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ABSTRACT

Background Spatial scale is important when studying ecological processes. The Greater sage-grouse
(Centrocercus urophasianus) is a large sexually dimorphic tetraonid that is endemic to the sagebrush
biome of western North America. The impacts of oil and gas development at individual leks has been
well-documented. However, no previous studies have quantified the population-level response.
Methods Hierarchical models were used to estimate the effects of the areal disturbance due to well pads
as well as climatic variation on individual lek counts and Greater sage-grouse populations (management
units) over 32 years. The lek counts were analyzed using General Linear Mixed Models while the
management units were analyzed using Gompertz Population Dynamic Models. The models were fitted
using frequentist and Bayesian methods. An information-theoretic approach was used to identify the
most important spatial scale and time lags. The relative importance of oil and gas and climate at the local
and population-level scales was assessed using information-theoretic (Akaike’s weights) and estimation
(effect size) statistics.
Results At the local scale, oil and gas was an important negative predictor of the lek count. At the
population scale, there was only weak support for oil and gas as a predictor of density changes but
the estimated impacts on the long-term carrying capacity were consistent with summation of the local
impacts. Regional climatic variation, as indexed by the Pacific Decadal Oscillation, was an important
positive predictor of density changes at both the local and population-level (particularly in the most recent
part of the time series).
Conclusions Additional studies to reduce the uncertainty in the range of possible effects of oil and gas
at the population scale are required. Wildlife agencies need to account for the effects of regional climatic
variation when managing sage-grouse populations.

Keywords: Greater sage-grouse, Lek Counts, Population Dynamics, Oil and Gas, Climate, Pacific
Decadal Oscillation

INTRODUCTION
If we study a system at an inappropriate scale, we may not detect its actual dynamics and
patterns but may instead identify patterns that are artifacts of scale. Because we are clever at
devising explanations of what we see, we may think we understand the system when we have
not even observed it correctly.

Wiens (1989)

Effective conservation of a species requires an understanding of how human activities influence its
distribution and abundance. Although much of science proceeds by experimental studies to understand
the causal links between actions and responses, ethical, practical and statistical considerations typically
prevent population-level experiments on species of concern. Consequently, many conservation-based
ecological studies are forced to infer the population-level consequences of anthropogenic alterations
from local gradients (Fukami and Wardle, 2005) in density (Gill et al., 2001), movement, habitat use,
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physiology, genetics, reproductive success or survival. However, local gradients may not accurately
predict the population-level response (Fodrie et al., 2014).

The Greater sage-grouse (Centrocercus urophasianus, hereafter sage-grouse) is a large sexually dimor-
phic tetraonid that is endemic to the sagebrush (Artemisia spp.) biome of western North America (Knick
and Connelly, 2011). Each spring, adult males aggregate in open areas called leks where they display
for females. Fertilized females then nest on the ground among the sagebrush (Holloran and Anderson,
2005). Initially, the chicks feed on insects before switching to forbs. The adults predominantly feed on
sagebrush, especially in the winter. Most males begin lekking two years after hatching. Mean peak counts
of males on leks are commonly used as an abundance metric (Connelly and Braun, 1997; Doherty et al.,
2010; Fedy and Aldridge, 2011)

A multitude of studies have reported local negative effects of oil and gas (OAG) development on
sage-grouse lek counts, movement, stress-levels and fitness components. The most frequently-reported
phenomenon is the decline in lek counts with increasing densities of well pads (Walker et al., 2007;
Doherty et al., 2010; Harju et al., 2010; Green et al., 2016). Reductions in fitness components such as
lower nest initiation rates (Lyon and Anderson, 2003) and lower annual survival of yearlings reared in
areas where OAG infrastructure is present (Holloran et al., 2010) have been detected using radio-tracking.
The development of Global Positioning System (GPS) telemetry methods has facilitated the fitting of more
sophisticated and realistic spatially-explicit habitat use models which suggest that nest and brood failure
is influenced by proximity to anthropogenic features (Dzialak et al., 2011). More recently, experimental
studies have suggested that noise alone can reduce lek attendance (Blickley et al., 2012b) and increase
stress hormones (Blickley et al., 2012a).

However, to date no-one has examined whether sage-grouse population-level responses are consistent
with the local studies. Although Green et al. (2016) state that they modeled sage-grouse populations, they
use their population dynamic models to analyze the effects of OAG on changes in abundance at individual
leks. Even authors such as Walker et al. (2007) and Gamo and Beck (2017) who analyzed aggregations of
leks, group their leks by level of OAG development as opposed to population boundaries.

