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2

24

25

ABSTRACT26

27

1. Ecological systems are the quintessential complex systems, involving numerous high-28

order interactions and non-linear relationships. The most commonly used statistical29

modelling techniques can hardly reflect the complexity of ecological patterns and30

processes. Finding hidden relationships in complex data is now possible through the use31

of massive computational power, particularly by means of Artificial Intelligence32

methods, such as evolutionary computation.33

2. Here we use symbolic regression (SR), which searches for both the formal structure of34

equations and the fitting parameters simultaneously, hence providing the required35

flexibility to characterize complex ecological systems.36

3. First, we demonstrate how SR can deal with complex datasets for: 1) modelling species37

richness; and 2) modelling species spatial distributions. Second, we illustrate how SR can38

be used to find general models in ecology, by using it to: 3) develop species richness39

estimators; and 4) develop the species-area relationship and the general dynamic model40

of oceanic island biogeography.41

4. All the examples suggest that evolving free-form equations purely from data, often42

without prior human inference or hypotheses, may represent a very powerful tool for43

ecologists and biogeographers to become aware of hidden relationships and suggest44

general theoretical models and principles.45

46
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Key-words: artificial intelligence, evolutionary computation, genetic programming, species47

richness estimation, species-area relationship, species distribution modelling, symbolic48

regression.49

50

51

INTRODUCTION52

53

Ecology as a complexity science54

55

Complexity is a term often used to characterize systems with numerous components interacting56

in ways such that their collective behaviour is difficult to predict, but where emergent properties57

give rise to, more or less simple but seldom linear, patterns (Table 1)(Holland 1995; Mitchell58

2009). Complexity science is therefore an effort to understand non-linear systems with multiple59

connected components and how “the whole is more than the sum of the parts” (Holland 1998).60

Biological systems probably are among the most complex (Solé & Goodwin 2000), and among61

them, ecological systems are the quintessential complex systems (Anand 2010). These are62

composed of individuals, populations from different species, interacting and exchanging energy63

in multiple ways, furthermore relating with the physical environment at different spatial and64

temporal scales in non-linear relationships. As a consequence, ecology is dominated by65

idiosyncratic results, with most ecological processes being contingent on the spatial and temporal66

scales in which they operate, which makes it difficult to identify recurrent patterns, knowing also67

that pattern does not necessarily identify process (Lawton 1996; Dodds 2009; Passy 2012). The68

most commonly used exploratory (e.g. PCA, NMDS) and statistical modelling techniques (e.g.69
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linear and non-linear regression) can hardly reflect the complexity of ecological patterns and70

processes, often failing to find meaningful relationships in data. More flexible techniques (e.g.71

GAMs) usually do not allow an easy interpretation of results and particularly of putative causal72

relationships. For ecological data, we require more flexible and robust, yet amenable to full interpretation,73

analytical methods, which can eventually lead to the discovery of general principles and models.74

75

General principles and models in ecology76

77

The ultimate aim of any ecological principle is to provide a robust model for exploring,78

describing and predicting ecological patterns and processes regardless of taxon identity and79

geographic region (Lawton 1996; Dodds 2009). Finding a recurrently high goodness-of-fit for a80

model to an ecological pattern for most taxa and ecosystems is usually the most compelling81

evidence of a mechanistic process controlling that pattern. When general principles are translated82

into robust models, general statistical methods are mostly abandoned in favor of these (Appendix83

1). Such general, widely applicable, equations are mostly found by intellectual tour de force.84

Yet, they surely are only the tip of the iceberg, usually incorporating few of the variables85

increasingly available to ecologists and that could potentially explain such patterns.86

87

Computing power applied to complex ecological systems88

89

The automation of techniques for collecting and storing ecological and related data, with90

increasing spatial and temporal resolutions, has become one of the central themes in ecology and91

bioinformatics. Yet, automated and flexible ways to synthesise such complex and big data were92

mostly lacking until recently. Finding hidden relations within such data is now possible through93
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the use of massive computational power. New computer-intensive methods have been developed94

or are now available or possible (Reshef et al. 2011) including in particular the broad field of95

