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ABSTRACT 
 
Capture Hi-C (CHi-C) is a state-of-the art method for profiling chromosomal interactions 
involving targeted regions of interest (such as gene promoters) globally and at high 
resolution. Signal detection in CHi-C data involves a number of statistical challenges that are 
not observed with other Hi-C-like techniques. We present a noise model and algorithms for 
background correction and multiple testing that are specifically adapted to CHi-C data. We 
implement these procedures in CHiCAGO (http://regulatorygenomicsgroup.org/chicago), an 
open-source package for robust interaction detection in CHi-C. We validate CHiCAGO by 
showing that promoter-interacting regions detected with it are enriched for regulatory 
features and disease-associated SNPs. 
 
Keywords: gene regulation, nuclear organisation, promoter-enhancer interactions, Capture 
Hi-C, convolution noise model, p-value weighting. 
 
BACKGROUND 
 
Chromosome Conformation Capture (3C) technology has revolutionised the analysis of 
nuclear organisation, leading to important insights into gene regulation [1]. While the original 
3C protocol tested interactions between a single pair of candidate regions ("one vs one"), 
subsequent efforts focused on increasing the throughput of this technology (4C, "one vs all"; 
5C, "many vs many"), culminating in the development of Hi-C, a method that interrogated the 
whole nuclear interactome ("all vs all") [1, 2]. The extremely large number of possible 
pairwise interactions in Hi-C samples, however, imposes limitations on the realistically 
achievable sequencing depth at individual interactions, leading to reduced sensitivity. The 
recently-developed Capture Hi-C (CHi-C) technology uses sequence capture to enrich Hi-C 
material for multiple genomic regions of interest (hereafter referred to as "baits"), making it 
possible to profile the global interaction profiles of many thousands of regions globally 
("many vs all") and at a high resolution (Fig. 1) [3-7].  
  
CHi-C data possess a number of statistical properties that set them apart from other 
3C/4C/Hi-C-like methods. First, in contrast to traditional Hi-C or 5C, baits in CHi-C comprise 
a subset of restriction fragments, while any fragment in the genome can be detected on the 
“other end” of an interaction. This asymmetry of CHi-C interaction matrices is not accounted 
for by the normalisation procedures developed for traditional Hi-C and 5C [8-10]. Secondly, 
CHi-C baits, but not other ends, have an additional source of bias associated with uneven 
capture efficiency. In addition, the need for detecting interactions globally and at a single-
fragment resolution creates specific multiple testing challenges that are less pronounced 
with binned Hi-C data or the more focused 4C and 5C assays, which involve fewer fragment 
pairs tested for interaction. Finally, CHi-C designs such as Promoter CHi-C and HiCap [3-5, 
11] involve large numbers (many thousands) of spatially dispersed baits. This presents the 
opportunity to increase the robustness of signal detection by sharing information across 
baits. Such sharing is impossible in the analysis of 4C data that focuses on only a single 
bait, and is of limited use in 4C-seq containing a small number of baits [12, 13].  
  
These distinct features of CHi-C data have prompted us to develop a bespoke statistical 
model and a background correction procedure for detecting significant interactions in CHi-C 
data at a single restriction fragment resolution. The algorithm, termed CHiCAGO ("Capture 
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Hi-C Analysis Of Genomic Organisation"), is presented here and implemented as an open-
source R package. CHiCAGO features a novel background correction procedure and a two-
component convolution noise model accounting for both real, but expected interactions, as 
well as assay and sequencing artefacts. In addition, CHiCAGO implements a weighted false 
discovery control procedure that builds on the theoretical foundations of Genovese et al. 
[14]. This procedure specifically accommodates the fact that increasingly larger numbers of 
tests are performed at regions where progressively smaller numbers of interactions are 
expected. 
  
We demonstrate the efficacy of CHiCAGO on two datasets: one from the human 
lymphoblastoid cell line GM12878 [3] (see Fig. 2 for examples) and another from mouse 
embryonic stem cells [4]. We further show that CHiCAGO-detected interactions are enriched 
for regulatory regions and relevant disease-associated SNPs. 
 