Although it has received less attention than OAG, climatic variation has also been shown to influence
sage-grouse lek counts, survival, clutch size and nesting success (Blomberg et al., 2012, 2014, 2017;
Coates et al., 2016; Gibson et al., 2017). This is not surprising, as there is a long and ecologically important
history of studies on the influence of climatic variation on the population dynamics of tetraonids (Moran,
1952, 1954; Ranta et al., 1995; Lindström et al., 1996; Cattadori et al., 2005; Ludwig et al., 2006; Kvasnes
et al., 2010; Selås et al., 2011; Viterbi et al., 2015; Ross et al., 2016). Consequently, the current study also
includes annual variation in regional climate as a potential predictor of sage-grouse population dynamics.

Previous studies of the effect of climatic variation on sage-grouse have used local temperature and
precipitation data with mixed results (Blomberg et al., 2012; Green et al., 2016; Blomberg et al., 2014,
2017; Coates et al., 2016; Gibson et al., 2017; Green et al., 2016). However, large-scale climate indices
often outperform local data in predicting population dynamics and ecological process (Stenseth et al.,
2002; Hallett et al., 2004). The Pacific Decadal Oscillation (PDO), which is derived from the large-scale
spatial pattern of sea surface temperature in the North Pacific Ocean (Mantua et al., 1997), is potentially
the most important climatic process influencing the sagebrush biome (Neilson et al., 2005). Consequently,
the PDO index was chosen as the climate indicator.

Wyoming was selected for the current study because it contains approximately 37% of the recent range-
wide population of sage-grouse (Copeland et al., 2009; Fedy et al., 2012), has experienced substantial
levels of OAG development dating to the late 1800s (Braun et al., 2002) and because the lek location and
count data were available for research.

METHODS
Data Preparation
Sage-grouse Data When multiple counts exist for the same lek in a single year, almost all authors take
the maximum count (Holloran, 2005; Walker et al., 2007; Harju et al., 2010; Fedy and Aldridge, 2011;
Fedy and Doherty, 2011; Garton et al., 2011; Blickley et al., 2012b; Blomberg et al., 2013; Davis et al.,
2014; Garton et al., 2015; Coates et al., 2016; Fremgen et al., 2016; Monroe et al., 2016; Green et al.,
2016). The justification for using the maximum count is articulated by Garton et al. (2011) who state that,

...counts over the course of a single breeding season vary from a low at the beginning of the
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season, to peak in the middle, followed by a decline to the end, which necessitates using the
maximum count from multiple counts across the entire season as the index.

However, as noted by Johnson and Rowland (2007), this results in a substantial upward bias at leks
with multiple counts. To understand why consider an unbiased die. The expectation with a single throw is
3.5. With two throws the expectation for the mean value is still 3.5 but the expectation for the maximum
value is 4.47. To avoid this bias, several alternative approaches are available: exclude early and late counts
and then either include the repeated counts in the model (Gregory and Beck, 2014) or take the mean of
the repeated counts and/or explicitly model the change in attendance through time (Walsh et al., 2004)
as is done for spawning salmon (Hilborn et al., 1999). We excluded early and late counts and took the
rounded mean of the repeated counts. However as discussed below we also assessed the sensitivity of the
results to the use of the rounded mean as opposed to maximum count.

The sage-grouse lek count and location data were provided by the State of Wyoming. After excluding
male lek counts with unknown counts or dates or those before 1985 there were 88,771 records. To reduce
potential biases, only the most reliable male lek counts were included in the analyses. In particular, only
ground counts from leks that were checked for activity and were part of a survey or count were included
(as per Wyoming Game and Fish guidelines). This reduced the number of records to 79,857. To ensure
counts were close to the peak (see above), only data that were collected between April 1st and May 7th
were included. This reduced the number of records to 65,439. Finally, lek counts for which the number
of individuals of unknown sex were ≥ 5% of the number of males (suggesting unreliable identification)
were excluded which left a total of 42,883 records. The leks with at least one remaining count are mapped
in Figure 1 and the associated mean male lek counts are plotted in Figure 2.

The State of Wyoming utilizes eight regional sage-grouse working groups to facilitate local population
management and data reporting, including lek counts and hunting harvest (Fig. 1, Christiansen and Belton,
2017). For the purposes of the current study, we also treat these working groups as if they are separate
populations. The population densities (males per lek) were calculated by averaging the mean counts for
individual leks for each working group in each year.

Oil and Gas Data Wyoming Oil and Gas Conservation Commission (WOGCC) conventional, coal-bed
and injection well pad location and production data were downloaded from the Wyoming Geospatial Hub
(http://pathfinder.geospatialhub.org/datasets/) at 2018-05-25 02:13 UTC. Well pads without a provided
spud date were excluded as were well pads constructed before 1900 or after 2016. The included well pads
are mapped in Figure 1.

