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Abstract 1 

During his well-known debate with Fisher regarding the phenotypic dataset of 2 

Panaxia dominula, Wright (1948) suggested fluctuating selection as a potential 3 

explanation for the observed change in frequency. This model has since been invoked in 4 

a number of analyses, with the focus of discussion centering mainly on random or 5 

oscillatory fluctuations of selection intensities. Here, we present a novel method to 6 

consider non-random changes in selection intensities using Wright-Fisher approximate 7 

Bayesian (ABC)-based approaches, in order to detect and evaluate a change in selection 8 

strength from time-sampled data. This novel method jointly estimates the position of a 9 

change point as well as the strength of both corresponding selection coefficients (and 10 

dominance for diploid cases) from the allele trajectory. The simulation studies of CP-11 

WFABC reveal the combinations of parameter ranges and input values that optimize 12 

performance, thus indicating optimal experimental design strategies. We apply this 13 

approach to both the historical dataset of Panaxia dominula in order to shed light on this 14 

historical debate, as well as to whole-genome time-serial data from influenza virus in 15 

order to identify sites with changing selection intensities in response to drug treatment. 16 

 17 

Introduction 18 

The common assumption of constant selection intensity through time utilized in 19 

many tests of selection is often criticized as unrealistic in natural and experimental 20 

populations – both owing to environmental changes (e.g., fluctuations in climate, 21 

predation, or nutrition) as well as to genetic changes (e.g., epistasis, clonal interference).  22 

Despite this, such considerations are not accounted for in most population genetic 23 

models, since inferring changing selection coefficients (s) from single-time point 24 

polymorphism data is difficult. However, owing to recent technological advances, time-25 
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sampled polymorphism data are increasingly available, and time-serial analytical 26 

methods are expanding (Malaspinas et al. 2012; Mathieson and McVean 2013; Foll et al. 27 

2014a; Lacerda & Seoighe 2014; and see review of Bank et al. 2014) – allowing for an 28 

empirical evaluation of the importance of changing s models. 29 

Fluctuating selection in natural populations was suggested by Wright (1948) 30 

with regards to the phenotypic time-serial data of Panaxia dominula (scarlet tiger moth) 31 

to account for its observed annual fluctuations (Fisher and Ford 1947). Since, there have 32 

been several theoretical considerations of fluctuating selection (Kimura 1954; Karlin & 33 

Levikson 1974; Karlin & Lieberman 1974; Gossmann et al. 2014; Gompert 2015), as well 34 

as many observations of fluctuating selection in natural populations (for a review, see 35 

Bell 2010). Nonetheless, until recently, analyses of fluctuating selection centered on 36 

random or seasonal oscillations of selection strength through time, as the mathematical 37 

complexity of analytical methods only allowed the simplest cases to be considered. 38 

Approximate Bayesian Computation (ABC) has the advantage of being flexible in 39 

integrating complex models due to computational efficiency and the lack of likelihood 40 

computation (Beaumont 2010). Recently, a hierarchical ABC-based method based on the 41 

Wright-Fisher model was developed in order to infer genome-wide effective population 42 

size and per-site selection coefficients from whole-genome multiple-time point datasets 43 

(Foll et al. 2014a, b). While the initial approach performs well overall, the authors noted 44 

the possibility for observations inconsistent with a single-s Wright-Fisher model; this 45 

was indeed observed at certain sites in their analysis of the influenza virus genome. In 46 

their analyses, these trajectories are simply excluded from consideration. Thus, as a 47 

natural extension, we here investigate the presence of changing selection in these outlier 48 

SNPs; in doing so, we also develop an extended Wright-Fisher ABC-based method 49 

capable of detecting and quantifying changing selection intensities through time.  50 

 51 
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Materials and Methods 52 

Wright-Fisher ABC-based method 53 

This approach first relies on a previously developed Wright-Fisher ABC method 54 

(WFABC; Foll et al. 2014a,b) in order to estimate effective population size (Ne). The 55 

posterior of the Ne estimated from WFABC is used as a prior for the following extended 56 

method. The trajectory X of a given allele with a known Ne consists of time-serial allele 57 

frequencies ft (t = 1,…,T) where T is the total number of generations (with T > 4 to allow 58 

for a change point to be realizable with the Wright-Fisher model), from which a sample 59 

ni is taken at sampling time points i = 1,…,I (with I > 4 to allow for a change point to be 60 

detectable). Parameters to be inferred include the selection coefficient prior to the 61 

change in selection intensity (s1), the selection coefficient subsequent to the change in 62 

selection intensity (s2), the time of change (CP), and the dominance coefficient (h) for 63 

diploid models. The joint posterior distribution of these parameters can be estimated by 64 
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for the diploid model and the haploid model, respectively. The ABC approach allows 65 

these parameters to be inferred using Wright-Fisher model simulations without 66 

calculating the likelihood ��	|��, ��, ��, �
 or ��	|�� , ��, ��
. 67 

The Wright-Fisher model simulator with a change point in selection strength is 68 

used to simulate the data X, with relative fitnesses wAA=1+s, wAa=1+sh and waa=1 for the 69 

diploid model, and wA=1+s and wa=1 for the haploid model (Ewens 2004). Initially, the 70 

random sampling of an allele from generation 1 to generation CP-1 is simulated using s1, 71 

and onwards from the change point (CP) using s2. In order to simulate realistic allele 72 

trajectories with changing selection coefficients, the allele needs to be segregating at the 73 

time of the change point. This condition is necessary since the change in selection 74 
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coefficient cannot occur if the allele is either lost or fixed beforehand, assuming the 75 

infinite-site model with no back mutations. Thus, only alleles segregating at the change 76 

point are accepted as a data censoring procedure.  77 

The associated summary statistic for these time-serial data is Fs’, an unbiased 78 

estimator of Ne that measures the allele frequency change between two sampling time 79 

points without bias in cases of highly skewed allele frequencies and cases of small 80 

sample size (Jorde and Ryman 2007). It is given as 81 
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where x and y are the allele frequencies at two consecutive time points separated by txy 82 

generations, z = (x+y)/2, and  is the harmonic mean of the chromosome sample sizes nx 83 

and ny at two consecutive time points. Unlike the WFABC approach that summarizes 84 

time-serial trajectories into only two summary statistics (increasing and decreasing Fs’; 85 