 
 

 
Figure 1: The outline of Capture Hi-C.  
(A) Outline of the CHi-C protocol. A Hi-C library is hybridised to a capture system that consists of biotinylated 
RNA probes targeting DNA fragment ends of gene promoters. After hybridization, streptavidin pulldown is 
performed to filter for fragments that have hybridized with the RNA probes, leading to enrichment in baited 
fragments (“baits”). Following a limited-cycle PCR amplification, the promoter CHi-C library is ready to be 
analysed by massively parallel paired-end sequencing. 
(B) The chromosomal interactome of the LPHN2 promoter region in GM12878 cells. The top panel shows a 
1.8Mb region containing the LPHN2 gene. The middle panel, shows raw read-pairs from the Hi-C library. All read 
pairs sequenced for these regions are shown in grey. In purple, we show only the read-pairs that contain the 
LPHN2 promoter in one of the fragment ends. The bottom panel shows raw read-pairs from the Promoter CHi-C 
library. The WashU EpiGenome Browser [15, 16] was used to create this figure. 
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Figure 2: Examples of interactions called by CHiCAGO. 
Top panels: Plots showing the read counts from bait-other end pairs within 500 kb (upstream and downstream) of 
two baits, containing the promoters of (A) VEZF1 and (B) RGS22 in GM12878 cells. Significant interactions 
detected by CHiCAGO (score >= 5) are shown in red, and sub-threshold interactions (3 <= score <5) are shown 
in blue. Triangles indicate bait-to-bait interactions. Grey lines show expected counts and dashed lines the upper 
bound of the 95% confidence intervals. (Note that bait-to-bait interactions have higher expected read counts than 
bait-to-non-bait interactions spanning the same distance). Bottom panels: the genomic maps of the 
corresponding regions, with coloured bars showing “chromatin colours” obtained from performing chromatin 
segmentation with chromHMM [17]: red – active promoter; pink – poised/repressed promoter; orange – strong 
enhancer; yellow – weak enhancer; blue – insulator. 
 
 
RESULTS 
 
Methodological foundations of CHiCAGO 
 
A convolution noise model for HiC data  
 
The background signals in CHi-C decrease as the genomic distance between the bait and 
other end increases (Fig. 3), as in other 3C/HiC-like methods [6-10, 12, 13, 18, 19]. It is 
generally accepted that this effect reflects the reduction in the frequency of random collisions 
between genomic fragments owing to constrained Brownian motion, in a manner consistent 
with molecular dynamics simulations [20]. We model this “Brownian noise” as a negative 
binomial random variable whose expected levels are a function of genomic distance with 
further adjustment for bias resulting from the properties of individual fragments. 
 
In addition to Brownian motion, noise in CHi-C is generated by assay artefacts, such as 
sequencing errors. We model this “technical noise” component as a Poisson random 
variable whose mean depends on the properties of interacting fragments, but is independent 
of genomic distance between them.  
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We further assume that these two sources of noise are independent. Therefore, the 
combined noise estimate can be obtained from a convolution of negative binomial (Brownian 
noise) and Poisson distributions (technical noise) that is known as the Delaporte distribution.  
 
We construct a background distribution from the data in a robust way, and then find fragment 
pairs with read counts that greatly exceed the expected background distribution (Fig. 2; as 
described in the next section). The full mathematical specification of the algorithm is given in 
Additional file 1.  
 
Background estimation in asymmetrical interaction matrices  
 
A practical advantage of the two-component noise model is that the Brownian and technical 
normalisation factors can be estimated on separate subsets of data, where only one noise 
component is prevalent. 
 
The dependence of noise levels on the distance between fragments is particularly apparent 
at relatively short genomic distances (up to ~1-2Mb), where the observed read counts 
considerably exceed those observed at longer ranges and for trans-chromosomal 
interactions. Thus, within this range, the Brownian noise largely dominates the technical 
noise, and thus can be estimated while ignoring the latter component. By borrowing 
information across all interactions in this distance range, we can infer Brownian noise 
parameters precisely (Fig. 4 and Suppl. Fig. 1 in Additional file 2). We follow Imakaev et 
al. [8] in assuming that fragment-level biases have a multiplicative effect on the expected 
read counts for each fragment pair. However we estimate “bait-specific” and “other end-
specific” bias factors differently, accounting for the asymmetry of CHi-C interaction matrices. 
 
The bait-specific factors reflect the technical biases of both HiC and sequence capture, as 
well as local effects such as chromatin accessibility. We estimate these factors in a way that 
is robust to the presence of a small fraction of interactions in the data. Fig. 4A provides 
examples of three baits with very diverse bias factors, illustrating that local read enrichment 
correlates with the bias factor. 
 
Estimating other end-specific bias factors poses a challenge, as the majority of interactions 
are removed at the capture stage that enriches for only a small subset of interactions with 
baits. We assume that the overall fragment-level read count corresponding to trans-
chromosomal pairs primarily reflects the general “noisiness” of a fragment (a similar 
approach has been taken independently in Dryden et al. [6]). We therefore pool fragments 
according to this property and estimate bias factors for each pool. As expected, noise levels 
are stronger for fragments associated with higher numbers of trans-chromosomal read pairs 
(Fig. 4C). Similarly, baits detected at the “other ends” of bait-to-bait pairs had higher levels 
of noise than non-baits, as expected given the preferential recovery of “double-baited” 
ligation products at the capture stage. 
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Figure 3: Read count distributions in a typical CHi-C experiment and their fit to CHiCAGO noise model. 
Histograms showing read count distributions for fragment pairs spanning different distance ranges (+/- 20 kb) in a 
biological replicate of GM12878 (left) and mESC CHi-C (right) data. Solid lines indicate expected counts 
distributions according to the CHiCAGO noise model. 
 
