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Abstract 

It has been shown that resting state brain dynamics can be characterized by looking at 

sparse blood-oxygen-level dependent (BOLD) events, which can be retrieved by point 

process analysis. Cardiac activity can also induce changes in the BOLD signal, thus 

affect both the number of these events and the mapping between neural events and 

BOLD signal, namely the hemodynamic response. To isolate neural activity and 

autonomic effects, we compare the resting state hemodynamic response retrieved by 

means of a point process analysis with and without deconvolving the cardiac 

fluctuations. Brainstem and the surrounding cortical area (such as precuneus, 

insula etc.) are found to be significantly affected by cardiac pulses. Methodological 

and physiological implications are then discussed. 

1. Introduction 

There is growing evidence indicating that discrete BOLD events govern the brain 

dynamic at rest (Deco and Jirsa 2012, Tagliazucchi, Balenzuela et al. 2012, 

Petridou, Gaudes et al. 2013, Wu, Liao et al. 2013). Relevant features of 

spontaneous neural activity could be therefore indirectly derived from these specific 

BOLD events. It has been shown that these events can be revealed by point processes 

analysis (PPA) (Tagliazucchi, Balenzuela et al. 2012). The core idea of PPA in this 

context is to isolate events in the BOLD time series (for example peaks in the 
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standardized time series) and to look at their spatial and temporal distribution. 

Compared to static functional connectivity (FC) maps constructed from correlations 

between the whole time series, the FC maps derived by PPA appear to be similar but 

carry more information on the brain dynamics (Tagliazucchi, Balenzuela et al. 2012, 

Liu and Duyn 2013). Moreover, PPA is also used to retrieve the hemodynamic 

response function (HRF) at rest (Wu, Liao et al. 2013). Both FC and HRF can be 

employed to draw inferences on behavioral states and distinguish healthy and 

diseased populations (Handwerker, Gonzalez-Castillo et al. 2012, Barkhof, Haller et 

al. 2014). However, their statistical power is sensitive to non-neuronal artifacts. As 

the BOLD signal is a measurement of changes in blood flow, oxygenation, and 

volume (Ogawa, Lee et al. 1990), these changes may be caused by neuronal activity 

through neurovascular coupling, or arise from any other physiological process that 

affect blood oxygenation or volume (Birn 2012). Thus the precise neural 

underpinning of BOLD point processes is still not fully understood. Cardiac 

pulsations are among the most common physiological fluctuations that contribute to 

BOLD signal (Glover, Li et al. 2000, Shmueli, van Gelderen et al. 2007, de Munck, 

Goncalves et al. 2008, Chang, Cunningham et al. 2009). They contain both 

physiology-related spontaneous neuronal activity and non-neural fluctuations 

(Shmueli, van Gelderen et al. 2007), Birn (2012), (Thayer, Ahs et al. 2012, 

Garfinkel, Minati et al. 2014). Therefore it is critical to differentiate neural driven 

BOLD point process from confounding physiological BOLD point process of 

non-neuronal origin. 

Spontaneous cardiac activity exhibits low frequency fluctuations and overlaps with 

frequency bands of interest in BOLD fluctuations (<0.1 Hz). Recent studies have 

shown that these nuisance confounds can significantly alter FC maps of the intrinsic 

brain networks, such as the default mode network (Shmueli, van Gelderen et al. 

2007, Chang, Cunningham et al. 2009, Birn, Cornejo et al. 2014). Accordingly, it is 

expectable that the spatial and temporal distribution of point processes will also be 

affected. To date, it’s still not clear to what extent the cardiac pulsations affect the 

hemodynamic response retrieved by point process analysis, which is helpful for 
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understanding the physiological foundation of functional coupling among brain 

regions (Valdes-Sosa, Roebroeck et al. 2011). 

A number of methods have been developed to reduce cardiac variations induced 

fluctuations in the BOLD signal (Glover, Li et al. 2000, Shmueli, van Gelderen et al. 