Foll et al. 2014a), here Fs’ is summarized at every pair of consecutive time points as 86 

Fs’1,…,Fs’I-1, where I is the number of sampling time points. This modification allows 87 

additional information such as the timing of increase or decrease in allele frequency to 88 

be captured - an important factor for detecting the change point. In order to retain 89 

information about directionality, increasing allele frequencies are made positive and 90 

decreasing allele frequencies are made negative with regards to the absolute value.  91 

The joint posterior distribution of the parameters of interest is obtained using the 92 

algorithm described in Beaumont et al. (2002). The approximate posterior density  93 

��� !�	
" # ���|	
  (5) , 94 

with θ=(s1, s2, CP, h) for the diploid model and θ=(s1, s2, CP) for the haploid model, is 95 

obtained using an ABC algorithm as follows: 96 

%n
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i. Simulate K trajectories from the Wright-Fisher model with a change in 97 

selection intensity, with θ randomly sampled from its prior P(θ), 98 

conditional on the allele segregating at the change point. 99 

ii. Compute U(xk) for each accepted trajectory using the Fs’ summary statistic 100 

between all consecutive sampling time points i: U(xk,i) where i = 1,…,I-1 101 

where I is the last sampling time point. 102 

iii. Retain the simulations with the smallest Euclidian distance between U(xk,i)  103 

(from the simulated) and U(Xi) (from the observed) to obtain an 104 

approximate posterior density of P(θ|X). 105 

 106 

For the first step, simulations are performed with the same initial conditions as 107 

the observed data - including effective population size, initial allele frequency, and the 108 

sampling points and sizes. In addition, a minimum allele frequency in one of the 109 

sampling time points is imposed on simulated trajectories as is done in observed data. 110 

This ascertainment scheme takes into account the non-random criterion of considering 111 

only the trajectories reaching values above the sequencing error threshold in the 112 

observed data (Foll et al. 2014b). 113 

For the second step, it is important to note that the Fs’ summary statistic is 114 

calculated between every pair of consecutive sampling time points (Figure 1) – thus 115 

there are I-1 summary statistics for each simulated and observed trajectory. This 116 

construction of the summary statistic enables information on both the timing and 117 

strength of the allele frequency change to be captured, as the timing of the change is 118 

essential in detecting the change point and the strength of the change is essential in 119 

estimating the corresponding selection coefficients. For the diploid model, an additional 120 

parameter h is inferred jointly with the other three parameters, as its value is one of the 121 

determining factors in the timing of allele frequency change (Haldane 1932). 122 
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 For the third step, the simulated Fs’ summary statistics U(xk,i) between every pair 123 

of consecutive sampling time points are compared with the corresponding observed Fs’ 124 

summary statistics U(Xi) – allowing a small fraction of the simulated trajectories (less 125 

than 0.1%) with allele frequency changes that best match the observed trajectory (in 126 

terms of both timing and strength) to be retained.   127 

 128 

Wright-Fisher ABC-based method with Change-point analysis 129 

In order to increase computational efficiency and sensitivity in change point 130 

detection, an additional summary statistic is integrated into the Wright-Fisher ABC-131 

based method. This novel summary statistic is derived from change point analysis – 132 

statistical techniques developed and used in many disciplines ranging from finance to 133 

quality control in order to detect and estimate change (e.g., Chen and Gupta 2001). 134 

Among the techniques available, the cumulative sum control chart (CUSUM) developed 135 

by Page (1954) is able to detect small and sustained shifts in the statistics β obtained 136 

from a sample (Ryan 2011). Instead of using the entire CUSUM procedure as a separate 137 

method for detecting change, the CUSUM value is integrated into the Wright-Fisher ABC-138 

based method as an additional summary statistic that characterizes the time-sampled 139 

trajectory of an allele: 140 

$� � $��� � �%� � %&",   ' � 1, … , )  (6) 141 

where %& � *+,-  and $
 � 0. The CUSUM value S is accumulated only when the statistic 142 

β is different from its average value in the dataset.  143 

The change point SCP is the sampling time point with the maximal absolute value 144 

of Sm, which is the furthest point from the initial value zero attaining the maximal 145 

accumulation of difference from the average value: 146 

$�� � arg max��
,…,�|$�|.     (7)

  

147 

 148 
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Here, we calculate Fs’ at each pair of consecutive sampling time points as the statistic β, 149 

since it is a time-serial measure of the allele frequency change - which is indicative of the 150 

selection strength change. Thus, when Fs’ is used as the statistic β in the CUSUM, the 151 

maximal CUSUM value SCP is the potential change point of the allele trajectory, as 152 

illustrated with an example in Figure 1. 153 

In the Change-Point Wright-Fisher ABC (CP-WFABC), an additional summary 154 

statistic SCP with an infinite weight is used to characterize observed and simulated allele 155 

frequency trajectories for detecting a change point. In the third step of the ABC 156 

algorithm, the Euclidean distance between U(xk,i) and U(Xi) is calculated only if the 157 

maximal CUSUM value SCP,k of the simulated data matches the maximal CUSUM value SCP 158 

of the observed data: 159 

D� 56U�Xi
-U�xk,i"6,    if SCP�SCP,k∞,                            otherwise. D        (8) 160 

