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ABSTRACT 

Complex chromosomal rearrangements consist of structural genomic alterations 

involving multiple instances of deletions, duplications, inversions, or translocations that 

co-occur either on the same chromosome or represent different overlapping events on 

homologous chromosomes. We present SVelter, an algorithm that first identifies regions 

of the genome suspected to harbor a complex event and then iteratively rearranges the 

local genome structure, in a randomized fashion, with each structure scored against 

characteristics of the observed sequencing data. We show that SVelter is able to 

accurately reconstruct these regions when compared to well-characterized genomes that 

have been deep sequenced with both short and long read technologies. 
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BACKGROUND 

Structural variation (SV), defined as chromosomal rearrangements resulting from the 

removal, insertion or rearrangement of relatively long regions of the genome, are natural 

sources of genetic variation[1-3] that have also been implicated in numerous human 

diseases including neurological disorders[4-6]. There have been extensive studies to 

discover these genomic aberrations from the whole genomes of humans and other 

species, and numerous algorithms have been developed to accurately identify their 

prevalence[7-11]. These approaches have primarily focused on simple copy number 

variant (deletions, duplications) or copy neutral (inversions) rearrangements defined by 

at most two chromosomal breakpoints and work by identifying and clustering various 

signals of discordant alignments from paired-end next generation sequencing data[12] 

such that deletions are inferred from read pair clusters with abnormally long apparent 

insert length or reduced depth of sequence coverage while simple inversions can be 

detected with clusters of read pairs with aberrant orientation. Recent algorithms have 

begun to integrate signals across multiple features to increase sensitivity[9, 11, 13] and 

these have been successful in precisely identifying various types of SVs. Knowledge of 

the underlying structure of the rearrangement is still required, however, in order to 

properly model these aberrant signals to the correct type of structural variant. For 

example, clusters of read pairs with insert sizes larger than expected are typically 

representative of deleted sequence since this observation is consistent with how the 

reads would map in the presence of such an event. 

Recently, more complex SVs (CSVs) consisting of multi-breakpoint or 

overlapping genomic rearrangements have been revealed to be more pathologically 

significant than previously thought[4, 5, 14] and have been either neglected or 

misinterpreted by current techniques due to the complexity of the signals shown by the 

sequencing data. This is primarily due to the limitations of presupposing the types of SVs 
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being considered, as often times the signals from one event are clustered independently 

from those of another and can lead to contradictory or sometimes even opposing 

predictions to what is actually present. Under such circumstances, traditional prediction 

models lose their ability to discriminate between signals, and therefore new 

computational strategies are required to overcome these challenges. 

Here, we present a novel approach, SVelter, to accurately resolve complex 

structural genomic rearrangements. Unlike previous ‘bottom up’ strategies that search 

for deviant signals to infer structural changes, our ‘top down’ approach works by virtually 

rearranging segments of the genomes in a randomized fashion and attempting to 

minimize such aberrations relative to the observed characteristics of the sequence data. 

In this manner, SVelter is able to interrogate many different types of rearrangements, 

including multi-deletion? and duplication-inversion-deletion events as well as distinct 

overlapping variants on homologous chromosomes. The framework is provided as a 

publicly available software package that is available online (https://github.com/mills-

lab/svelter). 

 

RESULTS 

Overview of SVelter 

Our approach predicts the underlying structure of a genomic region through a 

two-step process. SVelter first identifies and clusters breakpoints (BP) defined by 

aberrant groups of reads that are linked across potentially related structural events. It 

then searches through candidate rearrangements using a randomized iterative process 

by which rearranged structures are randomly proposed and scored by statistical models 

of expected sequence characteristics (Figure 1; Materials and Methods). 

SVelter begins by fitting statistical models for insert size (IS) and read depth (RD) 

based on paired-end sequences sampled from copy neutral genomic regions[15]. Both 
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are modeled as normal distributions for efficiency purposes which is recommended for 

relatively clean data sequenced at higher depth; however, more accurate but slower 

models (i.e. binomial for IL and negative binomial for RD) are also available as options 

for data of lower quality.  SVelter then searches for and integrates potential SV signals 

from read pairs with aberrant insert size, orientation, and/or alignment (soft-clipping). 

