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Abstract: The significance of single-cell transcription resides not only in the cumulative 
expression strength of the cell population but also in its heterogeneity. We propose a new model 
that improves the detection of changes in the transcriptional heterogeneity pattern of RNA-Seq 
data using two heterogeneity parameters: ‘burst proportion’ and ‘burst magnitude’, whose 
changes are validated using RNA-FISH. Transcriptional ‘co-bursting’ – governed by distinct 
mechanisms during myoblast proliferation and differentiation – is described here. 

Advances in single-cell RNA-Seq technology have promoted in-depth investigation of 
heterogeneous gene expression at individual cell resolution1, 2.  Single-cell RNA-Seq data exhibit 
significantly greater variability (i.e., larger overdispersion) than bulk-cell RNA-Seq data. We 
examined the read counts in two bulk-cell RNA-Seq datasets3, 4  and two single-cell RNA-Seq 
datasets5, 6. We observed that the estimated overdispersion parameters of single-cell data were 
typically greater than those from bulk datasets by orders of magnitude (Fig. 1a). Substantial 
variability of single-cell RNA-Seq data is due to various biological and technical aspects, 
including transcriptional stochasticity, cellular heterogeneity, and technical noise, among others. 
Of these aspects, the first two cannot be investigated through bulk-cell technologies. Mammalian 
gene transcription can be classified into two schemes called constitutive expression and 
stochastic ‘bursty’ expression7, 8, which lead to distinct transcriptional kinetic patterns 
(Supplementary Fig. 1). In a previous study of mouse embryonic development, transcriptional 
bursting is believed to be the key factor that contributes to the rapid expression dynamics 
observed in single-cell RNA-Seq data5. Besides gene bursting, differences in cellular 
subpopulations also give rise to additional variance beyond what is observed in bulk-cell RNA-
Seq data2.  Cells that undergo cellular processes such as differentiation of myoblasts also show 
high variability in gene expression between individual cells6. Technical variability is another 
factor that contributes to large overdispersion of single-cell RNA-Seq data9. Unique variability in 
single-cell RNA-Seq has resulted in bimodal distribution of sequencing reads that is not 
observed in bulk-cell data10. Thus, a gene’s expression is detected only in a sub-population of 
cells. 

Methods have been proposed to analyze single-cell RNA-Seq data. The Poisson-Beta model11 
was previously developed to model all theoretical kinetics for ‘bursty’ gene expression. However, 
in the presence of massive variability, fitting of the Poisson-Beta model is compromised by 
excessive overdispersion in read counts (Supplementary Results R1). Kharchenko et al.  
proposed the SCDE method12 to model extreme data points in single-cell count data as drop-out 
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events or high magnitude outliers. Similar to conventional bulk-cell methodologies, SCDE uses 
fold expression difference to test for differential gene expression, which overlooks the 
significance of kinetic changes and population heterogeneity among an assayed single-cell 
population. For accurate quantification of single-cell dynamics, including the shift in the 
transcriptional heterogeneity pattern and bona fide interactions13 at single-cell resolution, we 
need statistical methods to properly model the bimodal counts in single-cell RNA-Seq data.   

We hereby propose a hierarchical Bayesian method that we call stochastic phenotype 
investigation using mixture distribution (Sphinx), to model the change of transcriptional 
heterogeneity in single-cell RNA-Seq data with large overdispersion (Supplementary Fig. 2). 
Sphinx uses a mixture of two Poisson-Gamma distributions to model overdispersed read counts 
as generated from a gene’s two distinct states: an ‘on’ component and an ‘off’ component. The 
degree of overdispersion (overdispersion parameter ϕ) for each component depends on a gene’s 
average read count. By investigating the mean-overdispersion relationship from globally pooled 
genes separately for ‘on’ and ‘off’ components, Sphinx can reduce the variability of the ‘on’ 
component by several fold (Fig. 1b) compared to direct fitting of raw reads. Unlike conventional 
methods that only examine the average expression change across single cells, Sphinx models 
single-cell gene expression using two heterogeneity parameters ‘burst proportion’ (πi)  and ‘burst 
magnitude’ (µi) to account for the observed bimodal distribution of reads in single-cell RNA-Seq 
data (i=1: ‘on’ component; i=0: ‘off ‘component). The two-component model is superior to the 
Poisson-Beta model in fitting of bimodal counts with large variability, whereas the Poisson-Beta 
model merely forms a rough unimodal envelope for the observed expression (Fig. 1c). One major 
difficulty in studying the bimodal single-cell gene expression is the confounding of technical 
noise in biological ‘burstiness’. We use the squared coefficient of variation (CV2)14 to establish 
baseline technical variability with/without using external RNA controls to identify genes with 
high biological variations (Supplementary Results R2).   