This additional step allows the computation to be more efficient – especially 161 

when there is a large number of time points sampled – as the Euclidean distance is 162 

calculated for a fraction of simulated trajectories whose maximal CUSUM value is equal 163 

to that of the observed (i.e., with the same time-sampled characteristic).  Furthermore, 164 

as the CUSUM is sensitive to small and sustained changes, integrating the CUSUM into 165 

the Wright-Fisher ABC increases its sensitivity for detecting small and sustained 166 

changes in selection strength. The potential bias in the calculation of the maximal 167 

CUSUM value is counteracted by the fact that the bias would be present in both the 168 

observed and the simulated trajectories. 169 

 170 

Simulated data with constant selection and with changing selection 171 

We generated simulated datasets of different effective population sizes using the 172 

Wright-Fisher model for two scenarios: (1) trajectories of constant selection with only s 173 
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and h (for diploid models) as parameters, and (2) trajectories of changing selection with 174 

s1, s2, CP, and h (for diploid models) as parameters. For selection coefficients, uniform 175 

priors of [-1,1] were used. The uniform prior of CP was set to occur between the second 176 

generation and the second-to-last generation [2,T-1], where T is the number of 177 

generations of the population in the time-serial data. The dominance coefficient h for the 178 

diploid model was randomly drawn from one of three values: complete recessiveness, 179 

co-dominance, or complete dominance [0,0.5,1]. Although these prior ranges are 180 

uninformative, the constraint on the trajectories to be segregating at the change point 181 

shapes the distribution of the prior ranges according to the input parameters such as 182 

ploidy, effective population size, initial allele frequency, and number of generations; the 183 

updated priors for the haploid population of Ne = 100 and the diploid population of Ne 184 

=50 are shown as examples (Figure S1 and S2). 185 

The other input values – such as the number of generations (T=100), the 186 

sampling time points (I=10), the sample size (n=100), the initial allele arising as a new 187 

mutation, and the ascertainment of observing a minimum frequency at 2% – were kept 188 

constant for the two scenarios. We retained the best 0.1% of 1,000,000 simulations for 189 

each pseudo-observable trajectory using the rejection algorithm based on the Euclidean 190 

distance as described above. The mode of the posterior distribution from the best 191 

simulations (Sunnåker et al. 2013) was used to evaluate the estimated parameter value 192 

against the true parameter value.  193 

 194 

Results  195 

ABC model choice in the Change-Point Wright-Fisher ABC method 196 

The first step of CP-WFABC is to be able to distinguish changing selection 197 

trajectories from constant selection trajectories. ABC model choice was constructed to 198 
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choose between two models: M0 with a single selection coefficient, and M1 with two 199 

selection coefficients and a change point. The relative probability of M1 over M0 can be 200 

computed through the model posterior ratio as the Bayes factor B1,0 (Sunnåker et al. 201 

2013): 202 

E�F�|G

E�F
|G
 � E�G|F�
E�F�


E�G|F

E�F

 � H�,


E�F�

E�F

           �9
 

when the model prior p(M0) is equal to p(M1). In practice the model priors are made 203 

equal by producing the same number of simulations for each model and retaining the 204 

best simulations from the lot. The posterior ratio is computed as the number of accepted 205 

simulations from M1 over those of M0 – giving the Bayes factor B1,0 which is an indicator 206 

of the support for a specific model. The performance study was conducted with a 207 

haploid population of Ne = (100, 1000, or 10000) and a diploid population with Ne = (50, 208 

500, or 5000) using the simulated datasets of the two scenarios described in the 209 

previous section as M0 and M1, respectively. 210 

We considered two cases for the pseudo-observables to test the sensitivity and 211 

specificity of the ABC model choice: the first case when the pseudo-observed trajectories 212 

have a single selection coefficient, and the second case when they have changing 213 

selection coefficients with a change point. One thousand pseudo-observable trajectories 214 

were generated for each case with the data ascertainment minimum frequency set to 2% 215 

for at least one of the sampling time points. Additionally for the second case, pseudo-216 

observable trajectories were accepted only when the allele was segregating at the time 217 

of the change point – a constraint for realistic combinations of selection coefficients, 218 

change points, and dominance (for diploids) – in order to reproduce changing selection 219 

trajectories in real datasets. All other input values were kept constant as in the 220 

simulated datasets described in the previous section.  221 

The results of the ABC model choice from a haploid population with Ne = 100 and 222 

a diploid population with Ne = 500 are represented as ROC curves (Robin et al. 2011) in 223 
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Figure 2.  Specificity is given on the x-axis showing the true negative rate, while 224 

sensitivity is given on the y-axis showing the true positive rate of the Bayes factor B1,0  225 

calculated from 1000 pseudo-observables of changing selection (where B1,0 should be 226 

large) and 1000 pseudo-observables of constant selection (where B1,0 should be small). 227 

The overall ROC curves in black (all trajectories) show that when the specificity 228 

threshold is most conservative in detecting no false positives (i.e. B1,0  = infinite), the 229 

Bayes factor B1,0 has a sensitivity of around 30% for all populations. Considering that the 230 

pseudo-observable trajectories were simulated randomly from a wide range of prior 231 

values, the Bayes factor B1,0  from CP-WFABC is in general sensitive and specific. The 232 

