima’s D is a popular frequency-based statistics that compares the number of 

segregating sites (s) in a population sample with levels of heterozygosity (π) to detect genomic 

regions with an excess of low or high frequency SNPs compared to neutral expectations (Tajima 

1989). Another widely-used statistic is CLR, which underlies the programs Sweepfinder (Nielsen 

et al. 2005) and SweeD (Pavlidis et al. 2013). We included both Tajima’s D and CLR as two 

classic representatives of frequency-based statistics in our study. We also included pairwise 

heterozygosity per nucleotide (π).  
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Haplotype-based statistics search for elevated levels of haplotype homozygosity 

expected around a sweep locus. One of the most popular approaches in this category is 

integrated haplotype score (iHS), which searches for loci where the derived allele resides on a 

longer haplotype than the ancestral allele (Voight et al. 2006). In addition to iHS, we also 

included the nSL statistic, a recent modification of iHS that has improved power in detecting soft 

sweeps (Ferrer-Admetlla et al. 2014). Note that iHS and nSL are both targeted at the 

identification of incomplete sweeps, where the selected allele is not fixed in the sample. We 

further included the H12 statistic that has been developed for the detection of both hard and soft 

sweeps (Garud et al. 2015). Finally, we included a simple haplotype statistic (H) that measures 

the average length of pairwise haplotype homozygosity tracts around each SNP in base pairs 

(Methods).    

 

All statistics except H require specification of analysis parameters. For iHS and nSL, 

minimum haplotype homozygosity levels need to be specified below which haplotypes are no 

longer extended. In order to improve sensitivity, iHS and nSL are also combined over 

neighboring data points, which introduces a window-size parameter (Voight et al. 2006). CLR 

requires the specification of the number of grid-points along the chromosome. H12, Tajima’s D, 

and π require specification of the length of an analysis window over which their values are 

estimated. These windows are typically defined in terms of a fixed number of segregating sites. 

Given that SNPs in our data were estimated from all 25 breeds, we can either define such 

windows using all SNP in our data set, or only those SNPs that are actually segregating in the 

particular breed of interest. We decided to include all SNPs when defining window sizes in order 

to make results comparable between breeds. Note that this may be considered an “unfair” 

advantage to the Tajima’s D and H12 statistics, as it incorporates cross-population information: 

Consider, for example, a window of 25 neighboring SNPs identified using information from all 

breeds, for which diversity is depleted entirely in a particular breed (π = 0). Tajima’s D will then 

be very negative in this region and H12 will yield a value of one, as only a single haplotype will 

be present in the window. However, it turns out that in practice the performance of these 

statistics is not strongly affected by whether we define segregating sites using all 25 breeds, or 

just the particular breed for which the given statistic is estimated, as we will show below. 

 

 Figure 2 shows the results of the seven statistics (iHS, nSL, H, H12, CLR, Tajima’s D, π) 

for the example of French Bulldogs. Different statistics vary markedly in appearance and 

statistical properties, although some statistics are more similar than others. As expected, iHS 
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and nSL identify largely overlapping candidate regions. Likewise, H12 and H behave similar to 

each other, consistent with the fact that both statistics measure local levels of haplotype 

homozygosity (although H12 measures homozygosity over a window of fixed size, whereas H 

measures the average length of pairwise homozygosity tracts around a SNP in the sample). 

Tajima’s D and π yield similar results as well, suggesting that the signal in Tajima’s D in regions 

with negative values is driven primarily by local reductions in π. Increasing window sizes 

generally tends to smoothen results for the window-based statistics, reducing noise at the price 

of lowered sensitivity. Figure S2 shows the results of the scans in French Bulldogs when 

defining windows using only those SNPs that are actually segregating in our sample. Results 

are almost indistinguishable between the two approaches, suggesting that our choice of defining 

window sizes using all SNP in the data set does not have a large effect on the analysis. Results 

of the selection scans for all 25 breeds are presented in Figure S3.  

 

 Note that our SNP data were obtained from a genotyping chip, rather than direct 

sequencing (Methods). Low-frequency SNPs are therefore underrepresented. This should 

systematically bias Tajima’s D values towards more positive values and may also affect the 

CLR statistic. However, since we expect these biases to be present genome-wide, relative 

comparisons between different regions along the genome should remain informative. Note also 

that levels of nucleotide and haplotype diversity vary widely between breeds and that our data 

set covers a wide range of these values (Figure 3). 

 

Genome-wide outlier characteristics 

 

Our genome-wide scans reveal characteristic differences in the number, sizes, and distributions 

of “peaks” identified by the seven selection statistics. To quantify these differences, we assigned 

peaks across the genome using an outlier criterion: We considered all data points with value 

above a given chromosome-wide quantile threshold (σ) as candidates for positive selection. For 

each such data point, we then defined a peak as the window of radius d base pairs around its 

genomic position. Overlapping peaks were combined into a single peak.  