For comparative studies involving two groups, Sphinx can test the transcriptional changes in 
burst proportion and burst magnitude, in addition to bulk-level expression changes (Fig 1d-g, 
results from human myoblast dataset at 0 hour and 24 hours6). The power of Sphinx to detect 
changes in overall bulk-level expression and burst magnitude correlates with the average gene 
expression (Fig. 1d, f). For burst proportion, a smaller change is required to claim significance 
for genes that are either constitutively expressed or barely activated (π1 that is close to 1 or 0) 
than for those genes with π1 that are close to 0.5 (Fig. 1e). Fig. 1g shows little correlation 
between changes in two heterogeneity parameters (Supplementary Results R3). 

Fig. 1h shows the log expression of a representative gene, CCNG1, at 0 hour (T0) and 24 hours 
(T24) of skeleton muscle differentiation6. The ‘on’ components of single cells in T0 and T24 
have a fold difference of 1.55, which is consistent with the fold change of 1.58 in the 
corresponding bulk-cell experiments (Fig. 1i, p-value of 1.19E-28 by DESeq). CCNG1 is 
identified by Sphinx as a differentially expressed gene with a posterior probability of 0.9908 for 
bulk-level change and 0.9975 for change in µ1 (Fig. 1k). No significant change of π1 has been 
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detected (Fig. 1j). Neither SCDE (z-score: -1.283, corresponds to a two-sided p-value of 0.199) 
nor DESeq (p-value: 0.695) claims statistical significance on this gene from its single-cell 
expression. We also use simulation data to show that Sphinx is more sensitive to detect moderate 
and subtle transcriptional changes in burst proportion and/or burst magnitude from single-cell 
RNA-Seq data (Supplementary Results R4).  

By characterizing the single-cell expression with two heterogeneity parameters, Sphinx 
facilitates in-depth investigation of the dynamic changes in individual cells.  Fig. 2a-b shows that 
a myogenic marker gene, MYH2, has increased gene expression that is consistently detected by 
bulk-cell and single-cell RNA-Seq technologies from 0 to 72 hours. Single-cell RNA-Seq data 
showed clear heterogeneity that few reads were detected in quite a number of cells (RPKM<0) 
whereas certain cells had as many as thousands of reads. We discovered using Sphinx that the 
burst proportion and burst magnitude for MYH2 were both progressively up-regulated during 
skeletal muscle differentiation (Fig. 2c-d). In the first 24 hours, MYH2 transcription showed 
‘rare bursting’, whose expression was detected only in a few cells while it remained inactive in 
the majority of cells. CV2 analysis suggested that rare bursting of MYH2 was not driven by 
technical outliers, but was rather reliable evidence indicating the transcriptional initiation of a 
small number of cells. More cells started to express MYH2 RNA as they went through 
maturation, and more than half of the cells (burst proportion about 0.6) expressed MYH2 at 72 
hours. Sphinx allows us to properly credit the change of expression to burst proportion and/or 
magnitude, which cannot be done using bulk-cell techniques or other available single-cell 
expression analysis methods. We validated the heterogeneous dynamics observed in RNA-Seq 
data: a switch from rare bursting to abundant expression, using RNA-FISH (Fig. 2e-i) on 
hundreds of myoblast cells (Supplementary Fig. 12).  