ROC curves in black for the other haploid and diploid populations (Figure S3) also 233 

indicate that the Bayes factor B1,0  is sensitive and specific as they are above the diagonal 234 

line of no-discrimination. The area under the ROC curve (AUC) is used to assess how 235 

reflective the Bayes factor B1,0 is of the true model, as summarized for all pseudo-236 

observable populations in Table 3. The AUC values show that the Bayes factor B1,0 is 237 

~80% more probable to rank a randomly chosen changing selection case above a 238 

randomly chosen constant selection case. Additionally, the distribution of Bayes factors 239 

B1,0 under the null model M0 (i.e., case 1) was used to compute the significance level α at 240 

1% (Good 1992). For both diploids and haploids, the significance threshold is higher for 241 

smaller population sizes (Table 4), and the calculation of these thresholds will be 242 

important in any given data application.  243 

Following the detection of changing selection trajectories using ABC model choice, 244 

the quality of parameter estimation by the model chosen was evaluated. The cross-245 

validation results from the haploid population of Ne = 100 are shown in Figure 3 and 246 

those from the diploid population of Ne = 500 in Figure 4 (see Figures S4-S7 in 247 

Supporting information for additional results). For the case where the pseudo-248 

observables were of constant selection, the estimation for a single s (and the dominance 249 
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h for diploid) using CP-WFABC is very accurate, as the mode of the best simulations 250 

from the M0 model for each pseudo-observable lies along the red diagonal line. 251 

Exceptions include uninformative trajectories where the allele surpasses the minimum 252 

frequency of 2% in the first sampling and is lost immediately due to genetic drift or 253 

negative selection and therefore not observed in subsequent samplings. Such 254 

trajectories will always keep the same set of best simulations from the M0 model since 255 

their selection strength is indistinguishable, and they result in horizontal lines along the 256 

estimated negative value. This phenomenon is particularly pronounced when 257 

population size is small as shown in Figures 3 and S6, since the role of genetic drift is 258 

more significant. 259 

For the second case when the pseudo-observables are of changing selection 260 

intensity, the joint estimation of the parameters is also effective for a restricted range of 261 

values. In Figures 3-4 and S4-S7, the mode estimation of each pseudo-observable is 262 

color-coded according to the three categories of trajectory shape. The green dots are 263 

pseudo-observable trajectories that change from positive s1 to positive s2. The blue dots 264 

are those that change from positive s1 to negative s2, while the magenta colors include all 265 

other cases (e.g., neutral or negative s1 to any value of s2). There is a clear clustering by 266 

category – with the best estimation being of positive values of s1 below 0.5, moderate 267 

values of s2 between -0.5 and 0.5, and CP values for the blue category of positive s1 to 268 

negative s2. In trajectories other than those with positive s1 to negative s2, the change 269 

point is difficult to detect, particularly for diploid populations where the additional 270 

dominance parameter h was estimated (Figure 4 and Figure S6-S7). This trend is also 271 

observed when the ROC curves are generated according to these three categories 272 

(Figure 2 and Figure S3). For all populations, the Bayes factor B1,0 is more sensitive and 273 

specific for trajectories changing from positive s1 to negative s2 (ROC curves in blue), 274 

reaching above 60% of the true positive rate when there are no false positives. Despite 275 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2015. ; https://doi.org/10.1101/027961doi: bioRxiv preprint 

https://doi.org/10.1101/027961
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13

the restricted range of good parameter estimation in s1, s2 and CP, the estimation of 276 

dominance is robust for both cases of constant and changing selection (except for the 277 

small population size of Ne = 50; Figure S6).  278 

In order to evaluate the performance of the joint parameter estimation, the 279 

coefficient of determination R2 is used to assess the cross-validation between the 280 

estimated values (ym) and the true values (fm), compared with the simple average of the 281 

estimated values (�J). The closer the R2 value is to 1, the better the parameter estimation 282 

as shown: 283 

K� L 1 � ∑ ��� � N�� 

∑ ���� � �J
 �  .       �10
 

Tables 2 and 3 summarize the performance of the joint parameter estimation for 284 

all cases as the R2 values for the haploid and diploid populations, respectively. The first 285 

case is when the pseudo-observables are of constant selection intensity, in which case 286 

the true model (M0) performs only slightly better than the false model (M1) for 287 

estimating s. This discrepancy in parameter estimation of M0 is mainly owing to 288 

uninformative pseudo-observable trajectories with constant selection (which have been 289 

lost or fixed) being associated with the true model (M0) of constant selection; this is due 290 

to the constraint for the allele to be segregating at the change point in the (false) model 291 

M1 of changing selection. In the cross-validation of the constant selection case, the 292 

parameters estimated form horizontal lines at negative estimated values for those 293 

trajectories that are lost, and cluster at the top right corner for those trajectories that 294 

are fixed (Figure 3-4, Figure S4-S7). 295 

 For the second case in which the pseudo-observables have changing selection 296 

coefficients, parameter estimation from the true model (M1) performs better than that 297 

from the false model (M0) for all parameters – particularly when population sizes are 298 

large. As expected, there is a trend of better parameter estimation as population size 299 
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increases. Additionally, it has been shown that the value of the Bayes factor B1,0 is a good 300 

indicator of the parameter estimation performance (results not shown).   301 

 302 

Data Application 303 

Historical dataset of Panaxia dominula 304 

A long-running dataset based on the medionigra morph responsible for darker 305 

wing color in wild populations of Panaxia dominula (Figure S8) began in 1939 with 306 

collections by Fisher (Fisher and Ford 1947) and continued through 1999 (Cook and 307 