The intensity of OAG development was quantified in terms of the proportional areal disturbance due
to well pads within a specific distance of the leks. The areal disturbance was calculated at lek distances of
0.8, 1.6, 3.2 and 6.4 km with the areal disturbance of each well pad considered to have a radius of 60
m (Green et al., 2016). The annual areal disturbances for individual leks with lek counts at 3.2 km are
plotted in Figure 3.

Climatic Data The PDO index (Trenberth and Hurrell, 1994; Mantua et al., 1997) data were queried
from the rpdo R package (Fig. 4).

Statistical Analysis
Local Models The individual lek counts were analyzed using GLMMs (Bolker et al., 2009) with the
standardized areal disturbance due to OAG and the PDO index as fixed effects and year and lek as
random effects. The areal disturbance and PDO index were standardized (centered and divided by the
standard deviation) to facilitate comparison. As preliminary analysis indicated that the lek counts were
overdispersed, the GLMMs utilized a negative binomial distribution.

More formally, the lek count model is described by the following equations

Mi,y ∼ NegBin(µi,y,φ) (1)

log(µi,y) = β0 +βA ·AREAi,y +βP ·PDOy +αLi +αY y (2)

αLi ∼ Normal(0,σL) (3)

αY y ∼ Normal(0,σY ) (4)
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where Mi,y is the rounded mean count of males for the ith lek in the yth year, βA and βP are the fixed
effects of the standardized areal disturbance due to well pads (AREAi,y) and PDO index (PDOy) on the
expected count (µi,y), σL and σY are the standard deviations (SDs) of the random effects of lek and year.
In our parameterization of the negative binomial the parameter φ controls the overdispersion scaled by
the square of µ , i.e.,

SD[M] =
√

µ +φ ·µ2 (5)

Key model parameters are also described in Table 1.
To identify the most important spatial scale (distance from each lek when calculating the areal

disturbance) and temporal lags, a total of 64 models were fitted to the lek count data representing all
combinations of the four lek distances (0.8, 1.6, 3.2 and 6.4 km) and independent lags of one to four years
in the areal disturbance (Walker et al., 2007; Doherty et al., 2010; Harju et al., 2010; Gregory and Beck,
2014) and PDO index. The relative importance of each spatial scale and temporal lag as a predictor of
individual lek counts was assessed by calculating it’s Akaike’s weight (wi) across all 64 models (Burnham
and Anderson, 2002).

Once the model with the most important spatial scale and temporal lags was identified, the relative
importance of βA and βP was quantified by calculating their Akaike’s weights across the selected full
model and the three reduced variants representing all combinations of the two parameters (Burnham and
Anderson, 2002) and by calculating their effect sizes with 95% confidence/credible limits (CLs Bradford
et al., 2005; Claridge-Chang and Assam, 2016). The effect sizes, which represent the expected percent
change in the lek count with an increase in the predictor of one SD, were calculated for the final full
model and by averaging across all four models (Burnham and Anderson, 2002; Turek, 2015).

Population Models The calculated annual population densities (mean males per lek) in each working
group were analyzed using Gompertz Population Dynamic Models (Garton et al., 2011) with the standard-
ized areal disturbance and PDO index as fixed effects and year and group as random effects. Gompertz
Population Dynamic Models (GPDMs) were used because they incorporate density-dependence (Dennis
et al., 2006; Knape and de Valpine, 2012) and have performed well in explaining rates of change for
sage-grouse in general and for Wyoming sage-grouse in particular (Garton et al., 2011).

The population model is described by the following equations

log(Mg,y)∼ Normal(log(µg,y),ση g,y) (6)

log(µg,y) = β0 +(βD +1+αGg) · log(Mg,y−1)+βA ·AREAg,y +βP ·PDOy +αY y (7)

αGg ∼ Normal(0,σG) (8)

αY y ∼ Normal(0,σY ) (9)

log(ση g,y) = βN +βL · log(LEKSg,y) (10)

where Mg,y is the density at the gth group in the yth year, µg,y is the expected density, βD is the typical
density-dependence and αGg is the group-level random effect on the density-dependence, ση g,y is the
expected process error (Dennis et al., 2006), βN is the intercept for the log process error and βL is the
effect of the number of leks surveyed on βN . The other terms are approximately equivalent to those in the
lek count model. The equivalence is only approximate as the terms in the population model act on the
change in density (as opposed to density).

The carrying capacity, which represents the long-term expected density around which a population
fluctuates (Dennis et al., 2006), is given by

log(N∞) =
−(β0 +βA ·AREAg,y +βP ·PDOy)

βD +αGg
. (11)

Preliminary analyses considered Gompertz State-Space Population Models (Dennis et al., 2006; Knape
and de Valpine, 2012) which estimate both process and observer error (Maunder et al., 2015). However,
the models were unable to reliably estimate both error terms. As the observer error was estimated to be
smaller than the process error and because ignoring process error can bias Akaike’s Information Criterion
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based tests towards incorrectly accepting covariates (Maunder et al., 2015), we followed Garton et al.
(2011) in assuming no observer error. The preliminary analyses indicated that fixing the observer error at
zero had little effect on the results. The process error was allowed to vary by the number of leks surveyed,
which varied from one to 214, to attempt to account for the additional stochasticity associated with smaller
populations and/or lower coverage.