Pairs of BPs are assigned simultaneously, and BP pairs that intersect with each other 

are further connected to form BP clusters. For each cluster containing n BPs, the n-1 

genomic segments defined by adjacent BPs are then rearranged in a randomized 

iterative process whereby a simple SV (deletion, insertion, inversion) is randomly 

proposed and applied to all possible segments to assess the viability of each putative 

change. The initial structure and each subsequent rearranged structure are then scored 

by examining the impact of each change on various features of the sequence reads in 

the region, including insert size distribution, sequence coverage, physical coverage, and 

the relative orientation of the reads. A new structure is then chosen for the next iteration 

using a probability distribution generated from the structure scores. This continues until 

the algorithm converges on a final, stable set of rearrangements or a maximum number 

of iterations is reached. 

An important feature of SVelter is that it simultaneously constructs and iterates 

over two structures, consistent with the zygosity of the human genome. This allows for 

the proper linking of breakpoint segments on the correct haplotypes, which is crucial for 

the proper resolution of overlapping structural changes that can often confuse or mislead 

other approaches. Individual breaks in the genome can then be properly linked and 

segregated, aiding in downstream genotyping across multiple individual sequences. 

 The randomized aspect of this approach leads to additional computation cost 

relative to other SV detection algorithms. We have addressed this by implementing a 

number of optimizations to increase the overall efficiency of SVelter. First, we limit the 
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number of clustered BPs during the initial breakpoint-linking step in order to manage the 

number of random combinations at the next step. For regions with potentially higher 

numbers of linked breakpoints, we form subgroups based on physical distance between 

adjacent BPs that are later combined. Second, we set an upper and lower bound on the 

potential copy number (CN) of each segment between BPs using local read depth 

information and only allow structures containing CN-1 to CN+1 blocks for downstream 

analysis. Lastly, we have restricted the total number of iterations such that after 

converging on a stable rearrangement for 100 continuous iterations, we set this structure 

aside and restart the random iterations for another 100 iterations, at which point the 

highest scoring structure overall is chosen. This results in a total processing time for 

SVelter on a re-sequenced human genome with 50X coverage of under 20 hours when 

run in parallel on a high-performance computing cluster.  

 

Performance Evaluation 

We compared SVelter to three popular SV detection algorithms: Delly[11], Lumpy[9], and 

Pindel[8]. Both Delly and Lumpy have integrated insert size and split read information 

into their SV detection strategy, while Pindel implements a pattern grown approach to 

utilize split read alignments. While there are numerous other algorithms that have been 

developed for detecting SVs, we focused on these as they have previous published 

comparisons that can be transitively applied to our results.  

Multiple experiments were conducted in order to evaluate our approach. We first 

simulated genomes of various sequence coverage containing both simple and complex 

SVs as homozygous and heterozygous events. We next applied these algorithms to the 

genome of a haploid hydatidiform mole (CHM1)[16] and also a well-characterized diploid 

genome (NA12878)[17, 18], both of which had reported high-confident calls as well as 

long-read Pacific Biosciences (PacBio) sequences available for orthogonal assessment. 
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All algorithms were run either with the recommended settings as provided by the authors 

(where available) or default settings. Detailed commands for running each algorithm can 

be found in supplemental materials.  

 

Simulated data 

We simulated heterozygous and homozygous non-overlapping simple SVs (deletions, 

inversions, tandem duplications, dispersed duplications and translocations) of varied 

sizes into synthetic genomes sequenced at different depths of coverage (10-50X). We 

then calculated the sensitivity and positive predictive value (PPV) of each algorithm 

(Figure 2A,B, Supplemental Figures 1-2).  Overall, SVelter achieves a higher sensitivity 

and PPV for simple deletions compared to all other algorithms. Comparisons with 

duplications were more difficult; while all compared approaches can report tandem 

duplications, for dispersed duplications only SVelter reports both the duplicated 

sequence and its distal insertion point. We therefore took a conservative approach such 

that for calculating sensitivity we compared the full set of duplications predicted from 

each approach to the simulated set of tandem and dispersed events, but limited the false 

positive analysis to only tandem duplications for the other algorithms. It should be noted 

that this method of comparison would bias against SVelter to some extent, however 

under these circumstances SVelter still showed very good sensitivity and positive 

predictive value in calling dispersed duplications, with slightly worse performance for 

tandem duplications.  For inversions, SVelter showed a comparable accuracy to other 

the algorithms. 