2007, Chang, Cunningham et al. 2009). Retrospective image space correction of 

physiological noise (RETROICOR) is one of the most employed methods to correct 

the cardiac pulsations (Glover, Li et al. 2000). However, it only filters cardiac cyclic 

effects aliased in the fMRI signal, while the cardiac-related low-frequency 

fluctuations remain in the data. The time-shifted heart rate (HR) time series was 

introduced to account for more variance in BOLD signal that the one induced by 

cardiac fluctuations (Shmueli, van Gelderen et al. 2007, Chang, Cunningham et al. 

2009). 

In the present study, to determine whether the spontaneous point processes 

hemodynamic response (HDR) reflects purely central processes (such as neural or 

astrocytic control), or if the HDR is affected by changes in cardiac activity (i.e. 

autonomic activity), resting state hemodynamic response function (HRF) is used to 

investigate the link between heart rate and brain activity at rest. The combination of 

HR and RETROICOR is employed to deconvolve the cardiac activity influence 

(Chang, Cunningham et al. 2009). Then spontaneous point process HRF maps are 

retrieved from the residual BOLD signal. Quantitative and test-retest analysis on HRF 

map with and without removing cardiac pulse is further performed.  

2. Materials and Methods  

Data acquisition 

The 7-Tesla resting-state (rs) fMRI test-retest dataset used in this study has been 

publicly released by the Consortium for Reliability and Reproducibility (CoRR) 

project (Gorgolewski, Mendes et al. 2015). Twenty-two participants (10 women) 

were scanned during two sessions spaced one week apart. Their age ranged from 21 to 

30 with mean 25.1, one left handed subject was excluded, resulting in all right handed 
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subjects). Each session includes two 1.5 mm isotropic whole-brain resting state scans 

(TR=3.0s, TE=17ms) and gradient echo field map. Structural images were acquired 

by 3D MP2RAGE sequence. Physiological data (respiratory and cardiac traces) was 

simultaneously recoded for each rs-fMRI scan.  

 

Data processing 

All structural images in both datasets were manually reoriented to the anterior 

commissure and segmented into grey matter, white matter, and cerebrospinal fluid, 

using the standard segmentation option in SPM 12. Resting-state fMRI data 

preprocessing was subsequently carried out using both AFNI and SPM12 package. 

First, the EPI volumes of each run were corrected for the temporal difference in 

acquisition among different slices, and then the images were realigned to the first 

volume of the first run. The gradient echo field map was processed to create a voxel 

displacement map and used to correct the realigned images for geometric distortion. 

The resulting volumes were then despiked using AFNI’s 3dDespike algorithm to 

mitigate the impact of outliers. The mean BOLD image across all realigned volumes 

was coregistered with the structural image, and the resulting warps applied to all the 

despiked BOLD volumes. Finally all the coregistered BOLD images were spatially 

normalized into MNI space and smoothed (8 mm full-width half-maximum). The 

physiological data were down-sampled to 100 Hz. 

Cardiac fluctuation models  

Two cardiac fluctuation models were constructed to account for components related 

to 1) cardiac phases (CP), 2) heart rate (HR). The motion parameters (MP, obtained in 

the realigning step) and respiration are also included to account for the physiological 

noise influences: 1) respiratory phases (RP) and the interaction effects between CP 

and RP (InterCRP), 2) respiratory volume (RV). Models for cardiac and respiratory 

phases and their interaction effects were based on RETROICOR (Glover, Li et al. 

