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ABSTRACT  
 

ATRX is a SWI/SNF chromatin remodeler proposed to govern genomic stability through 

the regulation of repetitive sequences such as rDNA, retrotransposons, and 

pericentromeric and telomeric repeats. However, few direct ATRX target genes have 

been identified and high-throughput genomic approaches are currently lacking for ATRX. 

Here we present a comprehensive ChIP-sequencing study of ATRX in multiple human 

cell lines, in which we identify the 3’ exons of zinc finger genes (ZNFs) as a new class of 

ATRX targets. These 3’ exonic regions encode the zinc finger motifs, which can range 

from 1-40 copies per ZNF gene and share large stretches of sequence similarity. These 

regions often contain an atypical chromatin signature: they are transcriptionally active, 

contain high levels of H3K36me3 and are paradoxically enriched in H3K9me3. We find 

that these ZNF 3’ exons are co-occupied by SETDB1, TRIM28 and ZNF274, which form 

a complex with ATRX. CRISPR/Cas9-mediated loss-of-function studies demonstrate (i) 

a reduction of H3K9me3 at the ZNF 3’ exons in the absence of ATRX and ZNF274 and, 

(ii) H3K9me3 levels at atypical chromatin regions are particularly sensitive to ATRX loss 

compared to other H3K9me3-occupied regions. As a consequence of ATRX or ZNF274 

depletion, cells with reduced levels of H3K9me3 show increased levels of DNA damage, 

suggesting that ATRX binds to the 3’ exons of ZNFs to maintain their genomic stability 

through preservation of H3K9me3. 

 

Key words: ATRX, zinc finger genes, KRAB-ZNFs, ZNF274, SETDB1, ESET, TRIM28, 

KAP1, H3K9me3, atypical chromatin 
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INTRODUCTION 

 

Chromatin remodeling proteins act through shifting, sliding, deposition and eviction of 

nucleosomes and histones. Members of the SWI/SNF family of chromatin remodelers 

are fundamental in many cellular processes such as transcription, replication, DNA 

repair and recombination. 1–5 One notable chromatin remodeler involved in all of these 

processes is ATRX. Increasing evidence supports that ATRX acts as a sentinel of 

genome integrity by maintaining heterochromatin at repetitive sequences. 6,7 

Interestingly, ATRX germline mutations are responsible for a complex genetic disorder 

called ATR-X (Alpha Thalassemia, Mental Retardation X-linked) syndrome while somatic 

mutations, deletions, and altered ATRX expression levels are highly prevalent in a wide 

variety of cancers. 8,9  

 

ATRX contains two highly conserved domains: the ADD (ATRX-DNMT3-DNMT3L) and 

the SWI/SNF helicase domain. 10 The ADD domain contains a PHD finger that binds 

H3K9me3/H3K4me0, 11,12 whereas the SWI/SNF domain is an ATP-dependent helicase 

responsible for the chromatin remodeling capacity of ATRX. 10,13 Despite the fact that 

ATRX binds H3K9me3/H3K4me0 in vitro, ATRX binds to only a subset of H3K9me3-

containing regions in vivo. 11,12,14,15 In particular, ATRX is highly enriched at certain 

H3K9me3-containing repetitive regions such as telomeric and pericentromeric repeats 

as well as some retrotransposon families. 16–22 Furthermore, ATRX physically interacts 

with other H3K9me3 binding proteins such as HP1α. 23,24 Altogether, these pieces of 

evidence suggest that ATRX is involved in the regulation of particular H3K9me3-

modified chromatin. 

 

A well-characterized role of ATRX is deposition of histone variants into the chromatin 
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template. For example, ATRX and DAXX (death-domain associated protein) act together 

as a histone chaperone complex for the H3 variant H3.3. ATRX is required for the 

localization of H3.3 at telomeres and pericentromeric repeats, 16–19 retrotransposons 20–22 

and imprinted loci, 25 which all contain H3K9me3. This ability appears to be unique for 

ATRX, as the HIRA complex deposits H3.3 only at euchromatic regions. 17,26–28 In 

addition to promoting H3.3 deposition, our group showed that ATRX negatively regulates 

the deposition of histone variant macroH2A at the α-globin locus. 29 

 

ATRX has also been implicated in resolving aberrant secondary DNA structures, called 

G-quadruplexes, which form in guanine-rich regions during replication and transcription. 