The primary question this study attempts to answer is whether the sage-grouse population-level
responses to oil and gas are consistent with the local studies. Consequently, the average areal disturbance
in each working group was calculated at the spatial scale that was most important in the local analyses.
However, as the timing of effects could differ between the local count models and the population dynamic
models, the Akaike’s weight for each lag of one to four years in the areal disturbance and one to four
years in the PDO index was calculated across the 16 models representing all lag combinations. Once the
full model with the most important temporal lags had been identified, the relative importance of βA and
βP was once again quantified from their effect sizes with 95% CLs and their Akaike’s weights across the
full model and the three reduced variants.

To assess the sensitivity of the population model outputs to the inputs, a local, qualititative sensitivity
analysis (Pianosi et al., 2016) was conducted. More specifically, the effect sizes in the full model
were estimated using 1) the maximum of the repeated counts (Garton et al., 2011) as opposed to the
mean (Johnson and Rowland, 2007) and 2) the data from 1997 and 2005 onwards. The former period was
used during preliminary analyses due to the availability of hunter-harvested wing count data (Braun and
Schroeder, 2015). From 2005 onwards regulatory and technological developments were introduced to
reduce the impacts of OAG (Applegate and Owens, 2014) on sage-grouse. The effect sizes were adjusted
for any differences in the SDs of the data.

Predicted Population Impacts
To examine whether the population-level responses are consistent with the lek-level results, the expected
effect of OAG on the long-term mean densities in each working group was calculated for the local and
population models. In the case of the local model, the predicted population impacts represent the percent
difference in the sum of the expected counts for the observed levels of OAG versus no OAG across all
leks in the working group after accounting for annual and climatic effects. In the case of the population
model, the predicted population impacts represent the percent difference in the expected carrying capacity
with the observed levels of OAG versus no OAG accounting for annual and climatic effects.

Statistical Methods
For reasons of computational efficiency, the initial 64 local and 16 population-level models were fit
using the frequentist method of Maximum Likelihood (ML, Millar, 2011). The Akaike’s weights
were calculated from the marginal Akaike’s Information Criterion values corrected for small sample
size (mAICc, Burnham and Anderson, 2002; Vaida and Blanchard, 2005; Greven and Kneib, 2010).
Model adequacy was assessed by plotting and analysis of the standardized residuals from the final full
ML model (Burnham and Anderson, 2002) with the most important spatial scale and lags. As both the
local and population models used log-link functions, the effect sizes (percent change in the response for
an increase in one SD) were calculated from exp(β )−1 where β is the fixed effect of interest or its upper
or lower CL. The ML effect sizes were calculated from the full model and averaged across the full model
and three reduced variants (Lukacs et al., 2010).

To allow the predicted population impacts to be estimated with CLs, the final full models were
also fitted using Bayesian methods (Gelman et al., 2014). The prior for all primary parameters was an
uninformative (Gelman et al., 2014) normal distribution with a mean of 0 and a SD of 5. A total of 1,500
MCMC samples were drawn from the second halves of three chains. Convergence was confirmed by
ensuring that Rhat was ≤ 1.01 (Gelman et al., 2014) and the effective sample size was ≥ 1,000 (Brooks
and Gelman, 1998) for each structural parameter.

Software
The data preparation, analysis and plotting were performed using R version 3.5.0 (R Core Team, 2017)
and the R packages TMB (Kristensen et al., 2016) and rstan (Stan Development Team, 2016). The
clean and tidy analysis data and R scripts are archived at https://doi.org/10.5281/zenodo.837866. The
raw sage-grouse data, which provide the lek locational information, are available from the Wyoming
Department of Fish and Game. The raw data are not required to replicate the analyses.
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RESULTS

Local Models
The Akaike weights for the spatial scales indicate that 3.2 km is unanimously supported (wi = 1.00) as the
most important lek distance for predicting individual lek counts from the areal disturbance due to well
pads (Table S1). The Akaike weights for the lags in the areal disturbance provided close to unanimous
support for a single candidate with the lag of one year receiving a weight of 0.99 (Table S2). The situation
with the PDO index lags was less clear-cut (Table 2), although a lag of two years received the majority
of the support (wi = 0.73). Consequently, the local model with a lek distance of 3.2 km and lags of one
and two years in the areal disturbance due to well pads and the PDO index, respectively, was selected as
the final model. The standardized residuals, with the exception of a small number of high outliers, were
approximately normally distributed and displayed homogeneity of variance. Most leks had an expected
count of male sage-grouse in the absence of OAG of approximately 10 birds (Fig. S1).