2000) and its extension (Harvey, Pattinson et al. 2008). Cardiac and respiratory 

response functions were employed to model heart rate and respiratory volume per 
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time onto physiological process of the fMRI time series (Birn, Diamond et al. 2006, 

Shmueli, van Gelderen et al. 2007, Birn, Smith et al. 2008, Chang, Cunningham et 

al. 2009). For each subject, a set of 20 physiological regressors (i.e. 6 for CP, 8 for 

RP, 4 for InterCRP, RV, and HR) was created using the Matlab PhysIO toolbox for 

each EPI run. Cardiac fluctuation correction based on different combinations of these 

regressors was studied to investigate the effect of cardiac pulse, performing by a 

general linear model (GLM). The combinations are: 1) MP & RP & RV (MR-model), 

2) MP & CP & RP & InterCRP & RV (MRC-model), 3) MP & HR & RV 

(MRH-model), 4) MP & CP & RP & InterCRP & HR & RV, i.e., all models 

(MRCH-model).  

Spontaneous point process event and HRF retrieval 

We employ a blind deconvolution technique to retrieve spontaneous point 

process hemodynamic response function (HRF) from resting-state BOLD-fMRI 

signal (Wu, Liao et al. 2013). A linear time-invariant model for the observed 

resting state BOLD response is assumed (Wu, Liao et al. 2013). We hypothesize 

that a common HRF is shared across the various spontaneous point process 

events at a given voxel, resulting in a more robust estimation. After cardiac 

fluctuation correction, the BOLD signal )(ty  at a particular voxel is given by: 

 )()()()( tcthtxty                         (1) 

where )(tx  is a sum of time-shifted delta functions centered at the onset of 

each spontaneous point process event and )(th  is the hemodynamic response 

to these events, c  is a constant term indicating the baseline magnitude of the 

BOLD response, )(t  represents additive noise and Ä  denotes convolution. 

The noise errors are not independent in time due to aliased biorhythms and 

unmodelled neural activity, and are accounted for using an AR(p) model during 

the parameter estimation (we set p=2 in current study). Although no explicit 

external inputs exist in resting-state fMRI acquisitions, we still could retrieve the 
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timing of these spontaneous events by means of the blind deconvolution 

technique (Wu, Liao et al. 2013). The lag between  the peak of neural activation 

and the peak of BOLD response  is presumed to be 
N
TRk   seconds (where 

TR
NPSTk 0  is the peristimulus time, PST). The timing set  of these 

resting-state BOLD transients is defined as the time points exceeding a given 

threshold around a local peak, is built in the following way: 

)()(&)()(&)(,}{   iiiiii tytytytytytiS  , where we set 2,1  and 

  (i.e. the SD) in the current study. The exact time lag can be obtained by 

minimizing the mean squared error of equation (1), i.e. solving the optimization 

problem: 

 kSttxkSttxcthtxtykh
kh

      ,0)(ˆ;,1)(ˆ,)()(ˆ)(argminˆ,ˆ
2

,

 (2) 

In order to avoid pseudo point process events induced by motion artifacts, a 

temporal mask with framewise displacement (FD)<0.3 was added to exclude 

these bad pseudo-event onsets from timing set S  by means of data scrubbing 

(Power, Barnes et al. 2012). A smoothed finite impulse response (sFIR) model is 

employed to retrieve the spontaneous point process HRF shape (Goutte, Nielsen 

et al. 2000).  

To characterize the shape of the hemodynamic response, three parameters, 

namely response height, time to peak, Full Width at Half Maximum (FWHM), 

were estimated, which could be interpretable in terms of potential measures for 

response magnitude, latency and duration of neuronal activity (Lindquist and 

Wager 2007).  

After we retrieved the resting state HRF for each cardiac fluctuation 

correction model, the corresponding HRF parameters for each subject were 

individually entered into a random-effects analysis (one-way ANOVA within 

subjects, with three covariates (age, gender and mean FD) to identify regions 

which showed significant hemodynamic differences after cardiac fluctuation 

correction). Type I error due to multiple comparisons across voxels was 

S
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controlled by familywise error rate (FWE). 

Test-retest reliability 

The hemodynamic response has been shown to vary in timing, amplitude, and shape 

across brain regions and cognitive task paradigms (Miezin, Maccotta et al. 2000, 

Badillo, Vincent et al. 2013). Such variation is expected also for resting state. 