15,30,31 G-quadruplexes are a common feature of some families of repetitive sequences 

and tandem repeats, such as those found in telomeres. Intriguingly, ATRX mutations in 

cancer have been linked to the Alternative Lengthening of Telomeres (ALT) pathway. 32–

35 Although the precise role of ATRX in ALT remains unclear, it has been suggested that 

ATRX prevents Homologous Recombination (HR) between telomeric sequences through 

the resolution of stalled replication forks in G-rich regions. 6,36 In accordance with its role 

as a regulator of genome stability, several reports demonstrated that ATRX depletion 

causes telomere dysfunction, increased replication fork stalling and increased sensitivity 

to replicative stress across different cellular and in vivo models. 18,22,37–40 

 

Despite these important functions, surprisingly few direct ATRX target genes have been 

identified. To address this, we utilized an unbiased approach using the ENCODE Tier 1 

human erythroleukemic cell line K562 as a model system to analyze ATRX genomic 

occupancy. Through comprehensive ChIP-seq analyses, we identified an unexpected 

binding pattern of ATRX at the 3’ exons of Zinc Finger Genes (ZNFs). ZNFs represent 

the largest family of putative transcription factors in the human genome with more than 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2016. ; https://doi.org/10.1101/027789doi: bioRxiv preprint 

https://doi.org/10.1101/027789
http://creativecommons.org/licenses/by-nc/4.0/


 5

seven hundred identified members. 41–43 This enrichment of ATRX at ZNF 3’ exons was 

further confirmed in additional human cell lines of both normal or cancer origin. 

 

The 3’ exons of ZNFs are enriched in chromatin that is permissive to transcription yet 

contains high levels of H3K9me3 and H3K36me3. 44 These atypical chromatin regions 

do not possess the characteristics of any known regulatory region (i.e. promoter, 

enhancer, insulator) and their functional significance remains unclear. 44 Here we show 

that ATRX co-occupies 3’ ZNF exons containing an H3K9me3/H3K36me3 chromatin 

signature, together with the H3K9 methyltransferase SETDB1 (also known as ESET), 

the co-repressor TRIM28 (also known as KAP1), and the transcription factor ZNF274. 

Deletion of ATRX or ZNF274 leads to a reduction of H3K9me3, particularly at 3’ ZNF 

exons and other H3K9me3/H3K36me3-containing regions, as well as increased DNA 

damage, and defects in the cell cycle. Taken together, our studies suggest that ATRX 

binds the 3’ exons of ZNFs to maintain genomic stability by regulating H3K9me3 levels. 
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RESULTS 

 

ATRX binds to the 3’ exons of ZNF genes in K562 cells 

 

In order to perform an unbiased search for novel direct ATRX target genes, we 

examined its genomic distribution by ChIP-seq analysis in the human erythroleukemic 

cell line K562 using two independent antibodies (see Methods for details). We chose 

K562 as a model system for two reasons: first, it has been established that ATRX has 

important roles in the regulation of the erythroid lineage; 15,29 second, K562 is a Tier 1 

ENCODE cell line that has been extensively analyzed using a wide array of genomic and 

epigenomic methodologies that are publicly available. 45 

 

To determine the global ATRX binding pattern in relation to other chromatin 

modifications, we reanalyzed the available ChIP-seq ENCODE datasets for K562 (see 

Methods) and performed a correlation analysis of their binding profiles. The only 

datasets that show a positive correlation with ATRX are H3K9me3 (r = 0.46, spearman 

correlation) and macroH2A (r = 0.19, spearman correlation) (Fig. S1A), consistent with 

its role as an H3K9me3 binding protein 11,12 and macroH2A regulator, respectively. 29,46,47 

Furthermore, we examined the genomic distribution of ATRX significant peaks and found 

that, consistent with previous reports, 15,20–22 ATRX is bound mainly to repetitive 

sequences (~56% of ATRX peaks overlap with repeats) (Fig. S1B). In order to 

understand ATRX distribution at a functional level, we analyzed its distribution across 

Hidden Markov Model-derived chromatin states. 48 While ATRX binds to repressed and 

repetitive regions (Fig. 1A), it is significantly enriched in transcribed regions as well (Fig. 