Jones 1996; Jones 2000). Despite this phenotypic time-serial data having been analyzed 308 

previously from various angles (O’Hara 2005; Mathieson and McVean 2013; Foll et al. 309 

2014b), it is still relevant to consider a model of changing selection in time, as Wright 310 

(1948) originally suggested. 311 

The recent reconsiderations of the dataset tend to favor a lethal-recessive model 312 

with an effective population of 2Ne = 1000 (Mathieson and McVean 2013; Foll et al. 313 

2014b) – however, the biological question of how the medionigra morph could have 314 

reached the initial frequency of 11% in the dataset remains unanswered with this 315 

conclusion of constant strong negative selection. Wright asserted that the trajectory of 316 

the medionigra morph during this period could be explained by fluctuating selection 317 

with “no net selective advantage or disadvantage”. Although this alternative hypothesis 318 

has been considered as a random fluctuation of selection by estimating selection 319 

coefficients between every sampling time point (see O’Hara 2005), the quantitative 320 

plausibility of a directional change-in-s model over a single-s model lacks thorough 321 

investigation. Thus, we re-analyze this dataset using the CP-WFABC method in order to 322 

investigate the possibility of changing selection in the medionigra morph during the 60-323 

year data collection.  324 
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Using the ABC model choice introduced here as a test for a change in selection 325 

strength, and to estimate the parameters of interest for the chosen model, we assume 326 

the medionigra allele is a single co-dominant locus responsible for the homozygous and 327 

heterozygous expressions of the phenotypic forms bimacula and medionigra, 328 

respectively (Cook and Jones 1996). The model M0 assumes a single selection coefficient, 329 

thus the only parameter to estimate is s. The M1 model assumes a change in selection 330 

strength, thus the parameters of interest are s1, s2 and CP. Both M0 and M1 take the prior 331 

range of [-1,1] for the selection coefficients and the prior range of [2, 59] for the change 332 

point in the M1 model. For the M1 model, these uninformative priors are updated with 333 

the constraint that the allele must be segregating at the time of change point. Here, we 334 

create 10,000,000 simulated datasets for each M0 and M1, and apply the rejection 335 

algorithm of the CP-WFABC method to retain the best 1000 simulations compared with 336 

the observed trajectory. The effective population size is assumed to be 2Ne = 1000 as in 337 

previous studies (Wright 1948; Cook and Jones 1996; O’Hara 2005), with an initial allele 338 

frequency of 11% and a minimum frequency  ascertainment of 2%. 339 

The Bayes factor for M1 over M0 is calculated as 0.952, indicating that the single 340 

coefficient M0 model cannot be rejected in favor of the changing selection M1 model 341 

(Table 4). From the parameter estimation of the model M0 (Figure S9), the mode of the 342 

posterior distribution for s is given as -0.15 as asserted by Fisher and Ford (1947). 343 

When the ABC model choice was repeated with a smaller population size of 2Ne = 100 as 344 

suggested by Wright (1948) and O’Hara (2005), the Bayes factor increases to 1.87 (i.e., 345 

the changing selection model is twice as likely as the constant selection) – however, this 346 

value is not large enough to be significant for a diploid population of Ne = 50 (Table 4).  347 

 348 
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Experimental evolution of Influenza virus with drug treatment 349 

The evolution of pathogens within a host is one of the most important cases in 350 

which the possibility of fluctuating selection must be considered – as they may 351 

experience drastically changing selective pressures due to host immune response, 352 

specific drug treatments, and/or pathogenic cooperation or competition (Tanaka and 353 

Valckenborgh 2011; Hall et al. 2011). Thus, how these pathogens adapt to these rapid 354 

external and internal changes is of major concern to the biomedical community.  355 

The time-serial experimental dataset of influenza A conducted by Renzette et al. 356 

(2014) and Foll et al. (2014a) is an interesting case study on the impact of drug 357 

treatment on influenza virus evolution. The dataset consists of 13 sampling points from 358 

which population-level whole-genome data were collected. Drug treatment with a 359 

commonly used neuraminidase inhibitor (oseltamivir) began after the collection of the 360 

third sample and continued, at increasing concentrations, until the final passage. Using 361 

WFABC, the genome-wide effective population size across the sampling time points was 362 

estimated (Ne = 176) and the SNPs under selection were identified.  363 

Here, we apply the CP-WFABC method on two cases of interest from this study to 364 

consider a possible change in selection strength under drug treatment: the first case 365 

includes trajectories identified as being driven by positive selection, while the second 366 

includes outlier trajectories (i.e., trajectories not fitting a single s Wright-Fisher model). 367 

For all cases, we test the model M0 (i.e., a single selection coefficient) and M1 (i.e., a 368 

changing selection coefficient), with parameters of interest (s) and (s1, s2, CP), 369 

respectively. The number of generations per passage is assumed to be 13, and the 370 

minimum frequency of 2% is set as an ascertainment for observing the minor allele in 371 

the data. De novo mutations are assumed to occur at the first sampling time point for the 372 

SNPs whose allele frequency reached more than 2% before the drug administration 373 

(except for trajectories whose initial frequency is above 2%, which are assumed to be 374 
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standing variation), and at the fourth sampling point for those whose frequency did not. 375 

This assumption is based on the high mutation rate, large population bottlenecks 376 

associated with passaging, and large census population size between passages. 377 