Previous studies have shown that physiological process account for significant 

variance, and enhance the test-retest reliability of functional connectivity map across 

subjects (Birn, Cornejo et al. 2014). In order to investigate the effect of cardiac 

fluctuation on the resting state HRF variability, a test-retest reliability analysis is 

further performed on the HRF parameters. As each subject was scanned in two 

sessions, each one with two runs, we could assess both inter- and intra-session 

reliability. Let BMS be the between-subject mean square and WMS the within-subject 

mean square. Then according to random effects model, an ICC value is defined by 

(Shrout and Fleiss 1979): 

ICC =
BMS -WMS

BMS+ (m-1)WMS
 

where m represents the number of repeated measurements of the voxelwise HRF 

parameter. ICCs were calculated for each voxel with intra-session scans and with 

inter-session scans, individually for each HRF parameter and cardiac fluctuation 

correction models. A prior functional parcellation of the cortex is applied to the ICC 

map in order to compute the mean ICC values and their standard deviations within 

sub-networks. This functional parcellation is composed of seven large-scale 

sub-networks: visual (VN), somatomotor (SMN), dorsal attention (DAN), ventral 

attention (VAN), limbic (LN), frontoparietal (FPN) and default network (DMN) (Yeo, 

Krienen et al. 2011). 
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3. Results 

Variance explained by different physiological components 

Six head motion parameters and 20 physiological regressors are entered into mass 

univariate GLM analysis, and their efficacies are estimated by F test. Figure 1 shows 

the averaged fraction of variance explained by each regressors at voxelwise level over 

subjects. Most of high R-square values are distributed on the brainstem. For HR, the 

R-square values distribution is more homogeneous, and higher explained variance can 

also be found in cortical networks, such as SMN, VN and DMN. On average in 

brainstem, CP accounted for 7.9±5.3% of the variance, and InterCRP accounted for 

4.02±2.67% of the variance, while HR only accounted for 1±0.5%. 

 
Figure 1. Spatial distribution of voxelwise R-squared values for different physiological 

components. 
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Figure 2. R-squared values for different physiological components, averaged over the 

entire brain, over all gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), 

and brainstem. The black errorbar indicates the standard error. 

Spatial distributions of resting state HRF 

HRF parameters of each voxel are estimated and mapped on the brain (Figure 3). The 

median maps of each HRF parameters exhibit spatial heterogeneity across different 

correction models (Figure 3). They present similar spatial distributions: higher 

response height is present in the occipital/frontal lobe and precuneus. As the temporal 

resolution is rather low (TR=3s) in this dataset, the median maps of FWHM and time 

to peak do not display consistent variations and are not shown here. The interested 

reader can find spatial maps of these parameters for shorter TRs in (Wu, Liao et al. 

2013, Wu and Marinazzo 2015) 

 

Figure 3. Median maps of HRF response heigth across subjects under different cardiac 

fluctuation correction model. The colorbar is same for all correction models. 
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Group difference among the cardiac action models 

Within-subjects ANOVA reveals that HRF response height is found to be 

significantly different across models. The main effect of the cardiac fluctuation model 

correction is mainly located in the brainstem and the surrounding pulsatile CSF 

regions and cortex: superior temporal gyrus, lingual gyrus, insula, parahippocampal 

gyrus, hippocampus, thalamus, putamen, caudate, amygdala, anterior/posterior 

cingulate, inferior/middle frontal gyrus, precuneus, and cuneus (Figure 4. p<0.05, 

FWE corrected). The HR gives a limited contribution to the variance of the point 

process HRF, while a significant contribution on brainstem’s variance comes from CP. 

This also appears evident looking at voxel-level HRFs shape averaged across subjects 

in brain stem and insula (Figure 5).  