1A). In order to further investigate the functional significance of ATRX occupancy at 

these transcriptionally active regions, we performed Gene Ontology (GO) analysis with 
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ATRX-bound genes (n=374, Table S1). Strikingly, C2H2 Zinc Finger genes (ZNFs) were 

the most overrepresented gene family and comprised one quarter of the ATRX–bound 

genes, many of which contain the repressive KRAB domain (Fig. 1B). We next analyzed 

ATRX binding at promoters and gene bodies and found that enrichment of ATRX at 

gene bodies of ZNFs was highly significant as compared to non-ZNF genes, but that 

promoter regions had minimal binding in either group of genes (Fig. 1C). 

 

ZNFs represent the fastest expanding gene family in the primate lineage. Frequent gene 

duplications and rapid divergence of paralogs are characteristic of ZNFs. 41–43 Because 

of this, ZNFs are often arranged in large continuous clusters in the human genome and 

share stretches of highly similar DNA sequence, particularly at their 3’ exons where the 

DNA sequence encoding the zinc finger motifs is contained. 41,42 Chromosome 19 

contains the majority of ZNF clusters in the human genome. 41–43 By examining ATRX 

enrichment on chromosome 19, we found that the ZNFs clusters are demarcated by 

ATRX occupancy (Fig. 1D,E). We next analyzed the binding pattern of ATRX over 

individual ZNF genes and found ATRX to be preferentially enriched at the 3’ exons of 

ZNFs (Fig. 1F,G). These results were confirmed by ChIP-seq with a second ATRX 

antibody, which showed nearly identical enrichment patterns at ZNF genes (Fig. S2). 

Overall, our ChIP-seq studies demonstrate that ZNFs are a novel set of ATRX targets 

and that ATRX is highly enriched at their 3’ exons. 

 

ATRX is enriched at ZNF genes harboring an atypical chromatin signature and 

distinctive epigenetic and genomic features 

 

A large proportion of ZNFs contain an atypical chromatin signature at their 3’ exons. 44 

This includes high levels of H3K9me3, permissibility to transcription, and enrichment of 
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H3K36me3, a mark associated with transcriptional elongation. Our analysis of ENCODE 

ChIP-seq data in K562 cells corroborated these observations (Fig. 1E-G).  

 

To investigate the epigenetic and genetic characteristics of the ATRX-enriched ZNFs 

and their relationship with the above atypical chromatin signature, we categorized all 

ZNF genes into three classes based on their ATRX enrichment levels: Class I represents 

ZNFs highly enriched for ATRX, Class II contains ZNFs moderately enriched, and Class 

III for ZNFs depleted of ATRX enrichment (Fig. 2A, top). We next quantified the average 

ChIP-seq signals of ATRX, H3K9me3 and H3K36me3 over the gene bodies of the ZNF 

classes. As shown in Figure 2A, Class I ZNFs show high levels of both H3K9me3 and 

H3K36me3. In contrast, Class III genes are largely depleted of H3K9me3 and show less 

enrichment of H3K36me3. To analyze if ATRX enrichment is correlated with the 

presence of H3K9me3 and H3K36me3 at the same loci, we calculated the Spearman 

correlation of these marks in Class I and Class III ZNFs. H3K9me3 is correlated with 

ATRX and moderately correlated with H3K36me3 in Class I ZNFs whereas a poor 

correlation for both marks was observed in Class III ZNFs (Fig. 2B). These data suggest 

that ATRX is specifically enriched at those ZNFs displaying an atypical chromatin 

signature.  

 

To analyze the relation between ATRX and atypical chromatin genome-wide, we re-

analyzed ENCODE H3K36me3 and H3K9me3 ChIP-seq data for K562 cells and plotted 

ATRX enrichment levels at atypical chromatin peaks (overlapping H3K9me3/H3K36me3 

peaks), H3K9me3-only peaks and H3K36me3-only peaks. ATRX is enriched at a subset 

of atypical and H3K9me3-only regions, and largely absent of H3K36me3-only regions, 

suggesting that ATRX recruitment is independent of the H3K36me3 mark (Fig. S3A,B). 