The Akaike weights for βA (wi = 1) and βP (wi = 0.98) across the final full model and the three reduced
models indicate that both are very strongly supported as predictors of individual lek counts. The effect
size estimates (Fig. 5) indicate that OAG and the PDO have large negative (Fig. 6) and positive (Fig. 7)
impacts of similar magnitudes (just under 20%) on the lek counts and that the estimates are insensitive to
the statistical framework (ML of Bayesian) or model-averaging (Tables S3-S5). Despite the inclusion of
the PDO index as an important predictor, there was still substantial remaining annual cyclical variation in
the lek counts (Fig. S2) which was modeled by the random effect of year.

Population Models
Based on the results of the local models, the level of OAG development in each working group was
calculated in terms of the average areal disturbance due to well pads within 3.2 km of each lek (Fig. 8).
The Akaike weights for the lag in the areal disturbance (Table 3) were largely indifferent (0.29 to 0.20)
although a lag of one year had the most support. The Akaike weights for the PDO index (Table 4) provided
the majority of the support for a lag of one year (wi = 0.53). The model predictions provided a reasonable
fit to the annual mean lek counts which exhibit large cyclical fluctuations (Fig. 9). The residuals were
approximately normally distributed with homogeneity of variance. The carrying capacities in the absence
of OAG varied between approximately 13 males per lek in the Upper Snake River to approximately 35
males per lek in the Upper Green River (Fig. S3).

The Akaike weights for βA and βP (Table 1) across the final full model and the three reduced models
indicate that while the PDO index receives moderate support (wi = 0.74) as a predictor of population
changes, there is only weak support (wi = 0.41) for the areal disturbance. In addition, the effect size
estimates (Fig. 10), which are sensitive to model-averaging but not the statistical framework (Tables S6-
S8), indicate that while the PDO has a moderate positive influence (effect size of approximately 8%)
the effect of OAG on the subsequent year’s density is relatively small (effect size of -2.5%, Fig. 10).
However, despite it’s relatively small effect size, OAG may have a substantial effect (-20% reduction)
on the long-term carrying capacity in the most impacted working groups (Fig. 11). The reasons why are
discussed below. The effect of the PDO on the carrying capacity (Fig. S4) is comparable to its effect on
the counts at individual leks although there is much more uncertainty (Fig. 7). As for the local models,
the random effect of year accounted for substantial unexplained annual cyclical variation (Fig. S5). The
effect of density on the subsequent year’s density (i.e.density-dependence) is relatively minor: in a typical
working group a reduction in the density to 10 males (half the carrying capacity) results in an average of
just 13 males the following year (Fig. S6).

The qualititative sensitivity analysis indicates that using the maximum as opposed to the rounded
mean of the repeated lek counts has a negligible effect on the effect size estimates (Fig. 12). In contrast,
the estimated effect of the PDO is strongest in the most recent data.

Predicted Population Impacts
The predicted population impacts from the Bayesian full models indicate that although OAG has a
relatively minor influence on the change in the population density, the possibility of a larger negative
effect on the carrying capacity that is consistent with summation of the local lek-level impact could not be
excluded (Fig. 13).
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DISCUSSION

Oil and Gas
This is not the first study to consider whether local impacts potentially extend to population declines.
Based on local declines, Copeland et al. (2013) estimated that sage-grouse populations in Wyoming
will decrease by 14 to 29%, but that a conservation strategy that includes the protection of core areas
could reduce the loss to between 9 and 15% while Copeland et al. (2009) estimated that future OAG
development in the western United States (US) will cause a long-term 7 to 19% decline in sage-grouse
numbers relative to 2007. As argued by Doherty et al. (2010), estimation of population-level impacts is
important because it provides a biologically-based currency for quantifying the cost of OAG as well as
the benefits of mitigation or conservation.

This is however the first study to examine whether the actual population-level response is consistent
with the local impacts. A key conclusion is that scaling up the local, lek level impacts produces estimates
of population declines similar to those for the individual populations although there is much uncertainty
over the magnitude, if any, of the actual population-level response.

Interpretation of the local, lek-level results is relatively straightforward. The areal disturbance from
OAG is a well supported strongly negative predictor of male attendance at individual leks. The effect is
much stronger at a lag of one year and when considering wells within a radius of 3.2 km. However, this
should not be taken to imply there are no delayed effects nor no disturbances from more distant wells.
There is little uncertainty in the magnitude of the local declines - an areal disturbance of 3% is associated
with an average decline of 50% while a 6% decline is associated with a decline of 75%. When scaled
up, the lek level results suggest that by 2016 the impact of OAG was equivalent to the loss of 20% of the
birds in the Northeast and 30% in the Upper Green River.