 We also simulated specific types of complex rearrangements based on structures 

recently reported[19] as well as our own observations (Supplemental Table 1). 

Performance comparisons with complex structures are less straightforward than with 

simple SVs as most algorithms are only designed to identify simple events, and 
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therefore may predict portions of CSVs as independent events. We address this issue by 

considering the identification and predicted copy number of individual junctions as 

reported in the entire prediction set of each algorithm (deletions, duplications, inversions) 

and compared against each simulated complex event collectively, treating predicted 

non-simulated junctions in the region as false positives (Methods and Materials). SVelter 

performs consistently better in terms of sensitivity and PPV across almost all types of 

complex events, including inverted duplications and inversion deletion events (Figure 

2C,D). 

 

Real data 

To estimate how SVelter performs on real data, we have applied each algorithm 

to two publicly available datasets: a haploid hydatidiform mole (CHM1)[16] and a well-

characterized diploid genome analyzed by the Genome in a Bottle Consortium 

(NA12878)[17, 18]. Both have been deep sequenced by Illumina short-insert and PacBio 

long-read sequencing, and provide an excellent foundation for comparing baseline 

accuracies among approaches. We initially compared deletion calls of each algorithm to 

the reported set of variants to determine their relative accuracy, however the false 

discovery rate of each algorithm was abnormally high with respect to previously reported 

values (Supplemental Table 2), suggesting that the reported deletion set may be overly 

conservative. We therefore examined the PacBio data directly for each predicted variant 

using a custom validation approach that utilizes a recurrence strategy to compare each 

read to both the reference allele as well as a rearranged reference consistent with the 

predicted structure (Figure 3A,B, Methods and Materials). We evaluated this approach 

using sets of reported deletions in these samples as well as matched random sets 

located within copy neutral regions and found it to have very high true positive and true 

negative rates (Figure 3C). We also conducted PCR experiments on the predicted 
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breakpoints of three predicted complex rearrangements that were validated with this 

approach to show convincing evidence for two, with inconclusive results for the third due 

to high degrees of repetitiveness in the region (Supplemental Figures 3-6). We then 

reassessed the earlier deletion predictions made by each algorithm in CHM1 and 

NA12878 by combining the previously reported deletions in each sample with those 

having PacBio validation support from our analysis. As expected, we observed a marked 

increase in accuracy for each algorithm (Figure 3D).   

We next compared the performance of each algorithm on identifying and 

resolving CSVs.  Given that there are very few reference sets available of known 

complex rearrangements, we first created a set of non-overlapping candidate CSVs as 

identified by SVelter in CHM1 and NA12878.  We then collected all predictions from 

each algorithm that overlap that region and scored them using the validation approach 

above. As many complex rearrangements may be described as a combination of simple 

SVs, we utilized a ranking approach to compare the individual predictions by assigning 0 

to the lowest scores and 0.75 to the highest scores (see Methods and Materials).  We 

observed a significant enrichment of SVelter predictions with high validation scores, 

indicative of its efficacy in correctly resolving CSVs (Figure 4A). An example is shown in 

Figure 4B, which depicts a summary of sequence read alignments for a region on 

chromosome 1 in CHM1 containing multiple deletions as well as a local translocation. 

Using standard read clustering algorithms, the signals present might suggest the 

presence of a tandem duplication overlapping with large deletions. However, this is not 

consistent with the haploid nature of CHM1, and comparisons with long PacBio 

sequence reads that overlap the region show the true structure (Figure 4C), which when 

aligned to a rearranged reference using SVelter predictions shows a full length 

alignment (Figure 4D). A comparison with other algorithms indicates that their 

predictions are indeed consistent with analyzing each aberrant read cluster 
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independently of each other and result in a combination of tandem duplications, 

deletions, and inversions (Figure 4E).  

 

Computational Runtime 

We compared the overall executable runtime of the different software packages using a 

single chromosome from NA12878. For each algorithm, we initialized the analysis using 

a previously aligned sequence in BAM format and used the respective procedures 

necessary for each approach to result in a variant call file (see Methods and Materials). 