Interestingly, ATRX enrichment is more significant at atypical chromatin regions than at 
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H3K9me3-only regions (Fig. S3C). These data suggest that ATRX is a bona fide binder 

of atypical chromatin genome wide. 

 

To further understand ATRX recruitment and function at ZNFs, we analyzed the ZNF-

related genomic features in the three defined classes. ZNF genes can be classified as 

transcriptional activators or KRAB-containing repressors. KRAB is a potent repressor 

domain that is contained in about half of the ZNFs and is generally encoded in two 

exons independent of the 3’ exon containing the zinc finger motifs. 42 As KRAB-

containing genes were enriched in our Gene Ontology analysis of ATRX-bound genes 

(Fig. 1B), we plotted the number of KRAB domains contained by each ZNF ordered by 

class. Most of the ATRX-enriched Class I and Class II ZNFs contained KRAB domains, 

while very few of Class III ZNF genes contain this feature (Fig. 2C, left).  

 

Because the DNA sequence encoding C2H2 zinc finger motifs is similar between ZNFs, 

it has been proposed that ZNF genes are prone to homologous recombination (HR), 

particularly those with more zinc finger motifs. 41,42,44 Therefore, the presence of 

H3K9me3 at the ZNF 3’ exons has been suggested to protect against HR. 44,49 To 

support this idea, we plotted the number of predicted C2H2 zinc finger motifs per ZNF 

gene. On average, human ZNF genes contained ~9 zinc finger motifs per gene. In 

contrast, Class I ZNF genes contained significantly more motifs with an average of ~14, 

while ATRX depleted Class III genes contained only ~6 domains per gene (Fig. 2C, left 

and top right). These results suggest that ATRX enrichment at the ZNF 3’ exons 

positively correlates with the number of C2H2 zinc finger motifs. This is in accordance 

with a study that reported H3K9me3 enrichment at 3’ ZNF exons positively associated 

with the number of zinc finger motifs. 44  
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A genomic feature proposed to be important for ATRX binding is the Guanine DNA 

content (G-content). ATRX binds to G-quadruplexes with high affinity in vitro and 

facilitates polymerase elongation through deposition of H3.3 specifically in G-rich regions 

that have a tendency to form these structures. 15,31 Based on these observations, we 

measured the G-content and predicted the potential of G-quadruplex formation at the 3’ 

ends of the ZNF genes. Surprisingly, ATRX enrichment levels negatively correlated with 

both G-content and the potential to form G-quadruplexes (Fig. 2C, left and middle right). 

This strongly indicates that ATRX recruitment to ZNF 3’ exons is not mediated by its 

ability to recognize G-quadruplexes, but by an alternative mechanism(s). 

 

We then investigated whether ATRX enrichment and the presence of the atypical 

chromatin signature correlates with ZNF transcriptional levels. Thus, we analyzed the 

ENCODE RNA-seq datasets for K562 and plotted the normalized RPKM signal for the 

three ZNFs classes. Intriguingly, there was no evident association between RNA-seq 

expression levels and ATRX enrichment. This suggests that neither ATRX binding nor 

the formation of the atypical chromatin signature have a direct effect on ZNF expression 

levels (Fig. 2C, left and bottom right). 

 

As ATRX regulates late stalled replication forks and H3K9me3-marked chromatin is 

often late replicating, 37,39,40,50 we queried whether ATRX binds to late-replicating ZNFs. 

To address this, we analyzed the K562 Repli-seq data from ENCODE and quantified the 

signal for the ZNF classes throughout S phase. Interestingly, we found that ZNF Classes 

I and II tend to be late replicating while Class III ZNFs replicate early (Fig. S4A).  

 

In summary, we have established that ATRX levels positively correlate with H3K9me3 at 

atypical chromatin found at the 3’ of ZNF genes. ATRX enrichment at ZNFs is 
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independent of transcriptional levels. Moreover, ATRX-enriched ZNFs tend to be late 

replicating, contain KRAB domains, and have a large number of zinc finger motifs. Such 

ZNFs also contain low levels of G-content and low potential for G-quadruplex formation. 

These trends are all statistically significant (Tables S2-S3). 

 

SETDB1, TRIM28 and ZNF274 co-localize at 3’ exons of ATRX-bound ZNF genes 

and form a complex with ATRX.  