10,000,000 datasets were simulated for each M0 and M1; the best 1000 trajectories from 378 

the lot were retained using the rejection algorithm described in the Methods. The 379 

uniform prior ranges for the selection coefficients were set as [-1,1], for the change point 380 

as [2,157] or [2,105] depending on the appearance of the mutation, and with the 381 

constraint of segregating alleles at the change point for M1. 382 

The results for the Bayes factors and the parameter estimates are summarized in 383 

Table 5 for all trajectories of interest. The Bayes factors of most trajectories show strong 384 

support for the changing selection model: the stronger the selection strength change, the 385 

larger the Bayes factor. Using the Bayes factors from the simulation studies as guidance 386 

(Table 4), the significance threshold to reject M0 is computed as 3.7 for a small haploid 387 

population. As expected, the trajectories identified as outliers of the single s Wright-388 

Fisher model (NP 159, PB1 33) all reject the constant selection model M0 with a large 389 

Bayes factor. We also note that the Bayes factor for the drug-resistant mutation H275Y 390 

(NA 823) does not support the changing selection model strongly, confirming that the 391 

experimental evolution procedure kept the selective pressure of the drug constant by 392 

adjusting the drug concentration to reduce viral plaque numbers to 50% at each passage. 393 

The change points are estimated to be mostly between the seventh and eighth passages, 394 

a notable result since three of these trajectories (HA 48, HA 1395, NA 582) are 395 

increasing rapidly after the drug-resistant mutation H275Y appears, whereas one 396 

trajectory (NP 159) from a different segment decreases rapidly. This result may indicate 397 

that positive selective for the three SNPs (including HA 1395; a known compensatory 398 

mutation encoded also as D112N) increased along with the drug-resistant mutation 399 

H275Y, potentially due to epistatic interactions, whereas another SNP decreased at that 400 
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time, potentially owing to clonal interference. The single selection estimates from 401 

WFABC (Foll et al. 2014b) are similar to the M0 estimates of the constant selection 402 

coefficient only when the Bayes factor does not reject M0 – strong evidence that an 403 

alternative model of changing selection must be considered for some trajectories in 404 

order to correctly estimate selection coefficients.  405 

We also applied CP-WFABC to the control case of SNPs increasing in frequency 406 

without drug as a comparison to the case with drug. The effective population sizes of the 407 

viral populations were averaged to be 226 in the absence of drug from the previous 408 

study (Foll et al. 2014a). For the control case, de novo mutations are assumed to occur at 409 

the first sampling time point for all SNPs, but the other inputs and the ABC model choice 410 

were kept the same as in the drug case. The Bayes factor results summarized in Table 5 411 

demonstrate that three out of the four SNP trajectories under selection in the control 412 

experiment cannot reject M0 (i.e., constant selection). Interestingly, the only SNP 413 

trajectory to support M1 (i.e., changing selection) is HA 1395 – a known compensatory 414 

mutation that also appeared under drug treatment. The parameters estimated from the 415 

model chosen indicate there was a change in selective pressure from a slightly positive 416 

value to a strongly positive value between the seventh and eighth passage as shown in 417 

Figure 5b. 418 

 419 

Discussion 420 

These simulations demonstrate that the novel CP-WFABC approach presented 421 

here is able to detect changing selection trajectories via ABC model choice, and also to 422 

estimate a wide range of parameters of interest. Performance was analyzed separately 423 

for three categories of allele trajectories according to the nature of the change in 424 

selection strength: (1) a change from positive s1 to positive s2, (2) a change from positive 425 

s1 to negative s2, and (3) all other changes. The datasets for each possible combination 426 
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were generated using the Wright-Fisher model with a change in selection strength, using 427 

the most general prior ranges for all parameters s1, s2, CP, and h for diploids, with the 428 

only constraint being segregation of the allele at the change point. For both the detection 429 

and parameter estimation, CP-WFABC performs the best when the change is large, 430 

particularly for the second category of change (positive s1 to negative s2), as shown in 431 

the ROC curves (Figure 2, S3) and the cross-validation graphs (Figure 3-4, S4-S7). For 432 

the first category (positive s1 to positive s2) and the third category (any other changes), 433 

the change point is difficult to estimate, particularly for diploids where the additional 434 

parameter h is also estimated. The ABC model choice of CP-WFABC has the best 435 

sensitivity for full specificity, for larger population sizes (Ne>500 for diploids), and 436 

haploid populations.  437 

The parameter estimates of s1 and s2 perform best when the values are moderate. 438 

For s1, the optimal parameter range for estimation is [0,0.5], where a de novo mutation 439 

that survives negative selection and segregates until the change point is 440 

indistinguishable from other drifting mutations with similar trajectories with 441 

uninformative low allele frequency. These trajectories naturally arise more frequently 442 

when population size is small and in diploids where the dominance effect plays a role, as 443 

shown in the third category of change (Figure 3-4, S4-S7; magenta points). When an 444 

initial frequency of 10% is used instead of a de novo mutation, the advantage of having a 445 

more informative trajectory at the beginning is counteracted by the effect of more cases 446 

under negative selection or genetic drift segregating until the change point. Thus, the 447 

performance of CP-WFABC for standing variation is similar to that of de novo mutation 448 

(results not shown). For s2, the optimal parameter range for estimation is [-0.5,0.5], as 449 

trajectories with extreme values are less informative since they are lost or fixed directly 450 

after the change point (explaining the clustering of the change points at earlier times). 451 

For diploid populations, estimates of h are accurate to the level of determining 452 
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dominance from co-dominance or recessiveness, particularly for large population sizes 453 

(Figure S7), given the difficulty of joint estimation with the three other parameters. 454 