 
In parallel, we compute the dependence of the Brownian noise on distance (plotted in Fig. 
4B for GM12878 CHi-C data). It can be seen that this dependence approximately follows a 
piecewise power law, consistent with previous studies on the subject, both theoretical and 
experimental [20, 21]. 
 
To estimate the magnitude of technical noise, we use trans-chromosomal read pairs (see 
Methods), as the expected frequency of true trans-chromosomal looping interactions is low, 
and the level of the Brownian noise between chromosomes is assumed negligible. Indeed, 
as we see in Fig. 4D, the expected level of technical noise is typically a small fraction of a 
count.  
 
Having estimated the parameters of both Brownian and technical noise, we combine them 
into the Delaporte distribution. After appropriate normalisation and bias correction, we detect 
fragment pairs showing read coverage higher than expected under the Delaporte 
assumptions with a one-tailed hypothesis test.  
 
Weighted multiple testing correction for Capture HiC 
 
For a typical mammalian genome, we test billions of hypotheses – one for each possible 
bait-other end pair. As a result, the p-values must be corrected to account for multiple 
testing. Standard multiple testing procedures assume that interactions are equally likely at all 
distances. However, in CHi-C data, we perform far more tests to verify the significance of 
interactions at large distances, where we would expect considerably fewer true interaction 
events. Consistent with this, the use of a single p-value threshold leads to results that 
consist mostly of erroneous distal and trans-chromosomal counts  (Fig. 5B-C). 
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Figure 4: Sources of noise and bias accounted for by the CHiCAGO model, illustrated with GM12878 data.  
(A-C) represent different factors modelled by Brownian noise: (A) multiplicative bait-specific bias (shown are 
three representative distance profiles for three different values of the bait-specific bias factor); (B) distance 
dependency, plotted on a log-log scale; (C) multiplicative other-end bias (each bar represents a pool of other 
ends defined by a range of trans-chromosomal read pairs accumulated by each other end; bait-to-bait 
interactions are pooled separately). (D) Technical noise is estimated separately for each combination of bait and 
other-end pools, each of which is defined by the number of accumulated trans-chromosomal read pairs. Here, we 
plot all technical noise factors for each bait pool, showing the distribution of technical noise levels observed for its 
interactions with all respective other-end pools. 
 
 
To address this issue, the long-range and trans-chromosomal interaction tests need to be 
more stringent than the short-range ones. We achieve this with an approach based on p-
value weighting [14, 22]. This procedure permits a smooth change of behaviour with 
distance, thereby bypassing the need to choose a hard distance threshold. Briefly, we assign 
each fragment pair a weight, estimating how probable it is that the fragments interact. The 
weights are then used to adjust the p-values (see Additional file 1 for full specification). 
P-value weighting can be seen as a simplified version of the empirical Bayesian treatment, 
with weights related to prior probabilities. One practical advantage of this method for our 
framework is that it avoids the need to make specific assumptions about the read count 
distribution of true interactions, which would be required for computing Bayes factors.  
 
The optimal choice of weights depends on the relative abundance of true positives at each 
bait–other end distance. We estimate this abundance by assessing reproducibility across 
samples and fitting a bounded logistic curve to the observed reproducibility levels at different 
distances. As the weights reflect only the distance profiles of true interactions, we expect 
them to be generally independent of specific cell type and organism (given comparable 
genome sizes). Indeed, generally similar weight profiles were obtained in GM12878 and 
mESC cells (Fig. 5A and Suppl. Fig. 2A in Additional file 2). This is consistent with our 
expectation that weights are largely independent of specific cell type and organism given 
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comparable genome sizes, as they predominantly reflect the overall distance distribution of 
true interactions. The emerging multi-replicate CHi-C datasets will further refine our weight 
estimates and assess their dependence on the particulars of the model system.  
 

 
 