 

In order to find additional chromatin factors that bind the ZNF 3’ exons, we performed 

metagene analyses at the ZNF gene bodies with all available K562 ChIP-seq datasets 

from the ENCODE project. 51 From the 98 datasets we analyzed, we found that the 

enrichment levels of the H3K9me3 methyltransferase SETDB1 (also known as ESET) 

and the SETDB1-interacting protein TRIM28 (also known as KAP1) correlated 

appreciably with ATRX and H3K9me3 at the 3’ exons of ZNF genes (Fig. 2D). 

Interestingly, TRIM28 is a co-repressor that interacts with KRAB-containing ZNF 

transcription factors and recruits HDACs and H3K9 methyltransferases to enforce 

silencing. 52 Moreover, we found a striking co-localization of ATRX and H3K9me3 with 

the KRAB-containing transcription factor ZNF274 (Fig. 2D). This is in agreement with a 

study that reported ZNF274 to bind the 3’ region of ZNF genes and recruit SETDB1 

through its interaction with TRIM28. 53  

 

We then performed a correlation analysis of the ChIP-seq signals of ATRX, ZNF274, 

TRIM28, SETDB1 and H3K9me3 to determine if they preferentially co-localize at ZNFs. 

Genome-wide, ATRX moderately associates only with H3K9me3 and TRIM28 (Fig. 2E, 

left). In striking contrast, when focusing only on the ZNF genes, the correlation 
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coefficients between ZNF274/TRIM28/SETDB1/ATRX denote a strong association, 

along with presence of H3K9me3 signal (Fig. 2E, right). 

 

To investigate whether the ZNF274/TRIM28/SETDB1 complex interacts with ATRX, we 

performed co-immunoprecipitation experiments of chromatin-bound proteins in K562 

cells. As show in Figure 2F, ATRX is able to co-immunoprecipitate with all three factors. 

As a control for ATRX pull-down, we also confirmed ATRX’s interaction with DAXX in 

K562. This data strongly suggests that ATRX physically interacts with 

ZNF274/TRIM28/SETDB1 at the chromatin level. 

 

Finally, we performed a comprehensive motif analysis of ZNF274 binding sites (see 

Methods). We found 3 significant DNA motifs that were highly enriched at the 3’ end of 

ATRX enriched Class I and Class II ZNF genes, but not at ATRX depleted Class III 

ZNFs (Fig. S4B). These data favors the idea that the ZNF274/TRIM28/SETDB1/ATRX 

complex could bind to ZNF genes at least in part through the recognition of ZNF274-

binding motifs. Of note, the motifs that we found are in accordance with a previous 

ZNF274 motif-analysis. 53 

 

Collectively, we have identified a ZNF274/TRIM28/SETDB1/ATRX complex that 

localizes to the 3’ region of ZNF genes and correlates with H3K9me3 enrichment in 

K562 cells.  

 

ATRX enrichment at ZNFs is conserved across distinct human cell-types 

 

Next, we investigated whether ATRX is bound at ZNF 3’ exons in other cell types. 

Because ATRX, SETDB1 and TRIM28 ChIP-seq data sets are not readily available, we 
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first utilized available ZNF274 and H3K9me3 ChIP-seq data in ENCODE for cell lines 

GM12878, H1-hESC, HeLa-S3, HepG2 and NT2-D1 (see Table S6 for details of data 

sources and analysis). ZNF274 binds to the 3’ of ATRX-bound Class I and Class II ZNF 

genes (as defined in K562) in the majority of cell lines analyzed (Fig. S4C). Similar to 

other previous studies, 44 H3K9me3 at the 3’ region of ZNFs was also conserved (Fig. 

S4C). 

 

Using a panel of cell lines of diverse origin from ENCODE (K562, H1-hESC, HeLa-S3 

and HepG2) and two neuroblastoma cell lines (LAN6 and SKNFI), we performed ATRX 

ChIP-qPCR for eleven randomly chosen Class I ZNFs distributed across different 

chromosomes, as well as two Class III ZNF genes as negative controls. We found 

significant enrichment of ATRX in Class I ZNFs across all cell lines analyzed, and none 

for Class III ZNFs or IgG control (Fig. 3A). Using available ChIP-seq data, we plotted the 

enrichment of H3K9me3 and ZNF274 at these specific ZNFs in the ENCODE cell line 

panel. As expected, all ATRX-enriched ZNFs also show relatively high levels of 

H3K9me3 and ZNF274 (Fig. 3B). Furthermore, these ZNFs show diverse expression 

levels independent of their ATRX binding status according to the normalized RNA-seq 

signal from ENCODE (Fig. 3C). This result substantiates the notion that ATRX binding is 

independent of the transcriptional status of the ZNFs.  

