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Abstract 
 
QuicK-mer is a unified pipeline for estimating genome copy-number from high-throughput 
Illumina sequencing data. QuicK-mer utilizes the Jellyfish application to efficiently tabulate 
counts of predefined sets of k-mers. The program performs GC-normalization using defined 
control regions and reports paralog-specific estimates of copy-number suitable for downstream 
analysis. The package is freely available at https://github.com/KiddLab/QuicK-mer 

1 Introduction  
Detecting copy-number variation (CNV) from high-throughput sequencing data is a prevalent and 
important problem in the research of genome evolution, population genetics, and disease. Several 
methodologies have been developed that make use of distinct features of the data – including read 
depth, read-pair mappings, split-reads, sequence assembly, and combinations of multiple signals 
(Alkan et al., 2011). However, current methods are not without limitations.  For example, read 
depth approaches rely upon mapping to a reference genome assembly and are typically unable to 
isolate variation among duplicated sequences present in multiple locations in the reference. 
Specialized approaches have been developed to address this limitation, including tabulating depth 
at paralog-specific nucleotide positions using customized tools (Sudmant et al., 2010; Alkan et 
al., 2009; Handsaker et al., 2015). Although effective, these approaches require re-analysis of 
existing data using specialized mapping programs, such as mrsFAST (Hach et al., 2010), or 
extensive downstream processing both of which can add considerable time to the analysis. 
Additionally, previous approaches require trimming and/or partitioning of sequence reads into 
subsequences of a specified length and therefore do not make full use of the available sequence 
data. In this application note, we present QuicK-mer, a rapid and paralog-sensitive CNV 
estimation pipeline that efficiently produces copy-number estimates from FASTQ or BAM input 
files in less than 6 hours. Our approach is mapping-free and relies upon efficient tabulation of 
read depth at predefined sets of informative k-mers. 

2 Methods 
To achieve efficient and paralog-specific CNV estimation, we focused on counting specific k-mer 
sequences rather than aligning reads to a reference, an approach that has also been proposed for 
analysis of RNA-Seq data (Zhang and Wang, 2014; Patro et al., 2014). The QuicK-mer pipeline 
is designed to utilize the existing Jellyfish k-mer counting application  (Marçais and Kingsford, 
2011). Accepting both FASTQ and BAM files as input, QuicK-mer is designed for sequences 
generated by the Illumina platform. 

The QuicK-mer pipeline requires several pre-processing steps that must occur once for each 
species reference genome utilized. First, a predefined set of informative k-mers must be 
identified. For genome-wide CNV analysis, we utilize a catalog of unique 30-mers that do not 
overlap with highly repeated sequences (Supplementary Methods). The k-mer list is sorted based 
on coordinates in the reference assembly and paired with two additional files: a file describing the 
GC content within 400 bp of each k-mer and a file containing a binary flag indicating whether 
each k-mer should be considered as a control utilized for copy-number normalization 
(Supplementary Methods). Each of these two files is stored in an efficient binary format. 
Precomputed files for recent human, mouse, and dog reference genomes are publicly available 
and generation procedures are further described in the Supplementary Methods. 

For CNV estimation, the QuicK-mer pipeline uses Jellyfish-2 to tabulate k-mer counts for each 
k-mer in the target catalog using the sequencing file input. If a BAM file is specified by the user, 
QuicK-mer will optionally filter reads based on the duplicate flag using Samtools (Li et al., 
2009). To increase the efficiency of k-mer counting, we initialize a bloom counter in Jellyfish-2 
with two copies of the k-mer catalog. This ensures that only the k-mers of interest are tabulated, 
thus reducing memory and disk I/O burden. Next, the counts for each k-mer are extracted from 
the Jellyfish database and stored in memory. Each k-mer is then checked for status as a 
normalization control and, if indicated, incorporated into the construction of a GC-bias correction 
curve. To calculate GC bias, we average the depth for all the k-mers having the same 400bp GC 
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percentage in increments of 0.25%. A correction is then calculated to normalize the average 
depths in all GC bins, which is then applied to all interrogated k-mers. The resulting normalized 
k-mer counts can then be converted to copy-number estimates based on the assumed copy-
number of indicated control regions (CN=2 for autosomes, see Supplementary Methods). The 
resulting copy-number estimates are then exported at the level of individual k-mers or in defined 
sets of windows for subsequent analysis and visualization.  Standard segmentation algorithms can 
be employed on the QuicK-mer output to identify copy-number change points within an 
individual genome.  Alternatively, copy-number estimates for specific intervals can be compared 
across samples to define locus-specific copy-number genotypes. 

3  Results 
We have tested QuicK-mer using Illumina short read WGS data with various levels of sequencing 
coverage (1-23x, Supplementary Table 1). The majority of data was obtained from the 1000 
Genome Phase 1 and 3 and pilot data, as well as higher-coverage datasets from a previously 
analyzed set of samples (Bentley et al., 2008; Abecasis et al., 2010, 2012; Auton et al., 2015). 
Efficiency assessments demonstrate that QuicK-mer is able to estimate genome-wide copy 
number for a human genome sequenced to 17x in less than 6 hours using 4 cores on a typical 
computing cluster. 

To account for the bias caused by the local GC content in the genome, we ran QuicK-mer on 
sequencing lanes individually. Supplementary Figure 2 shows the distribution of GC curves 
observed from different sequencing lanes within the same WGS shotgun library. Once the 
corrected depth is obtained, all files from the same sample were merged. For comparison, we set 
the display resolution to be 500 30-mers per window and reported the median copy number. We 
compared with the supplementary data reported in Sudmant et al., 2010 and find that QuicK-mer 
can distinguish paralog-specific copy number in duplicated regions of the human genome (Fig 1 
and Supplementary Figures 5-14). Thus, QuicK-mer is a map-free approach that scales well, 
requires minimal additional processing, and represents a unified pipeline for efficiently estimating 
paralog-specific copy-number from Illumina WGS data. 
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Fig 1. Diverse CNV detected by QuicK-mer Paralog-specific copy numbers are estimated in the chr4q13.2 UBT2 gene family region. Red 
boxes indicate regions of copy-number variation. UGT2B17 is hemizygously deleted in NA19240, NA18555 and NA18517. TMPRSS11F and 
SYT14L are duplicated in NA18517 resulting in a copy number of 3. This figure corresponds to the region shown in Figure S65 in Sudmant et al., 
2010. The k30_merged track indicates the locations with unique 30-mers. 
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