Artificial Intelligence (AI) which has produced a variety of approaches. AI includes a series of96

evolution-inspired techniques, brought together in the sub-field of evolutionary computation, of97

which the most studied and well-known probably are genetic algorithms (Holland 1975). Genetic98

programming, namely in the form of symbolic regression (SR)(Koza 1992), is a particular99

derivation of genetic algorithms that searches the space of mathematical equations without any100

constraints on their form, hence providing the required flexibility to represent complex systems101

as presented by many ecological systems (Fig 1). Contrary to traditional statistical techniques,102

symbolic regression searches for both the formal structure of equations and the fitting parameters103

simultaneously (Schmidt & Lipson 2009). Finding the structure of equations is especially useful104

to discover general models, providing general insights into the processes and eventually leading105

to the discovery of new and as yet undiscovered principles. Fitting the parameters provides106

insight into the specific data, and allow specific predictions.107

Successful examples on the use of SR in ecology include modelling of land-use change (Manson108

2005; Manson & Evans 2007), effects of climate change on populations (Tung et al. 2009;109

Larsen et al. 2014), community distribution (Larsen, Field & Gilbert 2012; Yao et al. 2014),110

predicting micro-organismal blooms (Muttil & Lee 2005; Jagupilla et al. 2015), deriving111

vegetation indices (Almeida et al. 2015) and using parasites as biological tags (Barrett,112

Kostadinova & Raga 2005).113

In this work we explain, test and demonstrate the usefulness of SR in uncovering hidden114

relationships within typical ecological datasets. First, we demonstrate how SR can deal with115

complex datasets, namely for: 1) modelling species richness; and 2) modelling species spatial116
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distributions. Second, we illustrate how SR can be used to find general models in ecology, by117

using it to: 3) develop species richness estimators; and 4) develop the species-area relationship118

(SAR) and the general dynamic model of oceanic island biogeography (GDM).119

120

121

MATERIALS AND METHODS122

123

Symbolic regression124

125

Symbolic regression works as a computational parallel to the evolution of species (Fig 1). A126

population of initial equations is generated randomly by combining different building blocks,127

such as the variables of interest (independent explanatory variables), algebraic operators (+, –, ÷,128

×), analytic function types (exponential, log, power, etc.), constants and other ways to combine129

the data (e.g. Boolean or decision operators). Being random, these initial equations almost130

invariably fail, but some are slightly better than others. All are then combined through crossover,131

giving rise to new equations with characteristics from both parents. Equations with better fitness132

(e.g. higher r2) have a higher probability of recombining. To avoid new equations being bounded133

by initially selected building blocks or quickly losing variability along the evolutionary process,134

a mutation step (acting on any building block) is added to the process after crossover. After135

multiple generations, an acceptable level of accuracy by some of the equations is often attained136

and the researcher stops the process.137

For this work we used the software Eureqa (Schmidt 2015). For each run, the software outputs a138

list of equations along an error/complexity Pareto front, with the most accurate equation for each139
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level of complexity being shown (Fig 2). The Pareto front often presents an “elbow”, where140

near-minimum error meets near-minimum complexity. The equation in this inflection is closer to141

the origin of both axes and is a good starting point for further investigation – if both axes are in142

comparable qualitative scales. Often, however, this inflection point is not obvious and a single143

formula is not clearly best. In such cases, weights can be given to each of them through Bayesian144

statistics,  using indices that positively weight accuracy and negatively weight complexity, such145

as Akaike’s Information Criterion - AIC (Akaike 1974). However, in all cases it is important to146

check all formulas along the Pareto front. Often equations or models that make immediate sense147

to the specific question may not be detected by these automated methods.148

149

Case-studies150

151

Modelling species richness152

Modelling and mapping the species richness of high diversity taxa at regional to large scales is153

often impossible without extrapolation from sampled to non-sampled sites. Here, we used an154

endemic arthropod dataset collected in Terceira Island, Azores. Fifty-two sites were sampled155

using pitfall traps for epigean arthropods (Cardoso et al. 2009), 13 in each of four land-use types:156

natural forest, exotic forest, semi-natural pasture and intensively managed pasture. This dataset157

was randomly divided into training and test data (26 sites each). We explained and predicted158

species richness per site using elevation, slope, annual average temperature, annual precipitation159

and an index of disturbance (Cardoso et al. 2013).160

As the response variable was count data, Generalized Linear Models (GLM) and Generalized161