 

In order to corroborate our findings genome-wide, we performed ATRX and H3K9me3 

ChIP-seq in LAN6, which showed robust ATRX enrichment by ChIP-qPCR (Fig. 3A). 

Strikingly, we found that the binding of both ATRX and H3K9me3 at the 3’ of ZNF genes 

is conserved in LAN6 (Fig. 3D, compare with Fig. 2D). This binding was specific and 

highly significant for ZNF gene bodies (Fig. 3E), and as observed in K562 cells, ATRX 

and H3K9me3 demarcate the ZNF clusters on chromosome 19 in LAN6 (Fig. 3F-G). 
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Next, we re-analyzed the only other published human ATRX ChIP-seq dataset from 

primary human erythroblasts 15 and two recent datasets from mouse embryonic stem 

cells (mESC) and mouse embryonic fibroblasts (MEF), 46 and assessed ATRX binding at 

ZNFs. In contrast to K562, LAN6 and all other cell lines analyzed, human erythroblasts, 

mESCs and MEFs lack ATRX binding within ZNF gene bodies (Fig. S4D,E). We then re-

analyzed available ChIP-seq data for H3K9me3 in mESCs and MEFs (Table S6) and 

found that H3K9me3 enrichment at ZNFs does not co-localize with ATRX, and only 

mESC showed H3K9me3 enrichment at the 3’ exons of ZNFs (Fig. S4E). It is unclear if 

these differences are biologically significant and it will be interesting to define if the 

pattern observed in humans is also conserved in other vertebrates.  

 

Overall, our analysis demonstrates that the enrichment pattern of ATRX, H3K9me3 and 

ZNF274 at ZNF 3’ exons is conserved in several human cell lines of diverse lineages, 

including non-tumorigenic cells, suggesting a general mechanism for ZNF gene 

regulation via ATRX that is independent of transcription. 

 

ATRX deficient cells have reduced H3K9me3 enrichment at 3’ exons of ZNFs 

 

To functionally investigate the role of ATRX, we generated two clonal ATRX knock out 

(KO) cell lines using CRISPR/Cas9 genome editing in K562 cells. Our KO lines (ATRX 

KO1 and KO2) were characterized in detail (Fig. S5A, Methods). As a control, we used 

a clonal cell line overexpressing Cas9 alone (referred to as V2). Immunoblot and 

sequencing analyses showed that ATRX KO1 cells retain residual ATRX from an allele 

with an in-frame deletion, while KO2 cells are completely devoid of ATRX protein (Fig. 

4A, S5A). Moreover, the global levels of SETDB1, TRIM28 and ZNF274 in chromatin 
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were largely unaffected by ATRX KO (Fig. S5B). We next performed ATRX ChIP-qPCR 

in these KO lines for the panel of Class I and Class III ZNFs. In accordance with our 

ChIP-seq data, Class III ZNFs lacked ATRX enrichment, while Class I ZNFs were 

enriched for ATRX in the control, reduced in KO1 and ablated in KO2 cells (Fig. 4B). 

 

Loss of ATRX has been shown to promote genomic instability and defects in cell cycle. 

37–40 We tested these functional readouts in our KO cell lines and found that ATRX KO 

K562 cells have increased DNA damage as compared to control cells as assessed by 

Comet assays and immunoblots for γH2A.X (Fig. S6A-C). Furthermore, ATRX KO cells 

displayed a slight, but reproducible, cell cycle defect in the G1/S transition (Fig. S6D,E).  

 

We then queried whether ATRX deficiency alters the chromatin state of the atypical 

chromatin domains at ZNF genes. To address this question, we performed native ChIP 

for H3K9me3 and H3K36me3 in control and ATRX KO cells, followed by qPCR analysis 

for ZNFs. Strikingly, H3K9me3 levels decreased at Class I ZNFs in the ATRX KO cells 

compared to control cells, and displayed a similar pattern to that of ATRX occupancy 

(Fig. 4B,C). In contrast, H3K36me3 levels remain stable upon ATRX loss (Fig. S7A). 