Figure 5: CHiCAGO multiple testing approach schematic. 
(A) Empirical probability of reproducible interaction (used to generate weight profiles) as a function of interaction 
distance, generated on two replicates of GM12878 cells. (B-D) The effects of applying p-value weighting to the 
GM12878 data. The arrow on the x-axis indicates the number of significant interactions called in the weighted 
data. Upon applying weighting we see a decrease in the interaction distance amongst cis-interactions (B). P-
value weighting increases the mean read count of called interactions (C) and decreases the prevalence of trans-
chromosomal interactions (D).  
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We illustrate the impact of the weighting procedure on GM12878 and mESC CHi-C data by 
comparing the properties of the 100,000 top-scoring interactions, called either with or without 
weighting. The reproducibility of interaction calls decreases with bait–other end distance 
(Fig. 5A and Suppl. Fig. 2A in Additional file 2). As a result, the “weighted” significant 
interactions generally span a much shorter range than the unweighted ones (Fig. 5B and 
Suppl. Fig. 2B in Additional file 2). This is consistent with the biological expectation that 
promoter-interacting regions, such as enhancers, are enriched in the relative vicinity of their 
targets. Another consequence of the weighting procedure is that the average read count is 
much higher in the weighted calls (Fig. 5C and Suppl. Fig. 2C in Additional file 2). 
Strikingly, many of the unweighted calls are based on only one read pair per interaction. As 
the vast majority of fragment pairs attract no reads at all, low p-values for single-read-pair 
interactions are expected. However, due to the very large number of possible fragment pairs 
(approximately 18.5 billion in both the GM12878 and the mESC data), we still expect 
thousands of single-read-count calls to be generated by technical noise. These spurious 
calls, the majority of which correspond to trans-chromosomal pairs (Fig. 5D and Suppl. Fig. 
2D in Additional file 2), are generally non-reproducible and are therefore excluded by the 
weighting procedure. 
 
In conclusion, the p-value weighting procedure implemented in CHiCAGO provides a 
multiple testing treatment that accounts for the differences in true positive rates at different 
bait–other end distances, thus improving the reproducibility of interaction calls. 
 
Promoter interactions detected by CHiCAGO: validation and key properties 
 
We validated CHiCAGO by assessing the functional properties of significant interactions 
detected with it in human GM12878 [3] and mouse ES cells [4]. Table 1 displays summary 
statistics for each sample, showing the generally similar numbers of detected significant 
interactions, both overall and per bait, despite the differences in the organism and cell type 
between them.  
 
Enrichment of promoter-interacting fragments for regulatory features 
 
We first assessed the enrichment of promoter-interacting fragments for histone marks 
associated with active (H3K4me1, H3K4me3, H3K27ac) and repressed (H3K27me3, 
H3K9me3) chromatin, as well as for the binding sites of CTCF that has a well-established 
role in shaping nuclear architecture [23]. To this end, we compared the observed and 
expected numbers of significant other ends overlapping with these features. To estimate the 
expected degree of overlap, we drew multiple permutations of the promoter-other end pairs 
not detected as interacting, such that the overall distribution of their spanned distances 
matched that distribution for the true interactions.  
 
Fig. 6 shows the observed and expected numbers of CHiCAGO other ends (yellow and blue 
bars, respectively) that overlap with the regulatory features in GM12878 and mESCs (panels  
A and B, respectively; 95% confidence intervals are shown as error bars). Consistent 
enrichments over expected values were found for active histone marks (H3K4me1, 
H3K4me3, H3K27ac) in both cell types, in line with the expectation that looping interactions 
preferentially link promoters and remote regulatory regions such as enhancers. We also 
found that promoter-interacting fragments were strongly enriched for CTCF binding sites, as 
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previously reported [9, 23]. Interestingly, promoter-interacting fragments were also enriched 
for repressed chromatin marks, in particular for H3K27me3 in mESCs, supporting the role of 
Polycomb in shaping nuclear architecture in this cell type [5].  
 
Assessing the enrichment of promoter-interacting fragments for known regulatory features 
can serve as a useful quality control for CHi-C samples. To this end, CHiCAGO 
automatically generates enrichment barplots similar to Fig. 6 for each sample, integrating 
interaction calls with user-specified ChIP data. 
 
Table 1. The properties of CHiCAGO-detected interactions in GM12878 human LCLs and mouse ES cells 
(mESC) 

 GM12878 mESC 

Number of captured baits 22076 22459 

Total number of unique captured 
read pairs  

Rep 1: 46542745 
Rep 2: 118813226 
Rep 3: 73881698 

Rep 1: 59963697 
Rep 2: 82026534 

Number of significant interactions 92457 81459 

Mean number of significant 
interactions per bait 

4.19 3.63 

Median distance of cis-
chromosomal interactions 

173926 bp 255330 bp 

 

 
Figure 6: Chromatin features of promoter-interacting fragments detected using CHiCAGO.  
Yellow bars indicate overlaps with cis-interacting fragments at 1Mb distance from baits; blue bars indicate 
expected overlap values based on 100 random subsets of HindIII fragments. These subsets selected to have a 
similar distribution of distances from gene promoters as the interacting fragments. (A) GM12878 CHi-C data. 
Chromatin features are obtained from the ENCODE project [24]; (B) mESC CHi-C data. Chromatin features are 
obtained from the mouse ENCODE project [25]. These plots are generated automatically by the CHiCAGO 
pipeline. 
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Figure 7: Significant enrichment for GWAS SNPs at CHiCAGO-detected interactions in human 
lymphoblastoid cells. 
Enrichment for SNPs associated with autoimmune immune diseases (AI), kidney/liver/lung (KLL) and 
neurological behaviour (NB) disorders [26] in the CHiCAGO-detected interactions in the GM12878 cell line. The 
barplot shows p-values for the enrichment of each disorder; red bars indicate p-values computed in interacting-
fragments; blue bars indicate p-values computed in 100 random subsets of HindIII fragments selected to have a 
similar distribution of distances from gene promoters as the interacting fragments. This analysis was performed 
using the software package GoShifter (Genomic Annotation Shifter, [27]). 
 