Additive Models (GAM) with a Poisson error structure with log link were used. We used the162
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package MuMIn (Barton 2015) and the R environment (Team 2015) for multi-model inference163

based on AICc values, using all variables plus all possible interactions for GLM. For GAM we164

used package gam (Hastie 2015). For the SR search we used only algebraic and analytic165

operators (+, –, ÷, ×, log, power), in this and all examples below, so that outputs could be most166

easily interpreted. The r2 goodness of fit was used as the fitness measure. As there was no clearly167

best formula, AICc was used to choose a single equation along the Pareto front (Appendix 2).168

Both r2 and AICc were used to compare GLM and GAM with SR on the test dataset. Here and in169

subsequent analyses, all models with a ΔAICc value < 2 (the difference between each model’s170

AICc and the lowest AICc) were considered as receiving equal statistical support.171

172

Modelling species distributions173

Species distribution modelling (SDM) is widely used to fill gaps in our knowledge on individual174

species distributions. One of the general statistical methods used for SDM is logistic regression.175

Among the multiple alternatives, the principle of maximum entropy (Maxent)(Phillips, Anderson176

& Schapire 2006) has been found to be particularly robust (Elith et al. 2006).177

We modelled the potential distribution of two endemic Azorean species in Terceira Island: the178

rare forest click-beetle Alestrus dolosus (Coleoptera, Elateridae) and the abundant but mostly179

forest restricted spider Canariphantes acoreensis (Araneae, Linyphiidae). Given the intrinsic180

differences between methods, we had to use different background datasets. Maxent used the181

environmental maps of the islands with a resolution of 100 m, from where it extracted pseudo-182

absences. We then converted the probabilistic potential distribution maps to presence/absence183

using the maximum value of training sensitivity plus specificity as the threshold as184

recommended by Liu et al. (Liu et al. 2005). Logistic regression and SR used presence/absence185
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data from the 52 sampled sites. We used the package MuMIn (Barton 2015) and the R186

environment (Team 2015) for multi-model inference of logistic regression based on AICc values.187

In the SR run a step function was included, so that positive and negative values were converted188

to presence and absence, respectively. Absolute error, reflecting the number of incorrect189

classifications, was used as the fitness measure. As inflection points of the Pareto fronts were190

clear, the best SR formula for each species was chosen based on them (Appendix 2). In all cases191

only the training data (26 sites) were used for running the models. Logistic regression, Maxent192

and SR were compared in their performance for predicting presence and absence of species on193

the 26 test sites using the True Skill Statistic - TSS (Allouche, Tsoar & Kadmon 2006).194

195

Developing species richness estimators196

Several asymptotic functions have been used to estimate species richness (Soberon & Llorente197

1993), including the Clench function (Clench 1979), the negative exponential function and the198

rational function (Ratkowsky 1990) (Appendix 1). Our objective was to rediscover or eventually199

find asymptotic models that would outperform them. Two independent datasets were used200

resulting from exhaustive sampling for spiders in 1ha plots, performed by 8 collectors during 320201

hours of sampling in a single hectare using five different methods. The training dataset was from202

a mixed forest in Gerês (northern Portugal) and the test dataset was from a Quercus forest in203

Arrábida (southern Portugal) (Cardoso et al. 2008a; Cardoso et al. 2008b).204

Randomized accumulation curves for both sites were produced using the R package BAT205

(Cardoso, Rigal & Carvalho 2015) (the package also includes both datasets). The true diversity206

of each site was calculated as the average between different non-parametric estimators (Chao 1207

and 2, Jackknife 1 and 2). Because the sampled diversity in the training dataset reached a very208
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high completeness but we wanted to simulate typically very incomplete sampling, datasets with209

10, 20, 40, 80 and 160 randomly chosen samples were extracted and used, in addition to the210

complete 320 samples dataset, as independent runs in SR. Squared error was used as the fitness211

measure. Additionally, we imposed a strong penalty to non-asymptotic functions, although these212

were still allowed in the search process. The weighted and non-weighted scaled mean squared213

errors implemented in BAT (Cardoso, Rigal & Carvalho 2015) were used as accuracy measures.214