Interpretation of the population-level results is more complicated. The mean areal disturbance within
3.2 km of all the leks was a weakly supported predictor of the annual density change with a small effect
size. Yet, the predicted population-level impacts were consistent with summation of the local impacts.
This apparent paradox it due to three statistical phenomena. The first is that when the statistical power
is low an important variable can have low predictive value and therefore receive a low Akaike’s weight.
The second is that when density dependence is weak a small effect on the expected density change can
have a more substantial impact on the long-term carry capacity. The third is that a standardized effect size
can provide a misleading summary of the scale of the possible impact if the variation is highly skewed.
The first two phenomena are related in that weak density dependence allows large population fluctuations
which obscure the inference of relationships and lower the power. All three factors are at play when
dealing with sage-grouse in Wyoming.

It may be possible to reduce the uncertainty by modifying the population dynamic model so that
it more closely matched the sage-grouse life history (i.e. most males begin lekking in their third year)
and/or through the incorporation of additional variables (Ramey et al., 2011). Aside from this the only
other option outside of ethically questionable population-level experiments is to expand the analysis to
incorporate data from additional populations across the species range. To enable this, sage-grouse lek
count data should be made available to researchers by all states and provinces.

Climatic Variation
The other key conclusion of this paper is that regional climatic variation is responsible for the inter-decadal
population fluctuations experienced by sage-grouse in Wyoming. More specifically, the PDO index is
an important predictor of changes in sage-grouse numbers at both the lek and population level. This
is perhaps unsurprising as the PDO has previously been used, in combination with the Atlantic Multi-
Decadal Oscillation and El Nino Southern Oscillation, to predict drought, drought-related fire frequency,
and precipitation trends in the western USA and Rocky Mountains (McCabe et al., 2004; Schoennagel
et al., 2007; Kitchen, 2015; Heyerdahl et al., 2008).

Although the current study does not identify the causal pathways through which sea surface tem-
peratures in the North Pacific affects the sage-grouse population dynamics we note that in Wyoming, a
positive PDO correlates with cooler, wetter weather, while a negative phase tends to produce warmer,
drier conditions (McCabe et al., 2004). We also note that given the relatively poor performance of local
precipitation and temperature metrics (Blomberg et al., 2012; Green et al., 2016; Blomberg et al., 2014,
2017; Coates et al., 2016; Gibson et al., 2017; Green et al., 2016), the causal pathways may be complex
and involve other organisms such as parasites (Cattadori et al., 2005; Taylor et al., 2013). In fact the
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complexity of such pathways is one of the reasons that large-scale climate indices such as the PDO often
outperform local weather data in predicting population dynamics and ecological process (Stenseth et al.,
2002; Hallett et al., 2004). Additional studies to assess the explanatory value of the PDO index across
the species range are needed (Doherty et al., 2016). It is noteworthy that the effect of the PDO index
appears to be stronger in the most recent part of the time series at least at the population-level. It is also
worth noting that the strength of the population-level response appears to vary between working groups
(ie the fluctuations in Bates Hole are much bigger than those in the Upper Snake River) and may have a
latitudinal or altitudinal component.

The finding that the PDO index is an important driver of sage-grouse abundance in Wyoming has
major implications for our understanding and conservation of the species. At the very least it is expected
that any long-term population trends, like those of songbirds in western North America (Ballard et al.,
2003; McClure et al., 2012), will be better understood in the context of the PDO. At best, it should allow
regulators to account for and predict (Stenseth et al., 2003) the effects of climatic variation on sage-grouse
population fluctuations, and therefore more effectively balance conservation efforts.
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FIGURES