 
Enrichment for GWAS SNPs 
 
Disease-associated SNPs identified in genome-wide association studies (GWAS) 
preferentially localise to non-coding regulatory regions, away from annotated promoters, 
posing a significant challenge in identifying their putative target genes [26]. We asked 
whether promoter-interacting regions detected by CHiCAGO in human cells are enriched for 
GWAS SNPs, which would potentially reflect their presence in long-range regulatory 
sequences and thus suggest a putative functional role in disease.  
 
We assessed the enrichment of promoter-interacting regions in the GM12878 
lymphoblastoid cells for sets of GWAS catalogue SNPs from Maurano et al. [26]. These sets 
reflect the grouping of GWAS traits into broader categories, such as autoimmune disease 
(AI), neurological/behavioural traits (NB) and kidney/liver/lung disorders (KLL). We used the 
software package GOShifter (Genomic annOtation Shifter, [27]) that infers the significance of 
overlap by locally shifting genomic annotations (in our case, the “other ends” of CHiCAGO-
detected promoter interactions), thus reducing the effect of genomic biases and LD 
structure. We observed a significant enrichment of CHiCAGO “other ends” for SNPs 
associated with autoimmune diseases (GOShifter p=0.001), but not with 
neurological/behavioural traits (p=0.801) or kidney/liver/lung disorders (p=0.876). This 
selective enrichment for autoimmune SNPs is consistent with GM12878 being a lymphocyte-
derived cell line and replicates the original findings of Mifsud et al. [3].  
 
We further confirmed that the enrichment for AI disease-associated SNPs was specific to 
promoter-interacting fragments. We used the same approach as in the previous section to 
generate 100 random samples of distance-matched “negative” (non-significant) interactions 
and tested the other ends of these interactions for SNP enrichment. The enrichment for AI-
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associated SNPs was selectively observed in the “true”, but not in the “negative” set, and 
neither set was enriched for the NB- and KLL-associated SNPs (Fig. 7).  
 
Taken together, these results demonstrate the power of using CHi-C data to link GWAS 
SNPs with their putative target genes in a cell-type-specific and high-throughput manner. We 
expect this to be one of the key applications of CHi-C in future clinical studies. 
 

 
Figure 8: Enrichment of promoter-interacting fragments for regions capable of driving transgene 
expression in mESCs.  
TRIP (Thousands of Reporters Integrated in Parallel) assesses the influence of local chromatin context on gene 
expression. This is achieved by integrating a barcoded transgene reporter into thousands of genomic locations in 
parallel and monitoring the transcriptional activity at each location [28]. Normalised RNA read counts from 
reporter insertions are separated according to (i) their overlap with HindIII fragments engaging or not in 
interactions; (ii) their promoter-other end distance. For non-interacting HindIII fragments, distance is measured 
from the nearest promoter in the linear sequence. Blue and green boxplots indicate read count summary 
statistics for promoter-interacting and non-interacting HindIII fragments, respectively. Each dashed line shows the 
regression of median log-normalised read counts against promoter-other end distance bin, considering promoter-
interacting (blue) and non-interacting (green) HindIII fragments separately. 
 
 
Capability to drive transgene expression in a high-throughput random integration 
experiment  
 
TRIP (Thousands of Reporters Integrated in Parallel) is a novel experimental technique to 
assess the influence of local chromatin context on gene expression. In TRIP analysis, a 
barcoded transgene reporter is integrated into thousands of genomic locations in parallel, 
and the transcriptional activity at each location is then monitored. Here we integrated the 
published TRIP analysis dataset in mESCs [28] with the CHiCAGO mESC calls [4], 
comparing the transcriptional activity at promoter-interacting regions with the activity 
elsewhere, over a range of genomic distances. 
 
Consistent with the observation from the original TRIP study, we found that the distance 
from the nearest promoter was a strong determinant of transgene expression levels (Fig. 8). 
However, transgenes mapping to promoter-interacting fragments consistently showed higher 
expression levels across the whole range of genomic distances, as confirmed by linear 
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regression (odds ratio=2.27; Wald test p<0.001). This result provides functional evidence 
that CHiCAGO-detected promoter-interacting fragments preferentially possess 
transcriptional regulatory activity.  
 