Delly was observed to complete the fastest, followed by Lumpy. Pindel and SVelter were 

both considerably slower and were comparable in their runtime (Supplemental Table 3). 

It should be noted that some algorithms (e.g. Lumpy) can perform faster with optimized 

alignment strategies[20], however this was not included in our assessment. 

 

Examination of Identified SVs in CHM1 and NA12878 

We examined the full set of identified simple and complex SVs in both CHM1 and 

NA12878. As expected, we rediscovered many previously reported deletions, 

duplications and inversions (Table 1). In some cases, we were also able to identify 

dispersed duplications that were incorrectly identified as overlapping tandem duplication 

and deletion events in prior reports (Figure 5a, Supplemental Figure 7). Furthermore, we 

found a recurrence of particular types of CSVs, including inverted-duplication and 

deletion-inversion events (Figure 5b,c,d, Supplemental Figures 8-10) suggesting that 

they are likely more common than previously thought. However, there were numerous 

other CSVs that could not be coalesced into a single classification and may provide 

future insight into new mechanisms for SV formation.  

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 4, 2015. ; https://doi.org/10.1101/028217doi: bioRxiv preprint 

https://doi.org/10.1101/028217
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 -11-

DISCUSSION  

We have described an integrative approach, SVelter, that can identify both simple and 

complex structural variants through an iterative randomization process. We show that it 

has an improved or comparable accuracy to other algorithms when detecting deletions, 

duplications and inversions but has the additional capability of correctly interpreting and 

resolving more complex genomic rearrangements with three or more breakpoints. 

Furthermore, SVelter can resolve structural changes on parental haplotypes individually, 

allowing for the correct stratification of multiple overlapping SVs. SVelter achieves this 

by forgoing the assumption of specific patterns of read alignment aberrations as 

associated with individual rearrangements and instead allowing the underlying sequence 

itself to dictate the most probable structure.  

The ability to accurately identify CSVs in whole genome sequence data is a 

significant advancement, as currently many such regions are either missed or identified 

as individual errant events. For example, in our investigation of NA12878 we identified 

many disperse duplications that were previously reported as overlapping deletion and 

tandem duplication events as well as other simple deletions and inversions that were in 

fact part of a larger complex rearrangement (Figure 5). Such regions could be, in part, 

responsible for the observed discrepancies when comparing different SV algorithms with 

each other as well as other platforms such as array-CGH[21]. Our observations are also 

consistent with recent findings by the 1000 Genomes Project[19], however their analysis 

required the use of multiple long-read sequencing technologies including PacBio and 

Moleculo to interpret the regions while SVelter is able to correctly resolve the regions 

from short-insert Illumina sequences alone. Although long-read technologies are very 

well suited for such an application, their use is currently limited to small-scale projects 

and there have been estimates that over 300,000 genomes will be sequenced using 

Illumina short-insert reads in 2015 alone. Thus, approaches like SVelter that perform 
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accurately on such data sets are likely to have a larger impact on correctly reporting 

complex structural genomic aberrations. 

One limitation of SVelter is that even with our efficiency enhancements it still 

exhibits a longer processing time with respect to the other SV algorithms compared 

here. This is in part due to the randomization strategy but is also owing to the inclusion 

of a read coverage component, which is not modeled in the other approaches we 

compared against but contributes to the overall increased accuracy of SVelter. Recent 

advances have made it possible to analyze a high coverage human genome from 

sequence to variant calling and annotation in half a day[20], and such applications are 

very useful for diagnostic applications where speed is a critical component. 

Nevertheless, the enhanced ability of SVelter to correctly resolve overlapping and 

complex rearrangements relative to other approaches makes it very useful for projects 

where the accurate detection of such regions is important. Another limitation of SVelter 

is that in its current form it has a reduced ability to delineate heterogeneous data, such 

as commonly found when sequencing cancer genomes. This is due to its expectation of 

a specific ploidy when iterating between multiple haplotypes. Future work in this area will 

focus on creating a dynamic structure that can allow different levels of heterogeneity or 

mosiacism. 