Indeed, estimation of this additional parameter comes at the cost of worse performance 455 

for the other parameters, as can be seen in the ROC curves and cross-validation graphs: 456 

the detection and parameter estimation of changing selection cases is always better for 457 

haploids. Thus, in diploid cases, we recommend fixing the dominance parameter if 458 

known, in order to improve the performance of CP-WFABC. 459 

Although CP-WFABC is intended to detect and evaluate changing selection 460 

intensities, the simulation studies show that the method also performs well in 461 

estimating parameters for cases of constant selection – as has been demonstrated by 462 

Foll et al. (2014a). For haploids with large population sizes, in particular, the estimated 463 

values of the single parameter s correlate almost perfectly with the true values (Figure 464 

S5). However, when the population size is small for both diploids and haploids, some 465 

trajectories that are lost by negative selection or genetic drift are difficult to estimate, as 466 

shown in Figure 3 and Figure S6 as horizontal lines along some negative estimated 467 

values. This limitation of constant selection coefficients, however, is due to the 468 

simulation conditions of the de novo mutation at the first generation and the minimal 469 

ascertainment scheme (minimum frequency of 2% at one of the sampling time points). 470 

For real datasets, the conditions are likely to be less stringent, since such uninformative 471 

trajectories will not be considered for parameter estimation. 472 

Finally, we utilized this approach to make inference in two very different time-473 

sampled datasets: Panaxia dominula (diploid) and Influenza A (haploid). The time-serial 474 

medionigra trajectory of P. dominula was re-analyzed to test for a change in selection 475 

strength and/or direction during 60 years of data collection. By assuming h as co-476 

dominant, the results for Ne = 500 indicate that the model M0 of constant selection 477 

cannot be rejected according to the Bayes factor from the ABC model choice algorithm. 478 
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The selection coefficient from this model is estimated as -0.15, corresponding with that 479 

calculated by Fisher and Ford (1947). However, when the population size is assumed to 480 

be smaller (Ne = 50), the Bayes factor result supports M1 (changing selection) twice as 481 

strongly as M0 (constant selection), but not strong enough to reject M0 according to the 482 

significance level test computed with the distribution of Bayes factors under the null 483 

model M0. This dataset of the medionigra morph thus demonstrates the difficulty of 484 

detecting and evaluating a change in selection when the population size and the number 485 

of generations are small.  486 

Next, CP-WFABC was applied to SNP trajectories of interest from an experimental 487 

dataset of influenza A virus. The ABC model choice test was conducted on the 488 

trajectories identified as 1) being positively selected and 2) as outliers from the single-s 489 

WFABC method. For the SNPs in the presence of drug, the Bayes factor for six out of nine 490 

trajectories favored the changing selection model M1. The change points for four out of 491 

these six trajectories occurred between passages 7 and 8 – the interval during which 492 

three trajectories from the segments HA and NA increased rapidly while one trajectory 493 

from the segment NP decreased rapidly along with the known drug-resistant mutation 494 

NA 823 (H275Y). These results appear to support the presence of epistasis and clonal 495 

interference, where the selection strength of the other SNPs is influenced by the 496 

appearance of a drug-resistant mutation under drug pressure. In fact, a known 497 

compensatory mutation (HA 1395) was among the three trajectories increasing rapidly, 498 

reinforcing the use of the method to evaluate biological hypotheses. Moreover, the 499 

estimated values of selection coefficients differed greatly between the constant-selection 500 

method (WFABC) and CP-WFABC. In particular, the estimates of s for outlier trajectories 501 

from the Wright-Fisher model were inferred by WFABC as being near zero (neutral), 502 

though the more robust CP-WFABC estimates here indicate fluctuation of s from 503 

negative to positive values. Thus, these fluctuations cannot be explained by genetic drift 504 
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alone, as previously speculated. We have therefore identified some cases where an 505 

alternative model of changing selection is essential for correctly estimating selection 506 

parameters and identifying change points. For the SNPs in the absence of drug treatment, 507 

the Bayes factor for three out of four trajectories could not reject the constant selection 508 

model M0. This result indicates that in the absence of drug, the selective pressures on the 509 

population are largely constant as expected. The SNP trajectory identified as supporting 510 

M1 in the control case is a known compensatory mutation (D112N) for infectivity 511 

(Thoennes et al. 2008) that also appeared in the presence of drug, further confirming 512 

the increased infectivity might contribute to the tissue culture adaptation. 513 

The simulation studies of changing selection reveal some important points to 514 

consider from the standpoint of experimental design. Firstly, at least two sampling time 515 

points are needed to estimate selection strength in time-serial methods. For CP-WFABC, 516 

the parameter estimation of a single selection coefficient between two sampling time 517 

points performs reasonably well for haploid population sizes above Ne=1000. However, 518 

it is advisable to have three sampling time points to maximize the performance of 519 

parameter estimation, particularly for diploids and in smaller population sizes 520 

(Ne<1000). Thus, in order for a change to be detectable, it is required to have at least 521 

four sampling time points where the change must occur between the second and the 522 

third sampling time points – an important factor to consider for the design of change-523 

point experiments, such as drug administration or environmental change. The 524 

simulation studies of CP-WFABC confirm that the estimation of CP performs best at the 525 

intermediate range of time-sampled data, as any change happening before the second 526 

and after the second-to-last sampling time point is impossible to detect (Figure 3-4, S4-527 

S7). Finally, it remains a future challenge to expand this method to consider more than 528 

one change point in selection strength, as some of the trajectories in the influenza A 529 
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application (such as PA 2194 and PB1 33) suggest the presence of several change points 530 

along the trajectory. 531 
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Tables 

 

Table 1. AUC values and confidence intervals for ROC curves. 