215

Developing the species-area relationship (SAR) and the general dynamic model of oceanic216

island biogeography (GDM)217

One of the most studied examples of SARs is their application to island biogeography (ISAR).218

The shape of ISARs has been modelled by many functions, but three of the simplest seem to be219

preferred in most cases, the power, exponential and linear models (Triantis, Guilhaumon &220

Whittaker 2012)(Appendix 1).221

The general dynamic model of oceanic island biogeography was proposed to account for222

diversity patterns within and across oceanic archipelagos as a function of area and age of the223

islands (Whittaker, Triantis & Ladle 2008). Several different equations have been found to224

describe the GDM, extending the different SAR models with the addition of a polynomial term225

using island age and its square (TT2), depicting the island’s ontogeny. The first to be proposed226

was an extension of the exponential model (Appendix 1)(Whittaker, Triantis & Ladle 2008), the227

power model extensions following shortly after (Fattorini 2009; Steinbauer 2013).228

Our objective was to test if we could re-discover and eventually refine existing models for the229

ISAR and GDM from data alone. We used the Azores and Canary Islands spiders (Appendix230

3)(Cardoso et al. 2010) as training data. To independently test the generality of models arising231
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from spider data, we used bryophyte data from the same archipelagos (Appendix 3)(Aranda et al.232

2014). The area and maximum time since emergence of each island were used as explanatory233

variables and the native species richness per island as the response variables. The r2 value was234

used as the fitness measure. The best SAR and GDM equations found by SR were chosen based235

on the inspection of the Pareto front (Appendix 2), but looking also for interpretability of the236

models. These were then compared with the existing models using AICc using the R package237

BAT (Cardoso, Rigal & Carvalho 2015).238

239

240

RESULTS241

242

Modelling species richness243

244

The model selected by GLM was:245

246

ܵ = ݁ହ.ଷ଼ଵ	ା	଴.଴଴ଷସଷଶு	ି	଴.଴଴ଵଽ଴ସ௉	ି	଴.଴ହଶହ଻஽247

248

(r2 = 0.744, AICc = 30.793), where H = altitude, P = precipitation and D = disturbance. Yet, the249

GLM model seems to be overfitting, as the results with the test data were considerably worse (r2250

= 0.146, AICc = 63.672). Overfitting also occurred with GAM, as the model was extremely good251

for the training data (r2 = 0.930, AICc = 8.643) yet much worse for testing data (r2 = -0.077,252

AICc = 85.601). The SR results performed worse than GLM or GAM with the training data, with253

the formula chosen according to AICc being:254
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255

ܵ = 0.673 + (8.696− 0.002ܲ)଴.଴଴଺ுିଶ.ସ଺ଵ 	256

257

(r2 = 0.641, AICc = 43.050). However, the SR equation performs considerably better than GLM258

or GAM with the test data (r2 = 0.289, AICc = 62.354), revealing a higher generality of this259

formula.260

261

Modelling species distributions262

263

The potential distribution models are relatively similar for C. acoreensis but show marked264

differences for A. dolosus (Fig 3). Symbolic regression outperforms both other models for A.265

dolosus and is as good as Maxent for C. acoreensis, with both outperforming LR (Table 2). The266

SR models are not only the best, presenting maximum values for TSS, but are also the easiest to267

interpret. A. dolosus is predicted to have adequate environmental conditions in all areas above268

614m elevation, being restricted to pristine native forest. C. acoreensis can potentially be present269

in all areas with disturbance values below 41.3, occurring not only in native forest but also in270

adjacent semi-natural grassland and humid exotic forest. The LR and Maxent models used a271

large number of explanatory variables for A. dolosus, yet performed worse on the test data than272

did SR.273

274

Developing species richness estimators275

276

For the training dataset, one asymptotic model was found by SR (Appendix 2):277
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278

ܵ =
ܽܳ
ܾ + ܳ279

280

where a and b are fitting parameters. This model is in fact the Clench model with a different281

formulation (Appendix 1), where the asymptote is a. A second, slightly more complex but better282

fitting, model was found for partial datasets with 40 or more samples:283

284

ܵ =
ܿ + ܽܳ
ܾ + ܳ285

286

where c is a third fitting parameter. The asymptote is again given by the value of a (Fig 4). This287

model is similar to the rational function (Appendix 1). It was found to outperform the Clench and288

negative exponential for both the training and testing datasets (Table 3).289

290

Developing the species-area relationship (SAR) and the general dynamic model of oceanic291

island biogeography (GDM).292

293

For the Azorean spiders, the best fitting previous model (both highest r2 and lowest AICc) for the294