 
Figure 4.  Top: main effect on HRF height among four cardiac fluctuation correction 
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models. 2nd row: differences in HRF response height between MR- and MRCH-model 

correction. 3rd row: differences in response height between MR- and MRC-model 

correction. Bottom: differences in response height between MRH- and MRC-model 

corrections. All results are reported for a p-value <0.05, FWE corrected. The colorbar is 

the same from the three lowest panels.  

 

Figure 5. HRF at rest in the brainstem (right, MNI=[0, -27, -15]), and insula (left, 

MNI=[42, -9, 3]), retrieved from different cardiac fluctuation correction models. The 

colored shadow indicates the standard error. 

Test–retest reliability 

As no difference was found in FWHM and time to peak in the ANOVA step, the 

test-retest analysis was only performed on the HRF response height. The effect of the 

corrections according to different cardiac fluctuation models are reported in Figure 6. 

There is no significant effect both within sessions and between sessions. According to 

the classifying criteria of ICC values (Sampat, Whitman et al. 2006), the intra-session 

of HRF response height shows excellent reliability (0.75~1), while inter-session 

mostly shows  good reliability (0.6~0.75). Limbic network and brainstem show fair 

reliability (0.4~0.6). In contrast to intra-session, significant ICC reductions in 

inter-session are found in limbic, frontoparietal, default network, and brainstem (p < 

0.05). 
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Figure 6. TRT reliability of HRF response height within seven subnetwork and brain 

stem. The black errorbars indicate the standard deviations. 

 

4. Discussion 

We investigated how cardiac fluctuations affect the resting state point process 

hemodynamic response. Brainstem and the surrounding cortical areas, 

comprising key regions of DMN (precuneus) and brain regions related to 

autonomic activity (such as insula and amygdala), are found to exhibit significant 

changes in hemodynamic response height. Specifically, cardiac phase accounts 

for the dominant variance alteration in point process HRF. A test-retest analysis 

revealed that cardiac fluctuations do not significantly change the reliability of 

point process HRF. Nonetheless, the higher inter-session variability of the height 

of point process HRF is mainly distributed on limbic network and brainstem, 

areas that are highly affected by cardiac activity. These results demonstrate that 

resting state point process HRF is a robust index and marker of brain activity, 

even without removing physiological fluctuations. 

The neuroimaging evidence on brain-heart interactions mostly come from the regional 

cerebral blood flow, derived from PET or ASL (Restom, Behzadi et al. 2006, Thayer, 

Ahs et al. 2012), brain activity in PET/task fMRI or brain connectivity in resting state 

fMRI (Chang, Cunningham et al. 2009, Birn 2012, Thayer, Ahs et al. 2012). Our 

finding on spontaneous point process HRF related to cardiac fluctuations is consistent 

with these PET and fMRI studies. Our results show for the first time how HRF at 

rest is modulated by cardiac activity. Apart from brainstem, which is the most 

important integrative control center for autonomic nervous system function and plays 
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an important role in the regulation of cardiac and respiratory function (Mendelowitz 

1999, Beissner, Meissner et al. 2013), insular cortex is also posited to act as an 

integrator on the brain-heart axis (Nagai, Hoshide et al. 2010): it has a prominent 

role in limbic-autonomic integration and is involved in the perception of 

emotional significance (Augustine 1996); it also participates in visceral motor 

regulation, including blood pressure control, in cooperation with subcortical 

autonomic centers (Gianaros, Jennings et al. 2007, Napadow, Dhond et al. 2008, 

Lane, McRae et al. 2009). Other regions emerging from the current analysis are 

amygdala and anterior cingulate cortex (ACC), also involved in autonomic control 

(Critchley, Mathias et al. 2003, Chang, Metzger et al. 2013); the network 

consisting of insula, ACC, and amygdala has been described as crucial in the 

regulation of central autonomic nervous system (Critchley 2005). A human 

neuroimaging meta-analysis on electrodermal activity and high-frequency heart 

rate variability revealed that midbrain, insula and amygdala are associated with 

sympathetic and parasympathetic regulation; ACC and thalamus only correlated 

with sympathetic regulation, while dorsal posterior cingulated cortex, precuneus, 

superior temporal gyri and left temporal pole were associated to 

parasympathetic regulations (Beissner, Meissner et al. 2013). 