 

  
Figure 9: Circlet view of promoter-promoter interactions for histone genes in GM12878. Interactions where 
histone gene promoters are engaged at both fragment ends are shown in dark magenta. Interactions where 
histone gene promoters are interacting with non-histone gene promoters are shown in grey. The WashU 
EpiGenome Browser was used to create this figure [15, 16]. 

 
 
Promoter-promoter networks 
 
Interactions where both fragment ends are baited (referred to as bait-to-bait interactions) 
represent contacts between gene promoters. These interactions are of special interest 
because they may help to identify sets of co-regulated genes recruited to either shared 
transcription factories [29] or repression networks such as those mediated by Polycomb 
proteins [5].  
 
As an illustration of CHiCAGO’s potential in identifying sets of co-regulated genes, we show 
that CHiCAGO-detected bait-to-bait interactions involving histone promoters present on 
chromosome 6 in GM12878 cells (Fig. 9). We see that histone promoters frequently interact 
with other histone promoters, more so than with promoters of other genes in the same 
genomic region, consistent with previous observations [4, 30].  

 
DISCUSSION 
 
In this paper, we presented the CHiCAGO algorithm for Capture Hi-C analysis and 
demonstrated its efficacy in detecting interactions enriched for regulatory chromatin features 
and relevant GWAS SNPs.  
 
Our approach is based on the assumption that “significant” interactions emerge as outliers 
on a distance-dependent local background profile. This assumption is shared by most other 
tools for interaction detection in 3C-like data and seems reasonable for the purposes of 
identifying regulatory interactions. Indeed, it can be expected that regulatory events such as 
transcription factor binding will stabilise the chromatin loop, leading to interaction frequencies 
or retention times beyond those generated by random collisions due to Brownian motion. 
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This expectation is supported by the observation that CHiCAGO-detected interactions are 
selectively enriched for regulatory chromatin features, even when located in regions with 
high background interaction levels.  
 
While the conceptual interpretation of “significant” interactions is shared between CHiCAGO 
and algorithms developed for other types of 4C and HiC data, there are key differences in 
terms of the underlying noise model, the normalisation strategy and the multiple testing 
procedure. 
  
Existing tools model Hi-C noise with a broad range of distributions, both discrete (binomial 
[18, 31], negative binomial [6]) and continuous (Weibull [7, 9], normal [13]). In CHiCAGO, we 
instead opted for a two-component convolution model combining two count distributions: a 
negative binomial and a Poisson. In doing so, we were motivated by the fact that random 
collisions and technical variability are two distinct noise-generating processes, whose 
properties are best learned separately on different subsets of data. Indeed, Brownian noise 
ostensibly dominates the signal at short distances, to the extent that technical variability is 
barely detectable. In contrast, at large linear distances between fragments, Brownian noise 
is too weak to be modelled adequately.  
  
Borrowing information across baits to learn noise properties, as CHiCAGO does, requires 
careful normalisation across interactions. While Hi-C noise depends on a number of known 
parameters, such as fragment length and GC content [10], we, along with others [7, 8, 32], 
have opted to avoid any specific assumptions about noise structure, particularly given the 
increased complexity and asymmetric nature of capture Hi-C noise compared with 
conventional Hi-C. Assuming that interactions are subject to multiplicative bait- and other-
end-specific bias, as we did in learning the Brownian noise component, parallels the 
assumptions of the Hi-C iterative correction approach by Imakaev et al. [8] and is generally 
consistent with data from molecular dynamics simulations of chromatin fibres [20]. In 
modelling technical noise, we assumed it to be reflected in the numbers of trans-
chromosomal interactions involving the same fragment. A similar strategy has been applied 
independently in a recently published Capture Hi-C study [6]; the same authors also 
proposed an iterative correction algorithm for Capture Hi-C data [7] (software not publicly 
released) that may complement the approaches taken here.  
  