Figure 1. Map of Wyoming and its working groups. Leks are indicated by blue points and well pads by
grey points. Only leks and wells pads that are included in the analyses are shown. The leks and well pads
are not to scale. The projection is EPSG:26913.
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Figure 2. Mean counts of male sage-grouse at individual leks by year and working group.
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Figure 3. Percent areal disturbance due to well pads within 3.2 km of individual leks with one or more
counts by year and working group.
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Figure 4. Pacific Decadal Oscillation index by year. Positive values indicate a warm phase and negative
values a cool phase.
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Figure 5. Estimates (with 95% CIs) of the effect of an increase in one SD (0.8 %) in the areal
disturbance due to well pads within 3.2 km and the Pacific Decadal Oscillation index (0.82). The effect is
on the expected count of male sage-grouse at an individual lek.
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Figure 6. Bayesian estimates (with 95% CIs) of the effect of the percent areal disturbance due to oil and
gas well pads on the expected count of male sage-grouse at a typical lek. The effect is the percent change
in the expected count relative to no areal disturbance.
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Figure 7. Bayesian estimates (with 95% CIs) of the effect of the Pacific Decadal Oscillation index on
the expected count of male sage-grouse at a typical lek. The effect is the percent change in the expected
count relative to a Pacific Decadal Oscillation index value of 0.
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Figure 8. Mean areal disturbances due to well pads within 3.2 km of all leks by year and working group.
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Figure 9. Mean lek counts by year and working group. The solid line is the estimate of the population
density based on the observed density in the previous year for the final full Maximum Likelihood model.
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Figure 10. Estimates (with 95% CIs) of the effect of an increase in one SD (0.31%) in the areal
disturbance due to well pads within 3.2 km of all leks and the Pacific Decadal Oscillation index (0.86).
The effect is on the expected subsequent population density.
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Figure 11. Bayesian estimates (with 95% CIs) of the effect of the percent areal disturbance due to oil
and gas well pads on the expected carrying capacity at a typical working group. The effect is the percent
change in the expected carrying capacity relative to no areal disturbance.
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Figure 12. Estimates (with 95% CIs) of the effect of an increase in one SD (0.31%) in the areal
disturbance due to well pads within 3.2 km of all leks and the Pacific Decadal Oscillation index (0.86) by
the statistic used to combine repeated lek counts and the time period. The effect is on the expected
subsequent population density. When the time interval is limited to data from more recent years where a
greater number of leks were surveyed and more frequently (i.e. data are of higher quality) the effect of oil
and gas becomes less certain, while the PDO has a greater effect.
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Figure 13. Bayesian estimates (with 95% CIs) of the effect of the observed levels of oil and gas on the
population abundance of sage-grouse based on the local (red) and population (blue) models.
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TABLES

Parameter Description
β0 The intercept for the log lek count or log population density.
βD The effect of population density on β0.
βP The effect of the standardised Pacific Decadal Oscillation index on β0.
βA The effect of the standardised areal disturbance due to well pads on β0.
φ The overdispersion term.
σε The SD of the observer error.
βN The intercept for the SD of the process error.
βL The effect of the log of the number of leks counted on βN .
σG The SD of the random effect of working group on β0.
σL The SD of the random effect of lek on β0.
σY The SD of the random effect of year on β0.

Table 1. Descriptions of key model parameters.
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PDO Lag (yr) Models Proportion wi
2 16 0.25 0.73
3 16 0.25 0.18
4 16 0.25 0.05
1 16 0.25 0.04

Table 2. The relative importance (wi) of the lag in the Pacific Decadal Oscillation index density as a
predictor of the count of males sage-grouse at individual leks across all models with a lek distance of 0.8,
1.6, 3.2, 6.4 and 12.8 km and the areal disturbance due to well pads independently lagged one to four
years.
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Area Lag (yr) Models Proportion wi
1 4 0.25 0.29
2 4 0.25 0.27
3 4 0.25 0.24
4 4 0.25 0.20

Table 3. The relative importance (wi) of the lag in the areal disturbance due to well pads as a predictor
of the change in the population density across all models with a lek distance of 3.2 km and the Pacific
Decadal Oscillation index independently lagged one to four years.
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PDO Lag (yr) Models Proportion wi
1 4 0.25 0.53
2 4 0.25 0.32
3 4 0.25 0.08
4 4 0.25 0.08

Table 4. The relative importance (wi) of the lag in the Pacific Decadal Oscillation index as a predictor of
the change in the population density across all models with a lek distance of 3.2 km and the areal
disturbance due to well pads lagged one to four years.
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SUPPLEMENTAL

Figure S1. Bayesian estimates of the frequency of leks by count of male sage-grouse in a typical year
with no oil and gas.
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Figure S2. Bayesian estimates (with 95% CIs) of the effect of year on the expected count of male
sage-grouse at a typical lek after accounting for the Pacific Decadal Oscillation index and oil and gas.
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Figure S3. Bayesian estimates (with 95% CIs) of the carrying capacity in a typical year with no oil and
gas by working group.
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Figure S4. Bayesian estimates (with 95% CIs) of the effect of the Pacific Decadal Oscillation index on
the expected carrying capacity at a typical working group. The effect is the percent change in the
expected carrying capacity relative to a Pacific Decadal Oscillation index value of 0.
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Figure S5. Bayesian estimates (with 95% CIs) of the effect of year on the density the subsequent year
after accounting for the Pacific Decadal Oscillation index and oil and gas.
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Figure S6. Bayesian estimates (with 95% CIs) of the effect of density on the density the subsequent
year with no oil and gas.
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Distance (km) Models Proportion wi
3.2 16 0.25 1.00
1.6 16 0.25 0.00
6.4 16 0.25 0.00
0.8 16 0.25 0.00