We also assessed whether ATRX depletion affected the transcription of ZNF genes. 

Consistent with our findings that ATRX enrichment at ZNFs does not correlate with their 

transcriptional activity (Fig. 2C, 3C), we did not observe changes in expression levels of 

ZNFs in the ATRX KO cell lines (Fig. S7B). Together, these data suggest that ATRX 

regulates H3K9me3 levels at ATRX-bound ZNF genes, but that H3K36me3 and 

transcriptional regulation is ATRX-independent. 

 

Because ZNF274 binds DNA and recruits TRIM28, which in turn recruits SETDB1, we 

speculated that the ZNF274/TRIM28/SETDB1 complex serves as a scaffold for ATRX at 
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the 3’ exons of ZNFs. Therefore, we posited that ATRX KO would not affect the complex 

binding to the chromatin, but rather its capacity to deposit or maintain H3K9me3. As 

expected, ZNF274 and TRIM28 binding remains largely unchanged at ZNF genes after 

ATRX KO (Fig. S7C,D). While ATRX KO1 cell line did not affect SETDB1 binding, 

SETDB1 occupancy was increased in ATRX KO2 (Fig. S7E). This may reflect a 

compensatory effect for the complete loss of ATRX, although we cannot rule out a clone-

specific effect. These data broadly favors a model in which ZNF274/TRIM28/SETDB1 is 

able to bind to the 3’ exons of ZNFs independently of ATRX, but ATRX is required to 

establish or maintain H3K9me3 at atypical chromatin of ZNF genes. 

 

To investigate the genome-wide alterations of H3K9me3 after ATRX depletion, we 

performed native ChIP-seq for H3K9me3 in control and ATRX KO cells. We first 

analyzed the H3K9me3 enrichment at ZNF genes. In agreement with our ChIP-qPCR 

results, we found H3K9me3 levels significantly reduced in KO cells, specifically in ATRX-

enriched Class I and II ZNFs (Fig. 4D). These results were confirmed by metagene 

analysis of ZNFs (Fig. 4E) and visualization of H3K9me3 peaks at the ZNF clusters on 

chromosome 19 (Fig. S8A, B). This demonstrates that ATRX is required for establishing 

and/or maintaining H3K9me3 levels at the 3’ end of a subset of ZNFs.  

 

H3K9me3 within atypical chromatin domains is sensitive to ATRX, but not DAXX, 

depletion  

 

Besides ZNF genes, we identified additional genomic regions that show reduction of 

H3K9me3 upon ATRX depletion (Fig. S8C). To further understand the nature of the 

H3K9me3 regions that are sensitive to ATRX loss, we divided all H3K9me3 regions to 

“reduced” (n=6,055) or “unchanged” (n=8,331) based on whether the levels are 
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decreased or remain stable in the ATRX KO cell line, respectively. We then analyzed the 

proportion of reduced regions in atypical chromatin and compared it to H3K9me3-only 

chromatin. Strikingly, a large proportion of reduced regions (~80%) were atypical 

chromatin in contrast to H3K9me3-only chromatin (~40%) (Fig. 4F). This trend is highly 

significant (Fig. 4G). Thus, our data suggest that the levels of H3K9me3 at atypical 

chromatin are particularly sensitive to ATRX depletion.  

 

We next analyzed the genomic distribution of atypical chromatin. Interestingly, as shown 

in Figure 4H, most atypical chromatin regions that lose H3K9me3 are located in 

repetitive sequences, followed by those located in genes (including ZNF genes). This is 

consistent with recent studies that show a role for ATRX in regulating H3K9me3 at 

repetitive elements, however the levels of H3K36me3 at such regions have not been 

described. 7,20–22,25 

 

ATRX has been reported to regulate H3K9me3 levels in concert with DAXX at a subset 

of repetitive and imprinted regions. 7,20–22,25 In order to assess whether DAXX regulates 

H3K9me3 at ZNFs, we used CRISPR/Cas9 to generate DAXX KD and double DAXX KD 

+ ATRX KO lines (see Methods for details). After confirming the knock down of DAXX 