Multiple testing issues are important in genomic analyses and, in attempting to address 
these issues, a number of bespoke approaches have been developed [22, 33]. The specific 
challenge of multiple testing in Hi-C data is that we expect the fractions of true positives to 
vary depending on the genomic distance between the fragments; in fact, the majority of tests 
are performed with interactions spanning large distances or spanning different 
chromosomes, where true positive signals are least expected. CHiCAGO’s multiple testing 
procedure is based on the p-value weighting approach by Genovese et al. [14], which is a 
generalisation of a segment-wise weighting procedure by Sun et al. [34]. These approaches 
have been used successfully to incorporate prior knowledge in genome-wide association 
studies [35-37]. In using the reproducibility of significant calls across replicates as an 
estimate of the relative true positive rate, we have taken inspiration from the irreproducible 
discovery rate (IDR) approach [38] used to determine peak signal thresholds in other types 
of genomics data, such as ChIP-seq. 
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Note that, in this setting, IDR cannot be used verbatim for choosing signal thresholds, as the 
relationship between Capture Hi-C signal and reproducibility does not satisfy IDR 
assumptions (not shown), likely because of undersampling issues. Importantly, we also 
found that conventional false discovery rate (FDR-) based approaches for multiple testing 
correction [39] are unsuitable for these data. Indeed, CHi-C observations (read-pair counts) 
are discrete and many of them are equal to either zero or one. This leads to a highly non-
uniform distribution of p-values under the null, violating the basic assumption of conventional 
FDR approaches. The “soft-thresholding” approach used in CHiCAGO shifts the –log-
weighted p-values such that non-zero scores correspond to observations, where the 
evidence for an interaction exceeds that for a pair of near-adjacent fragments with no reads. 
More robust thresholds can then be chosen based on custom criteria, such as maximising 
enrichment of promoter-interacting fragments for chromatin features (Fig. 6; a user-friendly 
function for this analysis is provided as part of the Chicago R package - see the package 
vignette provided as Additional file 3). Based on this approach, we chose a signal threshold 
of 5 for our own analyses. However, we find the whole range of non-zero scores useful in 
other contexts, such as clustering interactions with respect to their scores in multiple 
samples. 
  
The p-value weighting approach used here is similar in spirit to an empirical Bayesian 
treatment, with the p-value weights related, but not identical, to prior probabilities. Bayesian 
approaches are widely used, and the Bayes factors and posterior probabilities they generate 
are potentially more intuitive than weighted p-values. However, the p-value weighting 
approach used here has the advantage of not making any specific assumptions of the read 
distribution of “true interactions”, beyond their having a larger mean. Both approaches open 
the opportunity of incorporating prior knowledge, beyond the dependence of reproducibility 
on distance - for example, taking into account the boundaries of topologically associated 
domains (TADs [40]). We choose not to do this currently, because the exact relationship 
between these genomic properties and looping interactions still requires further investigation, 
and incorporating these relationships a priori prevents their investigation in post-hoc 
analyses. Active research in this area suggests that much more will be known about the 
determinants of loop formation in the near future, enabling a more extensive use of prior 
knowledge in interaction detection, potentially with a formal Bayesian treatment. 
 
The downstream analyses of CHiCAGO results provided in this paper confirm the 
enrichment of promoter-interacting regions for regulatory features and disease-associated 
variants. These results demonstrate the enormous potential of Capture Hi-C for both 
functional genomics and population genetics, and this assay will likely be applied in 
multitudes of other cell types in the near future. Therefore, user-friendly, open-source 
software for robust signal detection in these challenging data will be a welcome addition to 
the toolkits of many bioinformaticians and experimentalists alike. We have developed 
CHiCAGO with the view of addressing this need. Furthermore, we expect the statistical 
foundations of CHiCAGO, and particularly the convolution noise model and the multiple 
testing procedure, to be potentially useful in a broader range of Hi-C-related assays.  
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CONCLUSIONS 
   
The publicly available, open-source CHiCAGO pipeline presented here [41] produces robust 
and interpretable interaction calls in Capture Hi-C data. Promoter-interacting fragments 
identified using this algorithm are enriched for active chromatin features, GWAS SNPs and 
regions capable of driving transgene expression, indicative of regulatory looping interactions. 
While developed specifically for Capture Hi-C, the statistical principles of CHiCAGO are 
potentially applicable to other Hi-C-based methods. 
 
MATERIALS AND METHODS 
 
Sample pre-processing 
 
The publicly available HiCUP pipeline (Wingett et al., manuscript in preparation; [42]) was 
used to process the raw sequencing reads. This pipeline was used to map the read pairs 
against the mouse (mm9) and human (hg19) genomes, to filter experimental artefacts (such 
as circularized reads and re-ligations), and to remove duplicate reads. The resulting BAM 
files were processed into CHiCAGO input files, retaining only those read pairs that mapped, 
at least on one end, to a captured bait. The script bam2chicago.sh, used for this purpose, is 
available as part of the chicagoTools suite [41].  
 
The CHiCAGO algorithm 
 
A full description of the algorithm is given in Additional file 1. A tutorial on using the 
CHiCAGO package (the “vignette”) is provided in Additional file 3.  
 
Briefly, to combine replicates, a “reference” replicate is created by taking the geometric 
mean of each fragment pair’s count across samples. Sample size factors are calculated by 
taking the mean ratio to the “reference” replicate, in a manner similar to the sample 
normalisation strategy implemented in DESeq [43]. Final counts are derived as the weighted 
sum of counts across replicates, where the weights are the sample size factors. 
 