ISAR was the exponential model (Table 4). The SR run discovered roughly the same model,295

indicating, however, that the intercept (c term) was adding unnecessary complexity. A similar296

ranking of models was verified for bryophytes in the same region, revealing the robustness of the297

new model.298

For the Canary Islands, the best model for spiders was a linear function of area:299
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300

ܵ	 = 	75	 + 301ܣ0.047	

302

(r2 = 0.364, AICc = 65.631). Although it is easy to interpret, the explained variance is relatively303

low. The SR run reached a much higher explanatory power:304

305

ܵ	 = 	112	 + 	 (−1.002஺)306

307

(r2 = 0.806, AICc = 57.320). In this case though, the equation is over-fitting to the few available308

data (7 data points), as this function is erratic creating a biologically indefensible model. The309

reason the ISAR is hard to model for the Canary Islands spiders is because we were missing the310

major component Time (Cardoso et al. 2010). This is depicted by the GDM, of which the best of311

the current equations was found to be the power model described by Fattorini (Fattorini312

2009)(Table 4). Nevertheless, using SR we were able to find an improved, yet undescribed,313

model (Table 4). This represents a general model expanding the linear SAR:314

315

ܵ	 = 	ܿ	 + 	ܣݖ	 + 	ܶݔ	 − ଶ316ܶݕ	

317

When tested with Canarian bryophytes, this new formulation is almost as good as the power318

model (Table 4).319

320

321

DISCUSSION322

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2016. ; https://doi.org/10.1101/027839doi: bioRxiv preprint 

https://doi.org/10.1101/027839
http://creativecommons.org/licenses/by-nc-nd/4.0/


15

323

Symbolic regression has the advantage over most standard regression methods (e.g. GLM) in324

being fully flexible, allowing a much better fitting to data with similar interpretability to, for325

example, a linear regression. SR also has one or more advantages over other, commonly used,326

highly flexible regression (e.g. GAMs) or machine learning techniques (e.g. neural-networks):327

(1) numerical, ordinal and categorical variables are easily combined; (2) redundant variables are328

usually eliminated in the search process and only the most important are retained if anti-bloat329

measures (intended to reduce the complexity of equations) are used; (3) the evolved equations330

are human-readable and interpretable; and (4) solutions are easily applied to new data. Using SR331

we were able to “distil” free-form equations and models that not only consistently outperform332

but are more intelligible than the ones resulting from rigid methods such as GLM or “black-333

boxes” such as Maxent. We were also able to re-discover and refine equations for estimating334

species richness based on sampling curves and the ISAR and GDM from data alone.335

All the examples presented in this work suggest that evolving free-form equations purely from336

data, often without prior human inference or hypotheses, may represent a yet unexplored but337

very powerful tool for ecologists and biogeographers, allowing the finding of hidden338

relationships in data and suggesting new ideas to formulate general theoretical principles.339

340

From particular relations to general principles341

342

Scientific fields such as physics rarely rely on general statistical inference methods such as linear343

regression for hypothesis testing. The complexity of ecology made such methods an imperative344

in most cases. The method now presented not only allows the discovery of relationships specific345
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to particular datasets, but also the finding of general models, globally applicable to multiple346

systems of particular nature, as we tried to exemplify. As mentioned, SR is designed to optimize347

both the form of the equations and the fitting parameters simultaneously. The fitting parameters348

usually are specific to each dataset, but the form may give clues towards some general principle349

(e.g. all archipelagos will follow an ISAR even if each archipelago will have its own c and z350

values). Although this aspect has not been explored in this study, we suggest two ways of finding351

general principles.352

First, as was hinted by our estimators’ example, one may independently analyse multiple datasets353

from the same type of systems. From each dataset, one or multiple equations may arise. Many of354

these will be similar in form even if the fitting parameters are different. Terms repeated in355

several equations along the Pareto front or with different datasets tend to be meaningful (Schmidt356