In-depth understanding of the transcriptional bimodality in single cells is non-trivial, particularly 
when coordinated gene regulations are observed. Single-cell RNA-Seq offers an unprecedented 
opportunity to examine genome-wide co-expression between genes without the confounding of 
environmental effects as in bulk-cell studies13.  A new type of transcriptional coordination 
(referred to as ‘co-bursting’) in a heterogeneous cell population, where two genes with bimodal 
expression are highly expressed in a group of cells yet are consistently shut down in the others, 
has been uniquely observed and formally defined in our single-cell data analysis. For instance, 
we investigated the transcriptional correlation of the first 24 hours (T0 and T24) during skeletal 
muscle differentiation and discovered clusters of co-bursting genes as dominant components of 
the global co-expression network (Fig. 3 a-d). Functional annotation showed that co-bursting 
genes at T0 were highly enriched in ‘cell cycle phase’ (FDR: 3.7E-20) and ‘regulation of mitotic 
cell cycle’ (FDR: 3.5E-7), which supported Buettner et al.’s conclusion that the seemingly 
extensive correlation in single-cell RNA-Seq data was primarily driven by the cell cycle 
process15.  However, co-bursting genes in T24 had completely different functions with an 
emphasis on ‘contractile fiber’ (FDR: 4.4E-9) and ‘muscle organ development’ (FDR: 2.8E-8), 
indicating the transition of cell fate from cell proliferation to differentiation. We also performed 
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motif enrichment analysis for co-bursting genes and found that almost all significant motifs at T0 
belonged to the E2F family, which consists of proteins with well-known binding sites for cell 
cycle regulation. For T24 cells, several motifs of muscle transcription factors (i.e., MYOD1 and 
MEF2A) were significantly enriched, suggesting a dynamic switch in the regulatory mechanism 
of myoblast differentiation. More details regarding analysis of co-bursting networks can be 
found in Supplementary Results R5. 

Global profiling of gene expression using single-cell RNA-Seq delineates a distinct 
transcriptional landscape that is very different from population dynamics. We have developed 
the Sphinx method to model heterogeneity behind bimodal count data. It provides improved 
detection of transcriptional changes and new insights into stochastic and noisy nature of single 
cells. 
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Figure Legends 

Figure 1 Modeling substantial variability in single-cell RNA-Seq. (a) Mean versus 
overdispersion plot for bulk-cell and single-cell RNA-Seq datasets. (b) Log-scale mean-
overdispersion plot. The fitted mean-overdispersion curves for ‘on’ and ‘off’ components are in 
purple and orange respectively. The light blue curve represents the fitted mean-overdispersion 
curve for the original raw count data. (c) Fitting of bimodal single-cell RNA-Seq counts using 
Sphinx and Poisson-Beta. (d) Scatter plot of log2 fold change versus mean RPKM. (e) Scatter 
plot of change of burst proportion versus mean of burst proportion in two groups. (f) Scatter plot 
of log2 fold change of burst magnitude versus mean of burst magnitude in two groups. (g) Scatter 
plot of log2 fold change of burst magnitude versus change of burst proportion. (h) Expression of 
CCNG1 between T0 and T24. The intensity of the point color indicates the posterior probability 
that a cell is classified as ‘on’, i.e., P(z =1). (i) Box plot of bulk-cell gene expression for CCNG1 
in T0 and T24. (j-k)  The estimated posterior distributions of burst proportion (π1) and burst 
magnitude (µ1). 

 

Figure 2 Sphinx detects change of transcriptional heterogeneity of MYH2 gene during 
myoblast differentiation. (a) Box plot of bulk expression for MYH2 during myoblast 
differentiation (T0 - 0hr, T24 - 24hrs, T48 - 48hrs, and T72 - 72 hrs). (b) Log2 single-cell 
expression for MYH2. (c) The estimated posterior distribution of burst proportion π1 for MYH2. 
(d) The estimated posterior distribution of burst magnitude µ1 for MYH2. (e-h) RNA 
fluorescence in situ hybridization (FISH) images for MYH2 during myoblast differentiation.  
The blue color in the image represents the nucleus and the red color represents the RNA 
molecules. (i) Violin plot of log2 MYH2 FISH RNA counts during myoblast differentiation. 