Table S1. The relative importance (wi) of spatial scale as a predictor of the count of males sage-grouse
at individual leks. The relative importance is across all models with the areal disturbance due to well pads
and the Pacific Decadal Oscillation index both independently lagged one to four years.
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Area Lag (yr) Models Proportion wi
1 16 0.25 0.99
2 16 0.25 0.01
3 16 0.25 0.00
4 16 0.25 0.00

Table S2. The relative importance (wi) of the lag in areal disturbance due to well pads as a predictor of
the count of males sage-grouse at individual leks. The relative importance is across all models with a lek
distance of 0.8, 1.6, 3.2 and 6.4 km and the Pacific Decadal Oscillation index lagged one to four years.
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Parameter Estimate SD Lower Upper
βA -0.210 0.015 -0.241 -0.180
β0 2.491 0.058 2.378 2.605
βP 0.164 0.054 0.059 0.270
log(φ) -0.908 0.014 -0.935 -0.882
log(σY ) -1.256 0.130 -1.512 -1.001
log(σL) -0.011 0.019 -0.048 0.026

Table S3. The model-averaged Maximum Likelihood parameter estimates for the final lek count models
with lower and upper 95% CIs. The estimates are for a lek distance of 3.2 km, areal disturbance due to
well pads of one year and Pacific Decadal Oscillation index lag of two years.
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Parameter Estimate SD Lower Upper
βA -0.210 0.015 -0.241 -0.180
β0 2.490 0.057 2.378 2.603
βP 0.168 0.049 0.072 0.263
log(φ) -0.908 0.014 -0.935 -0.882
log(σY ) -1.260 0.128 -1.511 -1.008
log(σL) -0.011 0.019 -0.048 0.026

Table S4. The Maximum Likelihood parameter estimates for the final full lek count model with lower
and upper 95% CIs. The estimates are for a lek distance of 3.2 km, areal disturbance due to well pads of
one year and Pacific Decadal Oscillation index lag of two years.
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Parameter Estimate SD Lower Upper
βA -0.210 0.015 -0.242 -0.182
β0 2.488 0.062 2.370 2.615
βP 0.166 0.052 0.067 0.264
log(φ) -0.908 0.013 -0.934 -0.881
log(σY ) -1.212 0.137 -1.448 -0.918
log(σL) -0.006 0.019 -0.044 0.030

Table S5. The Bayesian parameter estimates for the final full lek count model with lower and upper 95%
CIs. The estimates are for a lek distance of 3.2 km, areal disturbance due to well pads of one year and
Pacific Decadal Oscillation index lag of two years.
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Parameter Estimate SD Lower Upper
βA -0.012 0.021 -0.052 0.029
βD -0.464 0.064 -0.589 -0.339
β0 1.351 0.179 1.000 1.702
βL -0.304 0.043 -0.389 -0.219
βP 0.056 0.044 -0.031 0.142
log(σY ) -1.692 0.156 -1.997 -1.386
log(σG) -3.006 0.310 -3.614 -2.398
log(ση) -0.489 0.175 -0.833 -0.146

Table S6. The model-averaged Maximum Likelihood parameter estimates for the final population
models with lower and upper 95% CIs. The estimates are for a lek distance of 3.2 km, areal disturbance
due to well pads of one year and Pacific Decadal Oscillation index lag of one year.
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Parameter Estimate SD Lower Upper
βA -0.027 0.024 -0.073 0.020
βD -0.464 0.064 -0.588 -0.339
β0 1.352 0.178 1.002 1.702
βL -0.305 0.043 -0.389 -0.220
βP 0.073 0.035 0.005 0.142
log(σY ) -1.708 0.152 -2.005 -1.410
log(σG) -3.030 0.314 -3.645 -2.414
log(ση) -0.487 0.175 -0.829 -0.145

Table S7. The Maximum Likelihood parameter estimates for the final full population model with lower
and upper 95% CIs. The estimates are for a lek distance of 3.2 km, areal disturbance due to well pads of
one year and Pacific Decadal Oscillation index lag of one year.
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Parameter Estimate SD Lower Upper
βA -0.025 0.024 -0.074 0.020
βD -0.468 0.065 -0.594 -0.345
β0 1.372 0.179 1.019 1.718
βL -0.305 0.044 -0.396 -0.224
βP 0.073 0.037 0.001 0.144
log(σY ) -1.667 0.153 -1.951 -1.358
log(σG) -2.907 0.353 -3.592 -2.154
log(ση) -0.483 0.180 -0.788 -0.094

Table S8. The Bayesian parameter estimates for the final full population model with lower and upper
95% CIs. The estimates are for a lek distance of 3.2 km, areal disturbance due to well pads of one year
and Pacific Decadal Oscillation index lag of one year.
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