 

CONCLUSIONS 

We have developed and applied a new approach to accurately detect and correctly 

interpret both simple and complex structural genomic rearrangements. Our comparisons 

to existing algorithms and data sets show that SVelter is very well suited to identifying all 

forms of balanced and unbalanced structural variation in whole genome sequencing data 

sets. 
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METHODS 

 

SVelter Algorithm 

SVelter takes aligned Illumina paired-end sequence data in sorted BAM format as input 

as well as the reference genome against which the sequences were aligned and reports 

all predicted SVs in both a custom format as well as VCFv4.1. Default parameters are 

chosen to best balance sensitivity and efficiency, though are adjustable for users to best 

fit their own data. The SVelter framework consists of three major modules: null model 

determination, breakpoint detection, random iterative rearrangement, and structure 

scoring. (Figure 1) 

 

Null Model Determination 

SVelter first filters the reference genome to exclude regions of low mappability from 

downstream analysis to increase efficiency by avoiding regions where alignments are 

unreliable. Such regions include gaps and unknown regions in the reference genome 

(Ns) and these are integrated with previously reported genomic regions 

(wgEncodeMapability, obtained from UCSC Genome Browser) that are of low 

mappability to form a final version of excluded regions. Next, default distributions of 

insert size (IS), read depth (RD) and physical coverage (PC) are determined by 

sampling either randomly, or from a set of copy neutral (CN2) genomic regions defined 

as places in the genome where no polymorphic CNVs, segmental duplications, or 

repetitive elements have been annotated and thus providing a good estimate of the 

baseline alignment characteristics[15]. For efficiency, SVelter models these by default as 

normal distributions with an observed minimal reduction of accuracy on well-behaved 

sequence libraries, but also provides options for more complex models (i.e. binomial 
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distribution for IS and negative binomial distribution for RD and PC) when the input data 

is of lower quality.  

 

Detection and Clustering of Putative Breakpoints 

SVelter next scans the input alignment file to define putative breakpoints (BPs) where 

the sample genome differs from the reference. These are defined through the 

identification of aberrant read alignments. Clusters of read pairs (RP) showing abnormal 

insert length or aberrant mapping orientation may indicate breakpoints nearby, while 

reads with truncated (clipped) split read (SR) alignments are indicative of precise 

breakpoint positions. SVelter specifically defines aberrant reads as follows: 

 1. RPs outside expected insert size (mean ± 3*std) 

 2. RPs with aberrant pair orientation (FF,RR,RF) 

 3. SRs with high average base quality (>20) clipped portion with minimum size 

fraction of overall read length (>10%) 

It should be noted that the specific parameters listed were set as default empirically and 

can be adjusted by the user. Discordant RPs of the within a window of mean insert size 

+ 2*std distance and of the same orientation are clustered together. Next, split reads 

within this window and downstream of the read direction are collated and the clipped 

position is considered as a putative breakpoint. If no such reads exist, the rightmost site 

of forward read clusters or leftmost site of reverse read clusters is assigned instead. For 

each cluster of aberrant RPs, a BP is assigned if the total number of split reads exceeds 

20% of the read depth or the total number of all aberrant reads exceeds 30%. For 

samples of poorer quality, higher cutoffs might be preferred. Each putative BP will be 

paired with other BPs that’s defined by mates of its supporting reads. BP pairs that 

intersect or are physically close (<1kb) to each other will be further grouped and reported 

as a BP cluster for the next step. 
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Random Iterative Rearrangement 

For each BP cluster containing n putative BPs, a randomized iterative procedure is then 

applied on the n-1 genomic blocks between adjacent BPs. SVelter has three different 

modules implemented for this step: diploid module (default) that detects structural 

variants on both alleles simultaneous, heterozygous module that only report high quality 

heterozygous SVs and homozygous module for high quality homozygous SVs only. For 

the diploid module, a simple rearrangement (deletion, inversion or insertion) is randomly 

proposed and applied to each block on one allele while the other allele is kept 

unchanged and the newly formed structure is scored against the null models of 

expectation for each feature through the scoring scheme described below. A new 

structure is then selected probabilistically from the distribution of scores such that higher 

scores are more likely but not assured. The same approach is then applied to the other 

allelic structure representing a single iteration overall. For heterozygous and 

homozygous modules, only one allele is iteratively rearranged while the other allele 

remains either unchanged or is mirrored, respectively. 