 

Figure 3 Single-cell RNA-Seq reveals transcriptional ‘co-bursting’. (a) The identified co-
expression network for human myoblast differentiation at T0 from single-cell RNA-Seq data.  
The color bar represents the degree of bimodality, where red color denotes π1 is close to 0.5 
(strong bimodality) and white color denotes that π1 is close to 0 (rare expression) or 1 
(housekeeping expression). (b) The identified co-expression network for human myoblast 
differentiation at T24 from single-cell RNA-Seq data. (c) Heatmap of co-bursting genes in T0. (d) 
Heatmap of co-bursting genes in T24. (e) Top enriched motifs for co-bursting genes in T0. (f) 
Top enriched motifs for co-bursting genes in T24. 
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Online Methods 

A mixture model for transcriptional heterogeneity 
Let ijy denote the raw RNA-Seq read count for gene i  in cell j . To model transcriptional 

heterogeneity, we use a mixture of ( 2K = ) Poisson-Gamma distributions to fit the read counts 
for each gene across all cells. A hierarchical Bayesian model for single-cell RNA-Seq gene 
expression is given by: 

( )~ Xij ij ijy Poisson β ,                                                        (1) 

where	  X ij is the gene length adjusted by library size factor. ijβ is the unknown relative gene 

expression, which is a mixture of two Gamma distributions as follows: 

          ( )
1

, , , 0, 1,
0

~ , ,  . . 1ij k i k i k i i i
k

Gamma s tβ π α λ π π
=

+ =∑ ,                          (2) 

where 0,iπ and 1,iπ is the probability that gene i 	  belongs to the “off” ( 0k = ) and “on” ( 1k = ) 

components, respectively. The ‘on’ component is used to represent a ‘detectable’ status, such as 
when the promoter is switched on or a subpopulation of cells is activated by external stimuli. The 
‘off’ component is typically caused by either biological inactivation of transcription (promoter is 
off) or technical failure to detect low-input mRNA materials. The relative expressions ijβ of “on” 

and “off” components are modeled by two Gamma distributions with independent shape and rate 
parameters. The above Poisson-Gamma mixture distribution is theoretically equivalent to the 
mixture of two negative binomials, where the Gamma shape parameter is also known as the 
dispersion parameter that controls the variance of count data. Another alternative model to 
formulate the ‘off’ state, which may involve excess numbers of cells with zero counts, is the 
zero-inflated model16. However, we prefer using a negative binomial distribution to model the 
‘off’ component so that it can flexibly account for small non-zero read counts, which in turn 
reduces the variation in the ‘on’ component. 

By introducing the auxiliary Boolean variable ijz ( 1ijz = : expression of gene i in cell j is detected; 

0ijz = : expression of gene i in cell j is not detected), the conditional distribution of ijβ given ijz
can be written as: 

( ) { }, ,~ , ,  0,1ij ij k i k iz k Gamma kβ α λ= ∈ .                                      (3) 

Equations (1-3) define the joint likelihood for the mixture model.  We further set prior 
distributions to the rest of the model parameters as follows: 

( )1,~ij iz Bernoulli π ,                                                      (4) 
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( )1, ~ ,i Beta a bπ , 0, 1,~ 1i iπ π−                                              (5) 

( ), ~ ,k i Gamma c dλ ,                                                       (6) 

,
,

1
k i

k i

α
φ

= ,                                                                (7) 

( ), ,log ~ ,k i k iNormalφ η τ .                                                  (8) 

We assign non-informative priors for iπ  (Jeffrey’s prior, a=0.5 and b=0.5) and ,k iλ  ( 1c = ,

0.0001d = ). The shape parameter ,k iα for the Gamma component k ( 0k = or 1) is also the 

dispersion parameter of kth negative binomial distribution. We assume ,k iφ , the reciprocal of	   ,k iα , 

follows a lognormal distribution with mean	   ,k iη and precision	  τ . By pooling all of the genes of 

the same component k together, we estimate a global smooth curve between	   ( ),log k iφ and the log 

of average count ,k iy using polynomial fit as follows: 