& Lipson 2009). We may then try to fit the most promising forms to all datasets optimizing the357

fitting parameters to each dataset and look for which forms seem to have general value over all358

data.359

Second, one may simultaneously analyse multiple datasets from the same type of systems but360

with a change to the general SR implementation. Instead of optimizing both form and fitting361

parameters, the algorithm may focus on finding the best form, with fitting parameters being362

optimized during the evaluation step of the evolution for each dataset independently. This363

parameter optimization could be done with standard methods such as quasi-newton or simplex364

(Nocedal & Wright 1999). To our knowledge, this approach has yet to be implemented, but it365

would allow finding general models and possibly principles, independently of the idiosyncrasies366

of each dataset.367

368
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The need for human inference369

370

Our results show that an automated discovery system can identify meaningful relationships in371

ecological data. Yet, as shown by our Canary Island spider SAR model, some equations might be372

very accurate but overfit the data. As with any relationship finding, either automated or human,373

correlation does not imply causation and spurious relationships are not only possible but374

probable given complex enough data.375

Although the method here presented is automated, it is part of a collaborative human–machine376

effort. The possibility of exploiting artificial intelligence working together with human expertise377

can be traced back to Engelbart (Engelbart 1962), where the term “augmented intelligence” was378

coined to designate such collaboration. It has been subsequently developed and extended to379

teamwork involving one or more artificial intelligence agents together with one or (many) more380

humans, in diverse domains such as robotic teams (Yanco, Drury & Scholtz 2004) or collective381

intelligence for evolutionary multi-objective optimization (Cinalli 2015).382

In ecological problems, human knowledge may play a fundamental role: 1) in the beginning of383

the process, when we must select input variables, building blocks and SR parameters; and 2) in384

the interpretation and validation of equations. The choice of equations along a machine-385

generated Pareto front should also take advantage of human expert knowledge to identify the386

most interesting models to explain the data. The researcher might then decide to disregard,387

accept or check equation validity using other methods.388

389

A priori knowledge390

391
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To some extent, it is possible to select a priori the type of models the algorithm will search for392

by selecting the appropriate variables and building blocks. Another way to take advantage of393

previous knowledge is to use as part of the initial population of equations some, possibly394

simpler, equations we know are related with the problem. For example, when searching for the395

GDM we could have given the algorithm multiple forms of the ISAR to seed the search process.396

This should be complemented with random equations to create the necessary variation for397

evolution.398

399

Fine-tuning the process400

401

The number of options in SR is immense. Population size is positively correlated with variability402

of models and how well the search space is explored, but might considerably slow the search.403

Mutation rates are also positively correlated with variability, but rates that are too high might404

prevent the algorithm converging on the best models. The fitness measure depends on the405

specific problem and the type of noise expected.406

The number of generations to let the search run is entirely dependent on the problem complexity407

and time available. Often the algorithm reaches some equation that makes immediate sense to the408

researcher and the process can be immediately stopped for further analysis of results. Sometimes409

several equations seem to make sense but are not entirely convincing, in which case several410

indicators can be used as a stop rule, such as high values of stability and maturity of the411

evolution process (Schmidt 2015).412

The speed with which evolution occurs is extremely variable, depending on factors including the413

complexity of the relationships, having the appropriate variables and building blocks and the414
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level of noise in the data. Fortunately, the process is easily adaptable to parallel computing, as415

many candidate functions can be evaluated simultaneously, allowing the use of multiple cores416

and even computer clusters to speed the search of equations.417

418

Caveats and alternatives419

420

The SR approach is fully data-driven. This means it requires high-quality data if meaningful421

relationships are to be found. Also, it makes no a priori assumptions, so the final result might422

make no (obvious) sense, leading to spurious inferences, particularly if data are scarce or poor-423

quality, or if the right building blocks are not provided. Additionally, SR suffers from the same424

limitations of evolutionary algorithms in general. In many cases the algorithm may get stuck in425

local minima of the search space, requiring time (or even a restart with different parameters) to426

find the global minimum.427

Many data mining techniques are regarded, and rightly so, as “black boxes”. SR is transparent in428

this regard, as variables are related through human-interpretable formulas. This is particularly429

important if the goal is to find equations with both predictive and explanatory power, building430