 

 We employed a simple outlier approach, rather than using an explicit neutral null model, 

as such a model would require information about the particular demographic history of each 

individual breed. Unfortunately we do not generally know much about these demographic 

histories, except that they can be complicated and differ profoundly between breeds. Our outlier 
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criterion does not require knowledge of demography, but it cannot provide us with information 

about false discovery rates. However, in our study we focus on assessing the performance of 

selection scans at known positive controls, which is conceptually different from the discovery of 

novel targets in that we are not generally worried about the detection of false positives. Instead, 

we want to study whether scans correctly place the controls among the top signals genome-

wide. Our rationale is that our control loci should be located in or near the regions with the 

strongest signals. The simple outlier approach allows us to draw general conclusions about the 

number and distribution of such regions identified by each statistic under a given threshold 

criteria. 

 

 Table 2 shows the average number of peaks identified genome-wide per breed and the 

average fraction of the genome covered by these peaks, using two different quantile thresholds 

(σ=0.95 and σ=0.99) and three window radii (d=10,50,250 kbp) for each statistic tested. As 

expected, lower thresholds and larger peak radii both tend to produce more peaks and larger 

fractions of the genome covered than higher thresholds and smaller radii. Values range from 

~600 peaks identified genome-wide per breed by CLR under the 0.95 criterion with d=10 kbp, to 

only ~10 peaks identified genome-wide per breed for iHS under the 0.99 criterion with d=250 

kbp. Note that nucleotide heterozygosity is very low in our data set: on average, π~10-5 per site 

for the breeds in our data set (Figure 3). Thus, neighboring SNPs tend to be several kbp apart, 

which is why we chose rather large windows. 

 

Performance of selection scans at positive controls 

 

We next assessed the performance of each statistics in identifying signals of positive selection 

at each positive control locus. This was done by measuring the distance between the causal 

sweep mutation and the next data point with a value above the 0.95 chromosome-wide quantile 

of the given statistic. If the statistic yielded a value above the 0.95 quantile at the actual causal 

mutation, we set the distance to zero. We used chromosome-wide quantiles, rather than 

genome-wide quantiles, because levels of nucleotide and haplotype diversity vary 

systematically between the different chromosomes within a breed (Figure S3). 

  

A close distance between a causal mutation and an outlier data point is not itself a clear 

indication that the given statistic has high power in detecting the locus. The close distance could 

simply be due to chance if values of the statistic fluctuate fast along the chromosome, so that 
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any random genomic position would typically be close to a data point with value above the 0.95 

threshold. To assess the significance of a measured closest distance, we therefore calculated 

empirical p-values for observing the given or a shorter distance by chance, based on the 

distribution of closest distances at random genomic locations in the particular chromosome and 

breed. Note that these empirical p-values are not p-values in the regular sense obtained from a 

neutral null model, but simply indicate the extent to which the observed distance is an empirical 

outlier regarding the chromosome-wide distribution. 

 

The resulting p-values for all locus/breed combinations in which the causal allele has a 

frequency of at least 50% are shown in Table 3. For the window-based statistics, we show result 

for window sizes 25, 51, 101, and 201 SNPs. The actual distances between the causal mutation 

and the closest outlier are provided in Table S1.  

 

Table 3 shows that there is substantial variation in the ability to detect signatures of 

positive selection among different statistics, loci, and breeds. As expected, iHS and nSL 

produce rather similar results. Interestingly, H12, Tajima’s D, and π also appear to be more 

similar to each other than to the other statistics. H12 and Tajima’s D identify the largest number 

of locus/breed combinations, at least when using the small windows size of 25 SNPs (Table 4). 

iHS and nSL identify only one or two (depending on window size) of the 15 fixed sweeps under 

a 0.05 significance level. They fail to identify any fixed sweep when using a stricter 0.001 

significance level. These particular results for iHS and nSL are not surprising, given that both 

statistics were designed to detect incomplete sweeps. CLR does identify several sweeps under 

the 0.05 significance level but also does not detect any sweep under the 0.001 significance 

level. H and π have lower performance than H12 and Tajima’s D but better performance than 

CLR, iHS, and nSL, especially under the stricter 0.001 significance level. 

 

The similarity between H12, Tajima’s D, and π may appear counterintuitive at first 

glance, given that H12 measures haplotype homozygosity, whereas Tajima’s D and π are 

based on SNP frequencies. A likely reason for this is that we used the number of all SNPs 

present on our genotyping chip as our estimate for the number of segregating sites (s) at a 

locus. This number is therefore the same for all breeds. However, in those breeds where a 

sweep has occurred, fewer sites will actually be polymorphic in the window, reducing both π and 

Tajima’s D. At the same time, the number of different haplotypes we expect to observe in the 
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window will decrease as fewer polymorphic sites are present that can break up haplotypes, 

yielding higher H12 values. 

 

Haplotype homozygosity levels increase with frequency of selected alleles 

 

Generally we expect that scans should perform better at detecting sweeps the higher the 

frequency of the selected allele in a particular breed. This tendency is indeed visible in Figure 3 

and Table 3. We also observed a clear positive correlation between the frequency of the 

selected allele in a breed and the value of H at a locus for all loci, except TYRP1 and IGF1 

(Figure 4). H simply measures the average haplotype homozygosity lengths among all 

individuals in the sample. The observation of higher H values for higher-frequency alleles is 

therefore consistent with the selected alleles residing on longer haplotypes than the ancestral 

alleles, as more individuals carrying these longer haplotypes will increase the average 

haplotype lengths among all individuals. 