 

ROC curves for haploid populations 

 100 1000 10000 

AUC 0.7936 0.7988 0.7943 

CI 0.7756-0.8124 0.7797-0.8181 0.7750-0.8140 

 

ROC curves for diploid populations 

 50 500 5000 

AUC 0.8233 0.7378 0.7470 

CI 0.8051-0.8402 0.7164-0.7593 0.7257-0.7683 
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Table 2. R2 values of the parameter estimation with the ABC model choice for haploid 

populations. 

 

Case 1: 1000 constant selection pseudo-observables 

M0 (True) 100 1000 10000 

s 0.558 0.843 0.914 

M1 (False) 100 1000 10000 

s 1 0.366 0.769 0.834 

s 2 0.608 0.752 0.685 

CP -16 -5.97 -2.27 

 

 

Case 2: 1000 changing selection pseudo-observables 

M0 (False) 100 1000 10000 

s -0.278 -0.00232 -0.00205 

M1 (True) 100 1000 10000 

s 1 -0.323 0.363 0.415 

s 2 0.704 0.768 0.777 

CP 0.0946 0.413 0.303 
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Table 3. R2 values of the parameter estimation with the ABC model choice for diploid 

populations. 

 

Case 1: 1000 constant selection pseudo-observables 

M0 (True) 50 500 5000 

s -0.13 0.55 0.796 

h -0.789 0.653 0.88 

M1 (False) 50 500 5000 

s 1 -0.194 0.363 0.746 

s 2 0.491 0.57 0.609 

h 0.195 0.764 0.857 

CP -10.8 -1.65 -1.37 

 

 

Case 2: 1000 changing selection pseudo-observables 

M0 (False) 50 500 5000 

s -0.441 0.0955 0.118 

h -0.119 0.525 0.573 

M1 (True) 50 500 5000 

s 1 -0.713 0.181 0.277 

s 2 0.467 0.536 0.463 

h 0.219 0.611 0.678 

CP -0.145 -0.258 -0.125 
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Table 4. The Bayes factor thresholds for the significance level α of 1% computed using 

the distribution of Bayes factors under the null model M0.   

 

Diploid populations 

α=1% 50 500 5000 

BF 4.7 1.6 1.3 

 

Haploid populations 

α=1% 100 1000 10000 

BF 3.7 3.2 1.7 
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Table 5. Bayes factors and parameters estimated for the influenza trajectories in the 

presence and absence of drug. The estimates whose Bayes factors show strong support 

for M1 are in bold. 

 
Trajectories under selection with drug 

Segment Position Bayes Factor 
(M1/M0) 

M0 
s estimate 

M1 
s1 estimate 

M1 
s2 estimate 

M1 
CP estimate 

WFABC 
s estimate 

PA3 2194 999 0.029 0.160 -0.168 21 (p1-2) 0.09 

HA2 48 12.0 0.179 0.099 0.711 105 (p7-8) 0.14 

HA2 1395 5.06 0.173 0.109 0.506 104 (p7-8) 0.22 

NA2 582 ∞ - 0.050 0.816 104 (p7-8) 0.29 

NA2 823 1.21 0.156 0.135 0.159 109 (p8-9) 0.15 

M2 147 1.28 0.082 0.080 0.090 128 (p9-10) 0.08 

NS2 820 1.03 0.051 0.045 0.060 61(p4-5) 0.12 

Outlier trajectories with drug 

NP1 159 8.09 0.011 0.030 -0.054 103 (p7-8) 0 

PB11 33 16.2 0.047 0.021 0.265 113 (p8-9) 0.14 

 

 
Trajectories under selection without drug 

Segment Position Bayes Factor 
(M1/M0) 

M0 
s estimate 

M1 
s1 estimate 

M1 
s2 estimate 

M1 
CP estimate 

WFABC 
s estimate 

PB11 1119 0.98 0.038 0.039 0.035 10 (p0-1) 0.06 

HA1 1395 8.52 0.067 0.038 0.175 103 (p7-8) 0.12 

NP1 1104 1.91 0.042 0.039 0.057 110 (p8-9) 0.05 

NP1 1396 1.21 0.034 0.035 0.042 9 (p0-1) 0.09 

 
1A de novo mutation at the 1st generation (passage 0) 
2A de novo mutation at the 53rd generation (passage 4) 
3Standing variation at the 1rd generation (passage 0) 
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Figure 1. Illustration of Fs’ calculated between every pair of consecutive sampling time 

points and the maximal CUSUM value SCP as summary statistics, using a haploid 

population of Ne = 1000 with a de novo mutation and the sample size as 100.
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Figure 2. ROC curve of the Bayes factor B1,0 from the ABC model choice of a haploid 

population with Ne=100 (A) and a diploid population with Ne=500 (B). 
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Figure 3. ABC model choice parameter estimations for 1000 pseudo-observables with a 

haploid population of Ne=100. Each circle is the mode of the posterior distribution from 

the 0.1% best simulations. 
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Figure 4. ABC model choice parameter estimations for 1000 pseudo-observables with a 

diploid population of Ne=500. For cross-validation graphs, each circle is the mode of the 

posterior distribution from the 0.1% best simulations. For boxplots, red dots are true 

values and blue dots are average estimated values. 
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Figure 5. Change points indicated with solid stars for the trajectories of interest: (A) 

Increasing SNP trajectories in the presence of drug. The red vertical line indicates the 

sampling time of drug administration. (B) Increasing SNP trajectories in the absence of 

drugs.  
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