,
,

1

ij

k i ij
z kk i

y y
M =

= ∑ ,                                                        (9) 

2 2
,i , , ,k k i k i k iy yσ φ= + ,                                                     (10)

( ) ( ) ( )2, , ,0 ,1 , ,2 ,E log log logk i k i k k k i k k iy yη φ ψ ψ ψ= = + + ,                  (11) 

where	   ,k iM is the number of cells at state k . 	   ,k iy and	   2
,ikσ are the mean and variance of read 

counts for gene i at component k , respectively. A second-degree polynomial fitting function is 
defined by Equation (11), where	   ,k iη is the expected log dispersion at expression level ,k iy . 

Equations (9-11) are analogous to dispersion fitting techniques used in bulk-cell RNA-Seq 
methods17, 18, where we expand the concept to accommodate transcriptional heterogeneity (i.e., 
‘on’ and ‘off’ components have different dispersion patterns) by coupling it with a mixture 
distribution model. Due to the large variability in RNA-Seq read counts, estimation of the 
dispersion parameters is challenging, especially for a limited number of single cells. Therefore, 
we set a large value for τ (e.g., 100τ = ) to put more confidence on the prior distribution derived 
from global curve fitting. We have shown in Supplementary Fig. 13 that global polynomial 
fitting has achieved similar performance as local fitting technique.  

Test change of transcriptional heterogeneity parameters and bulk level gene expression 
The three key parameters in the previous Bayesian hierarchical model: π ,α , and λ , can 
sufficiently characterize a gene’s transcriptional pattern that switches between ‘on’ and ‘off’ 
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states. For studies that involve two or more conditions (e.g., before and after stimulation), there 
are three hypotheses that one may find particularly interesting: (H.1) Are there any significant 
changes in the number of ‘detected’ cells (change in burst proportion 1π )? (H.2) Are there any 
significant changes in the expression level of genes once ‘detected’ (change in burst magnitude

1
1

1

α
µ

λ
= )? 1µ is also known as the mean of Gamma distribution for ‘on’ component. (H.3) Are 

there any significant changes in overall mRNA expression between cell populations (bulk-level 
difference)?   

From Supplementary Equations (S4-S6), we have derived the posterior distributions forπ ,α , 
andλ , which can be used to test detailed transcriptional changes in single-cell RNA-Seq data. 
We use superscripts to denote groups 1 and 2 in a two-sample test scenario.  The probability of 
proportion change in 1π  (H.1) is simply given by ( ) ( )( )2 1

1 1P π π≥ and ( ) ( )( )2 1
1 1P π π≤ , which can be 

analytically or numerically obtained using the posterior samples from the Gibbs sampler. 
Similarly for hypothesis H.2, the probability of magnitude change in 1µ  is defined as

( ) ( )( )2 1
1 1P µ µ≥ and ( ) ( )( )2 1

1 1P µ µ≤ , where the posterior distribution of 1µ can be easily calculated 

from the posterior distributions of 1α and 1λ . For hypothesis H.3, which tests the bulk difference 

between groups 1 and 2, its posterior probability is given by ( ) ( ) ( ) ( )
1 1

2 2 1 1

0 0
k k k k

k k
P π µ π µ

= =

⎛ ⎞
≥⎜ ⎟

⎝ ⎠
∑ ∑ and 

( ) ( ) ( ) ( )
1 1

2 2 1 1

0 0
k k k k

k k
P π µ π µ

= =

⎛ ⎞
≤⎜ ⎟

⎝ ⎠
∑ ∑ . 

The probability of change for hypotheses H.1-3 can be calculated analytically, such as assuming 
that 1π has Beta distribution and 1µ has Gamma distribution. In practice, we use re-sampling with 

replacement to randomly draw 1π and 1µ from their Gibbs samples to estimate the 
abovementioned probabilities. 