 

Note that iHS and nSL lose power to detect a sweep when the selected allele is fixed in 

the breed (Table 3), as has been observed previously (Schrider et al. 2015). As mentioned 

before, this is expected given that both statistics were specifically designed to detect incomplete 

sweeps, where both the ancestral and derived allele are still segregating in the population and 

the haplotypes on which they reside can be compared with each other. 

 

Positive selection has produced both hard and soft selective sweeps 

 

We analyzed the haplotype patterns and SNP frequency spectra around individual loci in 

individual breeds to see whether we can understand why some statistics perform better than 

others at detecting signatures of positive selection in specific cases.  

 

Figure 5a shows the CHRNB1 locus in French Bulldogs, which produced the strongest 

signal of positive selection in H, H12, Tajima’s D, and π. The haplotype and SNP patterns 

around this locus provide a showcase example of a hard selective sweep. Diversity is depleted 

over >10 Mbp around the locus (Figure 2). On average, we would expect around 40 sites to be 

polymorphic over a window of the given size in this breed. However, we do not observe a single 

polymorphic site at this locus in our sample of 25 French Bulldogs. On average, we would also 

expect several haplotypes to be present, with the most common haplotype at around 40% 
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frequency. Since no site is polymorphic, we only observe a single haplotype. In contrast to the 

clear signal identified by H, H12, CLR, Tajima’s D, and π at this locus, both iHS and nSL are 

unable to identify the sweep, consistent with the causal allele being fixed (Figure 2, Table 3).  

 

In Saint Bernards, for comparison, the mutation at CHRNB1 is at high frequency but two 

genomes in our sample do not carry it (Figure 5b). Several haplotypes with the causal allele are 

present at the locus that may be variants of the major haplotype from recombination and/or 

mutation events early during its sweep (Messer & Neher 2012). The SNP frequency spectrum 

shows the characteristic distortions of a hard selective sweeps and all scans detect signatures 

of positive selection at this locus (Table 3).  

 

Figures 5c and 5d show the MC1R locus in Cocker Spaniels and English Setters. Both 

breeds show signatures strongly suggestive of soft selective sweeps: The frequencies of the 

most common haplotypes are similar or lower to expectations in an average window, and in 

both breeds several haplotypes carry the selected mutation. Importantly, some of these 

haplotypes differ at many sites from each other, including positions right next to the causal site, 

making it very unlikely that these haplotypes are in fact variants of the same haplotype that 

arose from mutation or recombination events during the sweep (Messer & Neher 2012). Given 

that most pure dog breeds are less than 200 years old (Parker 2004; Larson et al. 2012), yet 

some of these haplotype variants are quite common in the sample, it is also unlikely that they 

arose from recombination events after the sweep. Furthermore, the SNP frequency spectra are 

atypical for a hard selective sweep as they are skewed towards intermediate frequencies. All of 

these observations are more consistent with soft selective sweeps where positive selection has 

driven several haplotypes simultaneously, possibly because selection acted on SGV. Both H12 

and H detect signatures of positive selection at MC1R in Cocker Spaniel, other statistics are 

inconsistent and results strongly depend on window-size. All statistics lack power in identifying 

signatures of positive selection at this locus in English Setters. Only H12, Tajima’s D and π 

show some signal and only when using short analysis windows (Table 3). 

 

 Figure S4 shows haplotype patterns and SNP frequency spectra around the IGF1 locus 

in 12 different breeds. The selected mutation at this locus has been identified as a SINE 

element insertion in intron 2 of the IGF1 gene (Rimbault et al. 2013) that appears to be absent 

in Gray Wolves, most large dog breeds, and all wild canids (Gray et al. 2010). Hence, we do not 

expect that positive selection has acted on SGV at this locus, but rather that the selected SINE 
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was a de novo mutation that arose during the domestication process. This is largely consistent 

with the haplotype and SNP frequency pattern in different breeds at this locus, which tend to 

show signatures of hard selective sweeps. 

 

DISCUSSION 

 

In our study, we examined the population genomic signatures observed around a set of 12 

positive control loci known to have experienced positive selection in specific dog breeds due to 

their association with desirable morphological phenotypes. The dog system is extraordinary in 

that it provides a very large number of individual populations (breeds) for which we often know 

the specific selective pressures experienced. In such a system, the most powerful selection 

scans should be those that can utilize the information provided by cross-population 

comparisons, e.g. FST and XP-EHH based methods (Vitti et al. 2013). We confirmed this 

intuition by showing that hapFLK, a powerful cross-population scan that uses haplotype 

information in an FST-based framework and incorporates information on the hierarchical 

structure between breeds, indeed identified all of our controls. However, for many other systems 

we may not have such cross-population information and will thus rely on scans that can detect 

signatures of selective sweeps from a single population sample.  