the bridge between finding the pattern and explaining the driving process, or if a general431

principle is to be suggested.432

433

The automation of science?434

435

The methods here presented can be powerful additions to theoretical and experimental ecology,436

even if new conceptual hypotheses have to be created to accommodate the new equations. Such437
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models could even be the only available means of investigating complex ecological systems438

when experiments are not feasible or datasets get too big/complex to model, using traditional439

statistical techniques.440

This kind of techniques has led several authors to suggest the “automation of science” (King et441

al. 2009), where computers are able to advance hypotheses, test them and reach conclusions in442

largely unassisted processes. The SR potential as an exploratory step, to be reasoned alongside443

and proven with other methods is also exciting. The resulting formulas will help researchers to444

focus on initially imperceptible but interesting relationships within datasets and help guide the445

process of hypothesis creation.446

447
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Table 1. Glossary of terms.582

Artificial intelligence (AI) - A scientific field concerned with the automation of activities we

associate with human thinking (Russell, Norvig & Davis 2010).

Big data - Very large amount of structured or unstructured data, hard to model with general

statistical techniques but with the potential to be mined for information.

Complex system - A system in which a large network of components organize, without any

central controller and simple although non-linear rules of operation, into a complex collective

behaviour that creates patterns, uses information, and, in some cases, evolves and learns

(Mitchell 2009).

General model - An equation that is found to be useful for multiple datasets, often but not

necessarily, derived from a general principle. In most cases the formal structure of equations is

kept fixed, while some parameters must be fitted for each individual dataset.

General principle - Refers to concepts or phenomenological descriptions of processes and

interactions (Evans et al. 2013). May not have direct translation to any general model, but be a

purely conceptual abstraction.

Genetic programming (GP) - A biologically-inspired method for getting computers to

automatically create a computer program to solve a given problem (Koza 1992). It is a type of

evolutionary algorithm, where each solution to be tested (individual in a population of possible

solutions) is a computer program.

Pareto front - A curve connecting a set of best solutions in a multi-objective optimization

problem. If several conflicting objectives are sought (e.g. minimize both error and complexity

of formulas), the Pareto front allows visualizing the set of best solutions.
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Symbolic regression (SR) - A function discovery approach for modelling of multivariate data.

It is a special case of genetic programming, one where possible solutions are equations instead

of computer programs.

583

584
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Table 2. Species distribution models for two endemic arthropod species on the island of585

Terceira (Azores, Portugal).586

Model Formula Sensitivity Specificity TSS

Alestrus dolosus

Logistic regression 1
1 + ݁ି(଼ସ଺ଽି଴.ସଷଶ௉ିହସ଴.଻்)

0 1 0

Maxent Uses all variables but Sl, main is D

(contribution = 74.1%)

0.5 1 0.5

Symbolic regression 	ܪ)	݌݁ݐݏ − 	614) 1 0.75 0.75

Canariphantes acoreensis

Logistic regression 1
1 + ݁ି(ଷ.଺ଵ଻ି଴.ଵ଴ଷ஽)

0.667 0.7 0.367

Maxent Uses only D (contribution = 100%) 0.833 0.65 0.483

Symbolic regression 	41.3)	݌݁ݐݏ − (ܦ	 0.833 0.65 0.483

Accuracy statistics on an independent test dataset are given by the True Skill Statistic (TSS). H =587

altitude, Sl = slope, T = average annual temperature, P = annual precipitation and D =588

disturbance index. The step function in symbolic regression converts positive values inside589

parentheses to presence and negative values to absence. Best values in bold.590

591

592
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Table 3. Comparison of three asymptotic equations used to estimate spider species richness593

in two forest sites.594

Model Raw accuracy Weighted accuracy

Gerês (training)

Observed 0.113 0.037

Clench 0.055 0.018

Negative exponential 0.115 0.049

Rational function 0.045 0.012

Arrábida (testing)

Observed 0.103 0.031

Clench 0.038 0.010

Negative exponential 0.092 0.037

Rational function 0.032 0.008

See Appendix 1 for formulas. Raw accuracy is the scaled mean squared error considering the595

entire observed accumulation curve (each formula was fitted to the curves using 4 to 320596

samples) and weighted accuracy is this value weighted by the sampling effort at each point in the597

curve (where effort is the ratio between number of individuals and observed species richness).598