The test-retest reliability is not significantly affected by all cardiac fluctuation 

models. A recent study reported a significantly decreased test-retest reliability in 

FC by physiological noise correction techniques (Birn, Cornejo et al. 2014). These 

results were explained by assuming that these physiological fluctuations are 

similar and reproducible within a subject across sessions, but to a lesser extent 

than  between subjects. Another explanation given in the same study assumed 

that physiological noise correction could also remove the signal of interest. We 

found that HRF shape is only slightly modulated by cardiac pulsatility (Figure 5). 

This may explain that the spontaneous point process responses affected by 

cardiac fluctuation only account for small amounts of variance. On one hand, our 

result may confirm that these point processes are still preserved, i.e. the signal of 

interest is not removed. On the other hand, if the physiological fluctuations are 
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similar and repeatable within a subject, no big HRF ICC differences after cardiac 

fluctuations correction is are expectable. Our results also indicate that HRF 

variability is much lower in lower-level perceptual networks and attention 

networks (DAN and VAN), and higher in emotional related network (LN), 

task-negative and task-positive networks (i.e. DMN and FPN). This may reflect 

intrinsic neural activity modulations in these networks after 1 week, and these 

neural point processes could also be associated with changes in autonomic 

activity (Fan, Xu et al. 2012). 

Physiological fluctuations have been shown to be proportional to MRI signal 

strength (Kruger and Glover 2001): the physiological processes may therefore 

contribute much more to variance in BOLD signal with the current dataset, acquired 

at 7T. Apart from cardiac pulsations, respiration is another physiological fluctuation 

that has also been found to strongly modulate the resting state fMRI BOLD signal 

(Birn, Diamond et al. 2006, Birn, Smith et al. 2008). Respiration fluctuations will 

induce variations in arterial level of CO2, then cause either validations or 

vasoconstriction, resulting in blood flow and oxygenation changes (Van den 

Aardweg and Karemaker 2002). The fractions of variance explained by RV and HR 

on the resting state BOLD signal are found to mirror each other and to be partially 

co-localized, consistently with previous studies (Chang, Cunningham et al. 2009, 

Petridou, Schafer et al. 2009). As respiration and cardiac pulsations are tightly 

correlated (Pitzalis, Mastropasqua et al. 1997, Princi, Accardo et al. 2006), we first 

partial out respiration before investigating the impact or cardiac fluctuations on 

resting state point process based HRF. To reduce the computational cost and the 

bias in the linear estimation framework, we employ canonical functions for HR 

and RV hemodynamic response (Birn, Smith et al. 2008, Chang, Cunningham et al. 

2009). The more flexible sFIR model could then minimize the risk of 

assumptions about the spontaneous point process HRF shape (Goutte, Nielsen et 

al. 2000). Moreover, sFIR model may also include the cardiac fluctuation related 

component in hemodynamic response, when it is not eliminated in BOLD signal. 

It’s well known that head motion is an unavoidable source of noise in the BOLD 
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signal (Power, Mitra et al. 2014). To avoid motion-related artifacts contribution 

to point process detection, apart from adding MP as a nuisance regressor in GLM 

model, data scrubbing is performed (Power, Barnes et al. 2012), and Mean FD 

power of each subject was also included as a covariate for further statistical 

analysis (Van Dijk, Sabuncu et al. 2012). This procedure ensures that our findings 

are unlikely affected by motion artifact. 

The precise estimation of HRF parameters, especially of FWHM and time to peak 

depends on the temporal resolution (Lindquist and Wager 2007). The quite low 

TR in current dataset could then have partially obscured findings related to the 

above mentioned parameters.  
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