 

 Our approach of using positive controls in a real system is conceptually different from 

previous studies that evaluated the performance of selection scans based on computer 

simulations (Teshima et al. 2006; Huff et al. 2010; Poh et al. 2014; Lotterhos & Whitlock 2015; 

Schrider et al. 2015). These studies generally assume idealized evolutionary scenarios, such as 

panmixia, simplified demographic models, and constant parameters over time and space, while 

interactions between selected sites such as background selection, Hill-Robertson interference, 

and epistasis tend to be ignored. Unfortunately, we still lack a clear understanding of the 

importance of these effects and the extent to which they can obscure footprints of positive 

selection (Bank et al. 2014). In addition, many simulation studies assume that adaptation follows 

the classic selective sweep model. Whether this is an appropriate model for describing 

adaptation in most biological systems is increasingly being questioned (Pritchard et al. 2010; 

Cutter & Payseur 2013; Messer & Petrov 2013). 

     

We found that artificial selection has indeed left detectable signatures in the 

polymorphism pattern around our positive controls in purebred dogs. However, whether such 
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signatures were detected varied widely between loci, individual breeds, the particular statistic 

used, and the choice of analysis parameters. Interestingly, one of the most popular haplotype-

based statistics, iHS, proved to be less accurate in identifying signatures of positive selection at 

our controls than the other statistics, including simpler haplotype-statistics such as H12 and H, 

as well as the frequency-based statistics CLR, Tajima’s D, and π. This could be due to a 

number of reasons: It is well known that iHS has difficulties identifying fixed sweeps because it 

requires the ancestral allele to be segregating in the population (Schrider et al. 2015). We 

indeed observed that both iHS and nSL had particularly low power at those locus/breed 

combinations where the causal allele was fixed in our sample (Table 4). Furthermore, the 

generally high levels of LD in purebred dogs (Sutter et al. 2004; Lindblad-Toh et al. 2005; Boyko 

et al. 2010) could limit the sensitivity of haplotype-based statistics, as only extremely strong 

sweeps may be able to generate haplotypes that are even longer than those already present. 

Note, however, that two other haplotype-based statistics, H and H12, identified many positive 

controls.  

 

The H12 statistic estimated over short windows of 25 segregating sites identified the 

largest number of positive controls in our study, followed by Tajima’s D and π. This finding 

suggests that the signals of positive selection identified by these three statistics may be largely 

driven by the difference between the local density of SNPs on our genotyping chip (which we 

used for calculating the number of segregating sites in Tajima’s D as well as for defining the 

window length for estimation of H12 and π) and the number of SNPs that are actually 

polymorphic in a particular breed in the given window. 

 

 Purebred dogs are clearly an exceptional system, characterized by strong artificial 

selection that is sometimes even repeatable between breeds (Boyko et al. 2010). In addition, 

phenotypic variance for breed-defining morphological traits is often explained by surprisingly few 

mutations (Rimbault et al. 2013). As such, purebred dogs provide an excellent system for 

mapping the genetic basis of positively selected variants.  

 

  However, some aspects of our data set could confound the results in our study. First, 

because SNPs were obtained from a genotyping chip, rather than direct sequencing, they 

should be biased towards common variants, which might compromise the performance of 

frequency-based methods such as CLR and Tajima's D. In addition, the high levels of LD in 

dogs due to increased inbreeding could limit the power of haplotype-based methods. Dog 
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breeds also vary in effective population size by several orders of magnitude (Leroy et al. 2013), 

overlapping the range observed in smaller natural populations. In many ways, detection of 

selective sweeps in smaller populations is more difficult than in large populations as extensive 

drift can obscure and weaken the signatures of sweeps. 

 

 The severe bottlenecks during the breeding process could have systematically affected 

the patterns generated by positive selection, such as whether hard or soft sweeps should be 

more common. For example, recurring bottlenecks can have “hardened” sweeps from SGV that 

were initially soft (Wilson et al. 2014). The mode and signatures of adaptation in large natural 

populations may therefore be quite different from those observed in purebred dogs and 

additional work is needed to evaluate the performance of methods for detecting selective 

sweeps in such populations. 

 

METHODS 

 

Genotyping: 

 

Genotyping data are from Hayward et al. (in review). Briefly, blood was collected through 

cephalic venipuncture under Cornell IACUC # 2005-0151, and genomic DNA was extracted 

using a standard salt precipitation from EDTA blood samples and stored in the Cornell 

Veterinary Biobank.  

 

Genotyping was done using the Illumina 170k CanineHD array, which was developed 

using the dog reference sequences (generated from a Boxer and a Poodle) and pooled DNA 

from a series of European and Asian breeds (Irish Wolfhounds, West Highland White Terriers, 

Belgian Shepherds, and Shar-Peis) as well as pooled wolf DNA as described in (Vaysse et al. 

2011). We customized this array by adding 12,143 markers ascertained from whole genome 

sequencing data from mostly Eurasian village dogs (Auton et al. 2013), approximately equally 

split between East Asian and Western dogs. Markers were preferentially chosen for being in 

coding regions but poorly tagged by existing array markers. The genotypes were combined with 

published CanineHD data from (Axelsson et al. 2013). The full SNP panels (3 million SNPs for 

the CanineHD array design and 14 million SNPs for the custom array content) was pruned for 

evenness, ability to design probe sequence, and efficiency. In general, no effort was made to 

differentially enrich one source or another in particular regions of the genome, except that a 
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subset of custom SNPs were specifically included in the IGF1 and MSRB3 regions to facilitate 

fine-mapping of those loci. No such enrichment of markers was made for the other 10 loci. 