The Brownian noise count is assumed to have a Negative Binomial distribution, with mean 
sisjf(dij) and dispersion r, where i indexes over other ends and j indexes over baits. 
Estimation of si, sj, f(d) and r is performed in “proximal bins” - by default, 20kb bins that span 
the first 1.5mb around each bait. f(d) is estimated as follows: 

• For each bait, take all of the other ends in a distance bin to get a mean count for that 
bin. 

• f(d) is estimated in a distance bin by taking the geometric mean of the bin counts at 
that distance, across all baits. 

• To interpolate f(d) from these point estimates, we use a cubic fit on a log-log scale. 
Outside of this distance range, we extrapolate linearly, assuming continuity of f and 
its first derivative. 

• sj is estimated by considering each mean bin count divided by f(d), then taking the 
median of this ratio, across all bins associated with a bait. si is estimated similarly, 
but with the other ends pooled together (the pools are chosen such that their content 
ends have similar numbers of trans counts) so that there is enough information for a 
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precise estimate. The dispersion, r, is estimated using standard maximum likelihood 
methods. 

 
The technical noise is assumed to have Poisson distribution, with mean λij. λij is estimated 
from trans counts - again, first pooling fragments by the number of trans counts they exhibit. 
Specifically, to estimate the technical noise level for a putative interaction between a bait in 
pool A and an other end in pool B, we count the number of interactions that span between 
pools A and B, and divide this by |A||B|, the total number of bait-other end fragment pairs 
from those pools. 
 
P-values are called with a Delaporte model, representing the sum of two variables: a 
Negative Binomial variable with mean sisjf(dij) and dispersion r, and a Poisson variable with 
mean λij. A four-parameter bounded logistic regression model is assumed for p-value 
weighting (see next section and Additional file 1 for more information). 
 
The final CHiCAGO score is obtained from soft-thresholding the -log(weighted p-value). 
Specifically, the score is max(-log(p) + log(w) - log(wmax), 0). where wmax is the maximum 
attainable weight, corresponding to zero distance. For the downstream analyses in this 
paper, interactions with CHiCAGO scores >= 5 were considered as “significant interactions”. 
 
P-value weighting parameter estimation 
 
The p-value weighting function has four parameters: α, β, γ, and δ (full details are given in 
Additional file 1). We can estimate these parameters from a candidate data set, provided 
that it has multiple biological replicates, as follows. We split the data into subsets that 
contain approximately equal numbers of baits. (By default, 5 subsets are used.) The 
reproducible interactions are defined as those where the stringent threshold of log(p) < -10 is 
passed in all biological replicates. Now, for each subset, we take a series of genomic 
distance bins (with the default breaks occurring at 0, 31.25k, 62.5k, 125k, 250k, 500k, 1m, 
2m, 3m, 4m, ..., 16m), and we calculate the proportion of reproducible interactions out of the 
total number of possible interactions. The maximum likelihood estimates are calculated for 
each model parameter, using standard optimization methods [44]. Final parameter estimates 
are obtained by taking the median across the estimates from each subset. The two 
replicates of mESCs data were used for estimating weights. For GM12878, the first replicate 
was discarded as it led to unstable estimation, likely due to the poorer quality of this replicate 
compared with the other two, consistent with its higher cis/trans read-pair ratios (data not 
shown).  
 
Assessment of feature enrichment 
 
We computed how many other ends in the interactome overlap with a set of genomic 
features. In order to determine how these numbers compared to what would be expected if 
the presence of an interaction had no effect on the overlap, we performed a permutation 
test. A random set of promoter-other end pairs that were not detected as interacting was 
drawn such that the distance between them matched that of the significant interactions. (This 
was achieved by binning the distance distribution of significant interactions and drawing the 
random pairs per distance bin). The number of the “other ends” of these distance-matched 
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random pairs overlapping with the feature of interest was taken as expected overlap. A 95% 
confidence interval for the expected overlap was obtained from 100 random draws. 
 
The Chicago R package 
 
CHiCAGO was implemented as a package for the statistical environment R [45] taking 
advantage of the data.table objects [46] to optimise for both speed and memory. The fully-
documented R package “Chicago” and the tutorial data package “PCHiCdata” are publicly 
available [41] and have been submitted to Bioconductor [47]. A documented set of 
supplementary scripts (chicagoTools) for data pre- and post-processing and running 
Chicago in batch mode can be found at the same location. A typical Chicago job for two 
biological replicates of CHi-C data takes 2-3 h wall-clock time (including sample pre-
processing from bam files) and uses 50G RAM. An example workflow in the form of an R 
package vignette is provided as Additional file 3.  
 
Data access 
 
Raw CHi-C data for GM12878 and mESC is available in ArrayExpress [48, 49] under 
accession numbers E-MTAB-2323 and E-MTAB-2414, respectively. Capture design files, 
HindIII digest maps and CHiCAGO-detected significant interactions for GM12878 and mESC 
will be made publicly available prior to paper release. 
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