Note that lower values (in bold) are better as they reflect the deviation from a perfect estimator.599

600
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Table 4. Species area relationship (SAR) models for Azorean taxa and General Dynamic601

Models (GDM) of oceanic island biogeography for Canarian taxa.602

Model Formula r2 AICc

SAR Azorean Spiders (training)

Power S = 13.379 * A0.438 0.642 32.505

Exponential S = 0.549 + 4.538 logA 0.780 28.102

Linear S = 19.357 + 0.017A 0.435 36.604

Exponential (SR) S = 4.641 logA 0.780 23.319

SAR Azorean Bryophytes (testing)

Power S = 181.625 * A0.803 0.666 78.085

Exponential S = - 27.824 + 57.114 logA 0.728 76.208

Linear S = 196.215 + 0.259A 0.617 79.295

Exponential (SR) S = 51.889 logA 0.722 71.617

GDM Canarian Spiders (training)

Whittaker S = -185.589 + 41.732logA + 17.776T -1.022T2 0.873 110.350

Fattorini logS = 2.585 + 0.281logA + 0.157T -0.009T2 0.941 105.025

Steinbauer logS = 3.367 + 0.098logA + 1.502logT - 0.454logT2 0.814 113.007

SR S = 42.283 + 0.051A + 17.379T - T2 0.952 61.505

GDM Canarian Bryophytes (testing)

Whittaker S = -176.599 + 66.602logA + 21.361T -1.620T2 0.773 125.214

Fattorini logS = 4.544 + 0.137logA + 0.126T -0.009T2 0.803 124.217

Steinbauer logS = 5.136 + 0.017logA + 1.063logT - 0.382logT2 0.612 128.963

SR S = 192.660 + 0.075A + 20.702T - 1.576T2 0.785 124.841
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S = native species richness, A = area of the island and T = maximum time of emergence. Best603

models are indicated in bold.604

605
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Fig. 1. Schematic representation of the symbolic regression workflow.606

The basic representation is a parse-tree where building blocks such as variables (in this case: x1,607

x2), parameters (integers or real numbers) and operators (e.g. +, –, ×, ÷) are connected forming608

functions (in parenthesis under the first line of trees). Initial equations are generated by randomly609

linking different building blocks. Equations are combined through crossover, giving rise to new610

equations with characteristics from both parents (arrows linking the first and second rows of611

trees). Equations with better fitness (e.g. r2) have higher probabilities of recombining. To avoid612

loss of variability, a mutation step is added after crossover (arrows linking the second and third613

rows of trees). After multiple generations, evolution stops and a set of free-form equations best614

reflecting the input data is found.615

616

Fig. 2. Example of a Pareto front depicting error vs. complexity.617

This example reflects a symbolic regression search of the best species–area relationship for native spiders618

in the Azores (Portugal). The second formula is clearly the most promising, with both high accuracy (low619

error) and low complexity. In many occasions a single formula is not clearly best, in which case620

weights can be given to each of them through Bayesian statistics and multiple formulas presented621

as possible outcomes.622

623

624

Fig. 3. Predicted distribution of two Azorean arthropods using three modelling methods.625

Observed locations (white dots) and predicted distribution (dark green areas) of Alestrus dolosus626

(Coleoptera) and Canariphantes acoreensis (Araneae) in the island of Terceira (Azores,627

Portugal) using logistic regression, maximum entropy and symbolic regression.628

629
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Fig. 4. Accumulation curve for spider sampling in Gerês (Portugal).630

The result of searching for the best fitting asymptotic formula using symbolic regression is also631

shown.632

633

634
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635

Figure 1636
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637

Figure 2638
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639

Figure 3640
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641

Figure 4642

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2016. ; https://doi.org/10.1101/027839doi: bioRxiv preprint 

https://doi.org/10.1101/027839
http://creativecommons.org/licenses/by-nc-nd/4.0/


38

Appendix 1. Examples of general principles in ecology and of some of the respective643

statistical models.644

645

Appendix 2. Data and settings used for all analyses in the paper (Eureqa file:646

http://www.nutonian.com/products/eureqa/).647

648

Appendix 3. Species, area and age for each Azorean or Canarian Island.649
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