 

The un-imputed dataset contained a call rate over 99.1%, and no locus contained >5% 

missing data. Imputation was done because some methods to detect positive selection require 

no missing data, but the proportion of imputed genotypes is negligible and unlikely to bias the 

results. 

 

Phasing was done for all autosomal and X chromosome markers with minor allele 

frequency (MAF) > 0.01 using SHAPEIT (Delaneau et al. 2013). Select regions showing strong 

evidence of positive selection when comparing allele frequency data across breeds and 

associated with a known phenotypic effect were chosen for analyzing selection signatures in 

each population.  

 

Frequency estimates of causal mutations in breeds: 

 

Selection signatures were estimated from a randomly selected subset of 25 unrelated 

individuals per breed. The allele frequency of the causal variant (when known) or the top 

associated variant was estimated from the entire dataset (Hayward et al. in review) based on a 

much larger number of individuals genotyped (25 to 722 dogs per breed).  

 

Selection scans: 

 

The hapFLK statistic was calculated using the program hapflk (version 1.2) (Fariello et al. 2013), 

downloaded from: https://forge-dga.jouy.inra.fr/projects/hapflk (August 2015). The population 

tree was obtained by hapFLK to compute Reynolds distances and the kinship matrix across all 

25 breeds genome-wide, using Culpeo Fox as the outgroup. The hapFLK scan was run using all 

25 breeds genome-wide. We used the following parameters: 8 clusters (-K 8), 20 EM runs to fit 

the LD model (-nfit=20), phased data (--phased). Once hapFLK values were generated, we 

calculated P-values by fitting a standard normal distribution genome-wide in R (Fariello et al. 

2013). 

 

iHS scans were performed using the program selscan (version 1.0.4) (Szpiech & 

Hernandez 2014), downloaded from: http://github.com/szpiech/selscan (April 2015). All scans 
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were run on polarized data with default iHS selscan parameters: --max-extend 1000000 

(maximum EHH extension in bp), --max-gap 200000 (maximum gap allowed between two SNPs 

in bp), --cutoff 0.05 (EHH decay cutoff). We used the recombination map of Auton et al. (Auton 

et al. 2013). The output results for each SNP were then frequency-normalized over all 

chromosomes using the script norm, provided with selscan. This normalization was also done 

using default parameters: --bins 100 (number of frequency bins). The fractions of SNPs with 

values above 2.0 were calculated over genomic windows of specified sizes (25, 51, 101, 201 

neighboring sites on our chip) and the resulting ratio was assigned to the position of the center 

SNP of the window, as suggested in (Voight et al. 2006). 

  

 In contrast to iHS, which measures the length of haplotypes in terms of genetic distance 

and thereby requires specification of a recombination map, the nSL statistic measures 

haplotype lengths in terms of the number of segregating sites in the sample, making it more 

robust to recombination rate variations. nSL scans were performed using the original 

implementation of the statistic (Ferrer-Admetlla et al. 2014), downloaded from: 

http://cteg.berkeley.edu/~nielsen/resources/software/ (April 2015). All scans were run using 

default nSL parameters. The output results were normalized and averaged over windows 

following the same procedures used for iHS.  

 

 The H statistic was estimated using the program H-scan (version 1.3), downloaded from: 

http://messerlab.org/software/ (April 2015). The H statistic measures the average length of 

pairwise haplotype homozygosity tracts around a given genomic position in base pairs. The 

length of the homozygosity tract hij(x) for a pair of samples (i,j) at genomic position x is defined 

as the distance between the first heterozygous site to the left and to the right of x. The value of 

H(x) at position x is then defined as the average over all pairs in the sample: H(x) = 2/(n(n-1)) 

∑i<j hij(x). H values were calculated at each SNP position in the data set. All scans were run 

using default H-scan parameters. 

  

 H12, Tajima’s D, and π values were calculated over windows of a fixed number of 

segregating sites (d), 25, 51, 101, and 201, defined by the number of SNPs on our genotyping 

chip. The values of each statistic estimated over a window were assigned to the position of the 

center SNP of that window. H12 values were estimated following the definition provided in 

(Garud et al. 2015). Tajima’s D values were variance-normalized according to the formulas 
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given in (Tajima 1989). Note that because all scans were run on a fully imputed data set, 

haplotype clustering for H12 is unambiguous in this study. 

  

 CLR is a likelihood-ratio test that compares the SNP frequency spectrum in candidate 

regions with the genomic background in order to identify regions with sweep-characteristic 

deviations. CLR scans were performed using the software SweeD (version 3.1) (Pavlidis et al. 