The iterative process will terminate and report a final rearranged structure if one 

of the following situations is met: 

 1. No changes to a structure after 100 continuous iterations 

 2. The maximum number of iterations is reached (100,000 as default) 

After the initial termination, the structure is reset and the process is repeated for another 

100 iterations while avoiding the fixed structure, at which point the highest scoring 

structure overall is chosen. 

 

Structure Scoring 
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For a rearranged structure, all read pairs originally aligned within the region are scored 

independently and averaged for the final score. The read pair score (SRP) consists of 

four parts: Insert Size (SIS), Pair Orientation (SPO), Read Depth (SRD) and physical 

coverage through a BP (STB) in the following equation: 

��� � ���  �  �1 � ����  � ���  �  �1 � ����  

Using the distribution of insert sizes described above, the SIS is calculated as the log 

transformation of the probability that a particular insert size is observed. RDS is defined 

in the same way using the observed read depth. SPO is calculated as the faction of read 

present in the region with aberrant orientation over the total:  

��� �
# 
�� 
��� �������� ������������

����� # 
��
 

STB is determined using a Chi-square using the physical coverage through a particular 

breakpoint: 

��� � �	���� 

Performance Assessment 

Both simulated and real data were used to evaluate performance of SVelter. To produce 

simulation datasets, we altered the human GRCh37 reference genome to include both 

homozygous and heterozygous simple SVs and complex SVs independently while 

adding micro-insertions and short tandem repeats around the junctions in frequencies 

consistent with previously reported breakpoint characteristics[22]. Details about specific 

types of SVs simulated are summarized in Supplementary Table 1. Paired-end reads of 

101bp with an insert size of 500bp mean and 50bp standard deviation were simulated 

using wgsim (https://github.com/lh3/wgsim) across different read depths (10X, 20X, 30X, 

40X, 50X).  

For comparisons using real sequence data, we adopted two previously published 

samples: a haploid hydatidiform mole (CHM1)[16] and a well-characterized 
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HapMap/1000 Genomes Project sample (NA12878)[17]. CHM1 has been deep 

sequenced by Illumina whole-genome sequence to 40X and by Single Molecule, Real-

Time (SMRT) sequencing to 54X, and SVs of the sample have been detected and 

published by the same group as well 

(http://eichlerlab.gs.washington.edu/publications/chm1-structural-variation/). NA12878, 

together with the other 16 members from CEPH pedigree 1463, has been deep 

sequenced to 50X by Illumina HiSeq2000 system 

(http://www.illumina.com/platinumgenomes/). Additionally, the Genome in a Bottle 

(GIAB) Consortium has published the PacBio sequencing data (20X) of NA12878 and 

also provided a set of high-confident SV calls[18].  

Three other widely used algorithms: Pindel, Delly and Lumpy were selected for 

the comparison. We applied SVelter, Pindel and Lumpy to both simulated and real data 

with default settings, except for that SVelter’s homozygous module was used for CHM1. 

Delly was run with the insert size cutoff (-s) set as 10 as recommended by the author. All 

algorithms were run using the same set of genomic regions marked for exclusion and 

were filtered to only consider SVs >100bp. 

 

Assessment of Simulated Simple SVs 

For simulated datasets, we compared the performance of each algorithm by calculating 

their sensitivity and specificity on each type of simple SV (deletion, disperse duplication, 

tandem duplication, inversion). As Lumpy reports breakpoints in terms of range, we 

calculated the median coordinate of each reported interval and consider it as the 

breakpoint for downstream comparison. A reported SV would be considered as a true 

positive (TP) if the genomic region it spanned overlapped with a simulated SV of the 

same type by over 50% reciprocally. As Delly and Lumpy didn’t differentiate tandem and 

dispersed duplication in their SV report, we compare their reported duplications to both 
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simulated tandem and dispersed duplications independently to calculate sensitivity, but 

use the entire set of simulated duplications together for the calculation of specificity. In 

this manner, the result will be biased towards higher TP and TN rates for these 

approaches. Dispersed duplications reported by Pindel were very rare and as such were 

processed in the same way as Delly and Lumpy.  