Gibbs sampling for parameter estimation 
We use Gibbs sampling to estimate posterior distributions of parametersβ , z ,π , λ , andα  in the 
Sphinx model. The posterior samples of the model parameters can be drawn iteratively from: 
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∏

          (12) 

We use conjugate priors for β , z , π , and λ , so that their posterior distributions can be 
conveniently sampled from known distributions. The posterior distribution of α does not have a 
known conjugate prior, so we use random-walk Metropolis sampling to draw its samples (More 
details are provided in the Supplementary Methods M1 and M2). 

Tuning proposal scale for random walk Metropolis sampling 
The posterior distribution for ,k iα , as defined in Supplementary Equation (S6), is not a known 

distribution. In order to efficiently draw samples according to Supplementary Equation (S6), a 
random walk Metropolis sampling with a Gaussian proposal function is implemented. The 
efficiency of the Metropolis sampling algorithm relies on the selection of scale parameter σ  for 
Gaussian proposal function. We adopted a tuning strategy by starting with 1σ =  for all the 
genes and then updating the proposal scale according to the acceptance rate in a few tuning 
samples19. A target acceptance rate is required (default: 0.5) so that through several rounds of 
tuning processes, our sampler will approach the desired acceptance rate. 

Single-cell RNA-Seq data alignment 
A splice-aware mapping solution is implemented for RNA-Seq read alignment. The alignment 
index is built either on the hg19 genome (uses 25 chromosomes and 68 other unplaced contigs 
from a myoblast dataset) or on the MM10 genome (uses 22 chromosomes and 44 other unplaced 
contigs from a mouse embryonic dataset) combined with a total junction flanking 
TRANSCRIPTOMIC sequence summarized from GENCODE, EMSEMBLE and REFSEQ 
annotations. The junction flanking sequence length is defined as 5 less than the read length. 
Novoalign+ V2.08.01 is used for alignment. Redundant mapping at the same locus for both the 
genome and transcriptome will be consolidated as one single hit. The mapped reads are 
aggregated to the gene where the exon belongs. 
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Primary human myoblast culture 	  

Human skeletal muscle myoblasts (HSMM) were purchased from Lonza (catalog #CC-2580). 
Cells were maintained in SkBMTM-2 Basic Medium (catalog #CC-3246) plus SkGMTM-2 
SingleQuotsTM Kit (catalog #CC-3244) and differentiated for the indicated time points by 
switching to DMEM: F-12 medium (catalog #12-719F) plus 2% horse serum (Life Technologies, 
catalog #26050070). HSMM cells within 10 passages were used for experiments. 	  

Stellaris RNA-FISH and quantification 

Stellaris RNA-FISH probes were designed and ordered from Biosearch Technologies. The 
detection of RNA molecules by FISH was performed according to the protocol for adherent cells 
recommended by the manufacturer. Briefly, HSMM cells were fixed in 3.7% formaldehyde at 
room temperature for 10 min, and then permeabilized in 70% ethanol at 4°C overnight. FISH 
probes were added and incubated in the dark at 37°C for 16 hr. Cells were then stained with 
DAPI at 37°C for 30 min. Slides were mounted with ProLong® Diamond Antifade Mountant 
(Life Technologies, catalog #P36961) and cured for 24 hr before imaging on a Nikon Perfect 
Focus system microscope. Three filter sets for DAPI, TAMRA and fluorescein were used for 
acquisition. For each sample, ~30-60 individual images were taken at 40x magnification.  

Diffraction-limited dots corresponding to single mRNA molecules were identified and counted 
using a previously described Matlab software20 (downloaded from Raj Lab, 
http://rajlab.seas.upenn.edu/StarSearch/launch.html). Briefly, the images were first filtered to 
remove non-uniform background and enhance particulate signals by using a Laplacian convolved 
with a Gaussian filter. The intensity threshold was then selected at which the number of mRNAs 
detected was least sensitive to the threshold. For those with high background, the location of the 
kink was chosen as the threshold for mRNAs detection.	  

Software availability 

The R package of Sphinx method is freely available at: 
https://sourceforge.net/projects/sphinx4singlecell/files/?source=navbar 
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