2013), downloaded from: http://sco.h-its.org/exelixis/web/software/sweed/ (April 2015). For each 

chromosome CLR was calculated with a resolution of 10000 bins, assuring that the density of 

bins is much higher than the density of SNPs in each chromosome. All CLR scans were run on 

unfolded spectra using the polarized data. 
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TABLES AND FIGURES 

 

Table 1: Set of known QTLs with mutation frequencies in individual breeds 

 
The twelve QTLs included in our analysis span a wide range of phenotypic traits that likely 

experienced positive selection in particular subsets of breeds during the domestication of dogs. 

For nine of the 12 loci, at least one causal mutation for the phenotypic trait has been identified 

and for the remaining three loci (STC2, GHR, CHRNB1) we have promising candidate 

mutations. We focused on one such mutation for each locus (positions are specified in the first 

row of the table). For six of the 12 loci, these mutations are included on the genotyping chip. We 

studied 25 dog breeds in our analysis. Numbers in the cells specify the frequency of the 

known/likely causal mutations in each particular breed (Methods).  

 

Table 2: Genome-wide peak statistics 

 
The table shows the number of peaks identified genome-wide by each statistic for a given 

quantile threshold (σ) and window radius (d), averaged across all breeds. The numbers in 

MC5R IGF1R STC2 GHR CHRNB1 MC1R MSRB3 TYRP1 IGF1 KRT71 FGF5 BMP3

chr:position 1:24430748 3:41849479 4:39182836 4:67040898 5:32382510 5:63694334 10:8037693 11:33326685 15:41220982 27:2539211 32:4509367 32:5231894
phenotypic7trait fur7type body7size body7size body7size hangling7lips coat7color ear7type coat7color body7size curly7coat hair7length snout7length
causal? yes yes likely likely likely yes yes yes yes yes yes yes
included7on7chip? yes no no no yes yes no yes yes yes no no

Border7Collie 0.02 0.01 0.31 0.62 0.43 0.01 0.95 0.28 0.49 0.09 0.68 0.00
Boxer 1.00 0.00 0.77 0.05 0.39 0.00 0.14 0.00 0.02 0.00 0.00 0.00
Cavalier7King7Charles7Spaniel 1.00 0.00 0.99 1.00 0.78 0.81 0.01 0.00 1.00 0.00 0.79 0.00
Cocker7Spaniel 0.97 0.04 0.61 0.71 0.12 0.70 0.00 0.04 0.96 0.01 0.42 0.00
Dachshund 0.96 0.88 0.20 0.85 0.33 0.09 0.00 0.03 0.80 0.00 0.28 0.00
English7Setter 1.00 0.00 0.04 0.41 0.28 0.80 0.02 0.03 0.42 0.01 0.98 0.00
English7Springer7Spaniel 0.84 0.00 0.16 0.29 0.60 0.02 0.00 0.53 0.56 0.00 0.52 0.01
French7Bulldog 1.00 0.02 0.19 0.24 1.00 0.26 0.65 0.00 0.94 0.00 0.02 0.98
German7Shepherd 0.02 0.06 0.08 0.09 0.11 0.11 1.00 0.00 0.01 0.08 0.44 0.00
Golden7Retriever 0.60 0.00 0.00 0.09 0.53 1.00 0.15 0.00 0.12 0.05 0.99 0.00
Havanese 0.51 0.22 0.66 0.74 0.16 0.52 0.32 0.25 0.94 0.32 0.73 0.00
Irish7Wolfhound 0.99 0.00 0.00 0.00 0.72 0.00 1.00 0.00 0.00 0.00 0.14 0.00
Jack7Russell7Terrier 0.76 0.12 0.22 0.23 0.46 0.07 0.04 0.07 0.96 0.24 0.04 0.42
Labrador7Retriever 0.31 0.00 0.14 0.20 0.10 0.61 0.28 0.31 0.42 0.01 0.09 0.00
Maltese 0.62 0.22 0.74 0.98 0.24 0.99 0.26 0.01 0.97 0.08 0.94 0.02
Miniature7Schnauzer 0.69 0.14 0.23 0.94 0.42 0.10 0.89 0.01 1.00 0.01 0.03 0.97
Newfoundland 0.06 0.00 0.01 0.51 0.97 0.00 0.03 0.00 0.00 0.00 0.89 0.00
Papillon 0.33 0.36 0.86 0.31 0.83 0.03 0.47 0.00 0.97 0.00 0.89 0.02
Poodle 0.38 0.05 0.30 0.03 0.12 0.61 0.26 0.12 0.51 0.95 0.74 0.01
Rottweiler 0.99 0.00 0.00 0.01 0.02 0.01 0.73 0.00 0.89 0.00 0.11 0.00
Saint7Bernard 0.20 0.11 0.00 0.02 0.96 0.00 0.00 0.00 0.04 0.00 0.48 0.00
Shetland7Sheepdog 0.00 0.40 0.00 0.50 0.02 0.00 0.62 0.00 0.35 0.00 0.17 0.06
Shih7Tzu 0.80 0.09 0.98 0.98 0.54 0.06 0.06 0.13 1.00 0.02 0.85 0.35
Vizsla 1.00 0.35 0.06 0.01 0.04 1.00 0.02 0.21 0.54 0.00 0.01 0.00
Yorkshire7Terrier 0.70 0.73 0.79 0.68 0.24 0.00 0.00 0.02 1.00 0.00 0.36 0.00