 

Assessment of Real SVs 

We initially made use of reported simple and complex SVs in CHM1 and NA12878 as 

gold standard sets, however the FP rate of each algorithm were high compared to 

previously published performance. To augment this set, we therefore have developed 

our own approach to validate simple and complex SVs using PacBio long reads. For 

each reported SV, we collect all PacBio reads that go through the targeted region and 

hard clip each read prior to the start of the region. We then compare each read to the 

local reference and an altered reference reflecting the structure of the reported SV by 

sliding a 10bp window through the PacBio read and aligning it against the reference 

sequence. Coordinates of each window are plotted against its aligned position in the 

form of a dotplot. Theoretically speaking, if a read was sampled from the reference 

genome, a diagonal line should be observed. However, if a read was sampled from an 

altered genomic region, a continuous diagonal line would only show when plotted 

against a correctly resolved sequence. In this manner, shorter SVs (<5kb) can be 

validated by accessing the deviation of all dots from diagonal. For each PacBio Read, 

the score:  

Ratio of Dis �
∑ D
�|��
,	,…,��

�i � 0, PacBio read vs. original structure�

∑ D
�|��
,	,…,��
�i � 1, PacBio read vs. altered structure�

3 1 
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is assigned, so that a positive Ratio of Dis indicates the priority of altered genome over 

reference genome, and vise versa. The validation score of an SV is integrated from all 

PacBio reads spanning through it using an indicator function: 

Structure Score �
I�Ratio of Dis 6 0�

total number of Pacbio Reads
 

SVs with validation score >0.5 for haploid genome, or >0.3 for diploid genome would be 

considered validated. 

For longer (>5kb) SVs, PacBio reads spanning through the whole targeted region 

are rarely observed. In this situation, we scored each breakpoint by adding 500bp flanks 

and assessing each individually.  The final validation score is then determined through 

the collation of matches from all breakpoints. 

 We reassessed our initial true positive (TP) and false positive (FP) simple calls 

from each algorithm by combining our PacBio validated SVs from each algorithm 

together with the reported calls. For simple SVs, we utilized a 50% reciprocal overlap 

criterion. However, for CSVs we utilized a more complex comparison strategy to take 

into account that some algorithms will often detect individual parts of a complex 

rearrangement as distinct events. With each CSV predicted by SVelter, we extracted 

SVs with over 50% reciprocal overlap from other algorithms and calculated the validation 

score for each of them using our PacBio validation approach described above. When 

multiple SVs were extracted from an algorithm, averaged scores were adopted. 

Validation scores of a CSV from all algorithms were ranked and normalized from 0 to 1 

for comparison. 

 

SOFTWARE AND DATA AVAILABILTY 

The software package SVelter is available for download at https://github.com/mills-

lab/svelter, and additional documentation regarding specific software usage and 
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parameters, supporting files, algorithm comparisons and simulated data sets are 

provided at this site.  

 

Sequence data used in this analysis were obtained from the following resources: 

CHM1 – Resolving the complexity of the human genome using single-molecule 

sequencing (http://eichlerlab.gs.washington.edu/publications/chm1-structural-variation/) 

[16] 

NA12878 – Genome in a Bottle Consortium (https://sites.stanford.edu/abms/giab)[17], 

Illumina Platinum Genomes (http://www.illumina.com/platinumgenomes/) 
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DESCRIPTION OF ADDITIONAL DATA FILES 

The following additional data are available with the online version of this paper. 

Additional data file 1 contains Supplemental Table 1 outlining the type and number of 

SVs included in each simulated genome and the stratified results for each algorithm. 