iHS.25 98.1 (13.3%) 87.7 (14.4%) 70.6 (19.0%) 40.2 (3.2%) 34.3 (3.67%) 28.8 (5.5%)
iHS.201 20.4 (6.0%) 18.7 (6.3%) 16.2 (7.3%) 12.2 (2.7%) 11.4 (2.8%) 9.6 (3.4%)
nSL.25 124.8 (8.4%) 110.5 (9.8%) 86.4 (15.5%) 45.2 (1.9%) 40.1 (2.4%) 33.4 (4.5%)
nSL.201 24.8 (4.9%) 22.4 (5.2%) 18.4 (6.4%) 15.4 (1.2%) 13.7 (1.3%) 11.6 (2.1%)
H 115.2 (5.9%) 68.5 (7.1%) 36.5 (9.9%) 64.1 (1.4%) 42.0 (2.0%) 23.6 (3.8%)
H12.25 170.7 (5.9%) 154.0 (7.8%) 115.9 (15.7%) 64.4 (1.7%) 59.8 (2.4%) 50.3 (5.6%)
H12.201 43.0 (5.4%) 40.5 (5.9%) 33.6 (8.0%) 20.8 (1.4%) 19.7 (1.7%) 16.9 (2.7%)
TD.25 209.8 (5.5%) 168.7 (7.7%) 140.1 (16.7%) 58.2 (1.1%) 50.0 (1.8%) 45.0 (4.5%)
TD.201 66.8 (4.9%) 44.8 (5.6%) 31.1 (7.7%) 31.7 (1.0%) 21.9 (1.3%) 16.1 (2.4%)
CLR 589.5 (6.4%) 430.4 (12.3%) 258.1 (31.7%) 88.6 (1.2%) 70.6 (2.1%) 57.8 (5.8%)
π.25 345.0 (4.7%) 251.3 (8.1%) 197.1 (21.3%) 110.5 (1.0%) 87.4 (2.1%) 79.8 (7.0%)
π.201 92.4 (5.7%) 55.9 (6.6%) 35.8 (9.1%) 53.2 (1.8%) 30.9 (2.2%) 20.0 (3.6%)

cutoff>σ=0.95 cutoff>σ=0.99

d=10000 d=50000 d=250000 d=10000 d=50000 d=250000
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brackets specify the average percentage of the genome that is covered by the peaks in the 

particular scenario. 

 
Table 3: Performance of selection scans at individual QTLs 

 

locus breed *iH
S.
25

*iH
S.
51

*iH
S.
10
1

*iH
S.
20
1

*n
SL
.2
5

*n
SL
.5
1

*n
SL
.1
01

*n
SL
.2
01

*H *H
12
.2
5

*H
12
.5
1

*H
12
.1
01

*H
12
.2
01

*T
D.
25

*T
D.
51

*T
D.
10

1
*T
D.
20

1
*C
LR

*π
.2
5

*π
.5
1

*π
.1
01

*π
.2
01

Vizsla
French*Bulldog
Boxer
Cavalier*King*Charles*Spaniel
English*Setter
Irish*Wolfhound
Rottweiler
Cocker*Spaniel
Dachshund
English*Springer*Spaniel
Shih*Tzu
Jack*Russell*Terrier
Yorkshire*Terrier
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The table shows for each locus the breeds ordered by the frequency of the causal allele in the 

particular breed (only breeds with frequency above 50% are shown). The coloring of the cells 

specifies the p-value of the measured distance between the causal mutation and the closest 

data point that lies above the 95% threshold for the given statistic. Our empirical p-values were 

calculated from the empirical distributions of closest distances for random genetic loci. Different 

statistics vary widely in whether they detect signatures of positive selection for a given 

locus/breed combination. In general, signatures of positive selection tend to be detected more 

frequently, the higher the frequency of the selected mutation in the specific breed.  

 

Table 4: Scan performances under different significance thresholds 

 
The table shows for different sets of locus/breed combinations the number of combinations in 

which each statistic identifies a signal of positive selection under a significance threshold of 

p<0.05 (top) or p<0.001 (bottom). We classified locus/breed combinations into two sets 

according to whether the selected allele is fixed in our sample (f=1) or polymorphic (0.2<f<1.0). 

The “n” column shows the total number of locus/breed combinations in each set. We did not 

include locus/breed combinations where the selected allele was below 20%.  

 
Figure 1: HapFLK results 

 
The figure shows the results from the hapFLK scan performed over all 25 breeds. Results are 

shown only for those chromosomes that contain at least one of our control loci. The genome-

wide thresholds corresponding to P<0.05 and P<0.001 are shown as horizontal dashed lines. 

The locations of the control loci are indicated by vertical red lines. 
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Figure 2: Single-population selection statistics in French Bulldogs 

 
Results for iHS, nSL, H, H12, Tajima’s D, CLR, and π along those chromosomes that harbor at 

least one of our positive controls. For iHS, nSL, H12, Tajima’s D, and π, the blue lines show 

results for a window size of 25 SNPs, grey lines show results for a larger windows of 201 SNPs. 

Note that signals of positive selection correspond to higher values of iHS, nSL, H, H12 and 

CLR, but lower values of π and more negative values of Tajima’s D. Horizontal dashed lines 

indicate the 95% quantile cutoffs for the given statistic and window size, which we estimated for 

each chromosome separately. The positions of the controls are indicated by vertical red lines. 

The width of these lines corresponds to the frequency at which the causal mutation was 

observed in the breed in our sample (thin lines: low frequency; thick lines: high frequency). 

Scans for all 25 breeds are presented in Figure S3.  
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Figure 3: Strong differences in nucleotide and haplotype diversity between breeds 

 
The figure shows the average genome-wide levels of nucleotide heterozygosity (π) and length 

of pairwise haplotype homozygosity tracts (H) in each breed. Values were estimated across all 

genome-wide SNP positions for the given breed. Values of π were estimated using a window 

size of 51 SNPs. Box plots show medians with first and third quantiles. Note that these values 

were obtained from our genotyping chip, which comprises only a subset of polymorphic sites. 

The true diversity levels will be higher and homozygosity stretches will be shorter. 

 
Figure 4: Haplotype homozygosity levels increase with frequency of selected allele 
 

 
Each panel shows for the particular locus the values of H at the causal site as a function of the 

frequency in the specific breed (only breeds where the selected allele has a frequency >20% 

Border Collie
Boxer

Cavalier King Charles Spaniel
Cocker Spaniel

Dachshund
English Setter

English Springer Spaniel
French Bulldog

German Shepherd
Golden Retriever

Havanese
Irish Wolfhound

Jack Russell Terrier
Labrador Retriever

Maltese
Miniature Schnauzer

Newfoundland
Papillon
Poodle

Rottweiler
Saint Bernard

Shetland Sheepdog 
Shih Tzu

Vizsla
Yorkshire Terrier

0      2e6    4e6   6e6   8e60     1e-5  2e-5  3e-5  4e-5
Hπ

frequency of selected allele in breed

H
 (M

bp
) a

t l
oc

us
 in

 b
re

ed

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

● ●

●

●

R2 = 0.29
MC5R

0
2

4
6

8

●●●
●●
●

●

R2 = 0.09
IGF1R

●

●

●

●

●

●

●
●

●

●
●

●
●

R2 = 0.06
STC2

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

R2 = 0.33
GHR

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

R2 = 0.4
CHRNB1

●

●●
●

●

●

● ●

●

●

R2 = 0.01
MC1R

●

●

●

●

●

●
●

●

●

●

●

●

R2 = 0.65
MSRB3

0.2 0.4 0.6 0.8 1

0
2

4
6

8

●

●●
●

● R2 = 0.24
TYRP1

0.2 0.4 0.6 0.8 1

● ● ●

●

●

●

● ●

●
●

●

●

●●

●

● ●
●

●

R2 = 0
IGF1

0.2 0.4 0.6 0.8 1

●●
●

R2 = 0.84
KRT71

0.2 0.4 0.6 0.8 1

●
●

●●

●

●●
●● ●

●
●●●

●

●

R2 = 0.29
FGF5

0.2 0.4 0.6 0.8 1

●

●

●

●

R2 = 0.91
BMP3

0.2 0.4 0.6 0.8 1

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2015. ; https://doi.org/10.1101/028647doi: bioRxiv preprint 

https://doi.org/10.1101/028647
http://creativecommons.org/licenses/by-nc/4.0/


 28 

are shown). We observed a positive correlation (measured by R2) between allele frequency and 

the value of H in the breed for all loci except TYRP1 and IGF1.  

 

Figure 5: Positive selection produced both hard and soft selective sweeps 
 

 
Haplotypes and SNP frequency distributions at specific loci in specific breeds. The top part of 

each panel shows the haplotypes in our sample from the particular breed over a window of 51 

sites on our genotyping chip, centered on the causal mutation. The gray brackets on the right 

show the expected haplotype frequencies ordered by their prevalence in an average window of 

that size in the chromosome. Bar plots on the bottom of each panel show distributions of SNP 

frequencies in the window (black), compared with the chromosomal average (gray). The red 

bars indicate presence of the causal allele. (a) The CHRNB1 locus in French Bulldogs is a hard 

selective sweep that is fixed in our sample. None of the 51 sites is polymorphic at this locus and 

only a single haplotype is present. (b) In Saint Bernards, the causal mutation is not fixed in our 

sample. The most frequent haplotype is at higher-than-expected frequency but several other 

haplotypes carrying the mutation are also present that may be variants of the major haplotype 

from recombination and/or mutation events. The SNP frequency spectrum shows the 

characteristic distortions towards high and low frequencies expected under a hard selective 

sweeps. (c) At the MC1R locus in Cocker Spaniel the causal mutation is present in 37 of the 50 

genomes in our sample. The frequency of the most common haplotype, however, is not much 

higher than expected by chance and the SNP frequency spectrum is skewed towards 

intermediate frequencies, compatible with a soft selective sweep. (d) In English Setters, the 

MC1R locus shows even more pronounced signatures of a soft selective sweep. 
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