Additional data file 2 contains Supplemental Tables 1-3 and Supplemental Figures 1-10. 
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Additional data file 3 additional Supplemental Methods outlining the software and 

parameter usage that was used to generate the presented results. 
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TABLES 
 
 

Table 1. Predicted SV Types in CHM1 and NA12878 by SVelter.  
SV Type CHM1 NA12878 

Simple DEL 1890 (0.86) 2988 (0.84) 
Simple DUP 1872 (0.28) 1232 (0.41) 
        Tandem 1725(0.27) 1184 (0.41) 
        Dispersed 147 (0.37) 48 (0.40) 
Simple INV 14 (0.50) 106 (0.76) 
Simple TRA 6 (0.67) 3 (0.67) 
DEL+DUP 6 (0.50) 39 (0.49) 
DEL+INV 5 (0.40) 16 (0.44) 
DEL+TRA 3 (0.67) 3 (0.67) 
DUP+INV 188 (0.64) 141 (0.44) 
DEL+DUP+INV 8 (0.50) 34 (0.32) 
Other 27 (0.37) 369 (0.70) 
Numbers in parenthesis indicate percentage of calls with direct 
PacBio validation support 
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FIGURE LEGENDS 
 
Figure 1. Overview of computational strategy for identifying structural variation in 
whole genome sequences. (A) SVelter first scans the genome and identifies clusters of 
aberrant read characteristics. These are used to create a putative set of breakpoint 
positions. (B) The segments between breakpoints are then iteratively rearranged and 
scored against null models of sequence expectations. (C) The final converged structure 
is reported as the predicted structural rearrangement for the region. 
 
Figure 2. Assessment of accuracy using simulated data sets. (A) Sensitivity and (B) 
positive predictive values for SVelter (red), Delly (blue), Lumpy (Green), and Pindel  
(purple) across different simple SV types and sequence coverage on combined 
simulated homozygous and heterozygous events. For dispersed duplications, only 
SVelter was considered for positive predictive values and all predictions by other 
algorithms that did not overlap simulated results were considered only for the tandem 
duplication category. (C) Sensitivity and false discovery rate (FDR) for simulated 
complex inverted duplications. (D) Sensitivity and FDR for simulated complex inversion 
deletion events. 
 
Figure 3. Overview and application of PacBio validation approach to human data. 
(A) Dot plot of example region containing a simple deletion using a single PacBio read 
against the reference genome. Red dots indicate matches between sequences and 
dashed black lines delineate 10% deviance from the diagonal. (B) Dot plot of same 
region using an altered reference incorporating the deletion event. (C) Fraction of true 
positive calls using validation approach on published deletions in NA12878 (black) and 
CHM1 (grey) and CN2 regions as negative controls. Dashed black lines indicate regions 
that could not be assessed due to lack of PacBio reads to interrogate. (D) Performance 
comparison of deletions predicted by each algorithm using published deletions in 
NA12878 (left panel) and published deletions combined with PacBio validated calls (right 
panel).  
 
Figure 4. Evaluation of complex structural variation predictions. (A) Validation 
scores of complex structural variation predicted in NA12878 from all algorithms ranked 
and normalized from 0 to 1 for comparison. For approaches with multiple predicted SVs 
in a region, average scores from each prediction were averaged. (B) IGV screenshot of 
example complex region in CHM1 (chr1:14435000-1444000) containing multiple 
deletions (blue shaded arrows) and a translocated region (green arrow), with 
surrounding anchor regions in black. Light green lines in IGV indicate read pairs with 
reverse-forward orientation, while red lines indicate read pairs with aberrant insert size 
length. (C) Dot plot of region between an individual PacBio read (SRR1304376.123525) 
against the reference sequence. Colored arrows correspond to segments indicated in 
(B). (D) Dot plot of altered reference sequence implementing predicted rearrangements 
by SVelter. (E) Schematic of predictions by each SV algorithm with respect to segments 
indicated in (B). For approaches with multiple predictions overlapping the region, each 
predicted SV is show independently. 
 
Figure 5. Examples of various types of complex structural variation in NA12878 
identified by SVelter. (A) IGV screenshot of disperse duplication event predicted by 
SVelter. Line colors as described in Figure 4. Such regions are typically identified as an 
overlapping tandem duplication and deletion. (B) Example of inverted duplication event. 
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Blue lines in IGV indicated reverse-reverse read pair orientation while dark green lines 
indicate forward-forward read pair orientation. (C) Region with heterozygous inversion 
and deletion rearrangement. (D) Region with homozygous inversion and deletion 
rearrangement. All regions shown had PacBio sequences consistent with predicted 
SVelter structures and were misclassified by other approaches (Supplemental Figures 7-
10) 
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