(Fig. S9A), we performed H3K9me3 ChIP-qPCR for Class I and Class III ZNFs. We 

found little to no change in H3K9me3 levels in the single DAXX KD (Fig. S9B). The 

DAXX KD/ATRX KO shows a consistent decrease of H3K9me3 as observed with the 

single ATRX KO2 cell line (Fig. S9B). While we can not completely rule out a role for 

DAXX in the maintenance of H3K9me3 levels at ZNFs, our results suggests that its 

contribution is minor in comparison to other factors, such as ATRX and ZNF274 (see 

below). Overall, these results suggest that ATRX protects H3K9me3 levels at atypical 
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chromatin regions genome-wide, and that ZNF genes comprise a subset of these 

affected regions.  

 

ZNF274 recruits ATRX to a subset of ZNF genes to regulate H3K9me3 levels and 

genomic stability. 

 

To further understand the interplay between ATRX and ZNF274, we depleted ZNF274 

using CRISPR/Cas9 in K562 cells. We generated three clonal cell lines (see Methods for 

details): a single ZNF274 KO cell line (referred to as Z274 KO), a double ZNF274/ATRX 

KO cell line (Z274/ATRX KO) and a control cell line expressing a non-specific sgRNA 

(Random). We characterized the mutation status of the ZNF274 gene (Fig. S10) and 

confirmed that the Z274 KO abrogated ZNF274 binding to ZNF genes by ChIP-qPCR 

(Fig. 5A). 

 

We next analyzed ATRX binding in the ZNF274 KOs by ChIP-qPCR. Strikingly, we 

observed a decreased binding of ATRX in the Z274 KO cells for most Class I ZNFs. As 

expected, ATRX is depleted from all ZNFs in the Z274/ATRX KO (Fig. 5B). These 

results strongly suggest that ZNF274 tethers ATRX to ZNFs. However, because ATRX is 

not lost at all ZNFs examined, we hypothesize that there may be other (potentially 

compensating) factors that can recruit ATRX to these regions. 

 

To determine the impact of ZNF274 depletion on H3K9me3, we performed ChIP-qPCR 

in the ZNF274 KO lines. In order to compare the effect of the double Z274/ATRX mutant, 

we included the ATRX KO2 cell line in our analysis. As shown in Figure 5C, the ZNFs 

that have lost ATRX binding in the ZNF274 KO cells also lose H3K9me3 enrichment. In 

contrast, the ZNFs that still retain some ATRX binding show a more modest reduction in 
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H3K9me3 levels. Strikingly, in many cases, the Z274/ATRX KO cells showed a stronger 

decrease of H3K9me3 than either individual KO, suggesting that knocking out a single 

component of the complex may not entirely abrogate its function. 

 

Finally, we determined the functional consequence of H3K9me3 reduction in the 

ZNF274 KOs. We noted an increase in γH2A.X in the Z274 KO cell line as compared to 

the control, which was even stronger in the Z274/ATRX KO cells (Fig. 5D). Because the 

ATRX KO cells show a defect in cell cycle, we queried whether the ZNF274 KO would 

have a similar phenotype. Indeed, ZNF274 KO cells show a delay in G1/S (Fig. 5E-F), 

comparable to that observed in the ATRX KO2 cells.  

 

Collectively, we propose a model in which ATRX is tethered to the 3’ exons of ZNF 

genes by the ZNF274/TRIM28/SETDB1 complex to establish or maintain/protect 

H3K9me3 at these transcriptionally active regions (Fig. 6). ATRX and ZNF274 depletion 

leads to reduction of H3K9me3 levels at ZNF 3’ exons and is associated with higher 

DNA damage and cell cycle defects. Furthermore, ATRX acts as a genome-wide 

regulator of H3K9me3 levels at atypical chromatin that is not restricted to ZNFs. Finally, 

we propose that impairing ATRX function has important consequences for the genomic 

stability and evolution of ZNFs clusters, as the loss of H3K9me3 at ZNF 3’ exons may 

increase the probability of HR between them (Fig. 6; see discussion below).  

 

DISCUSSION 

 

ATRX is an important chromatin regulator involved in diverse processes such as 

transcriptional regulation, maintenance of imprinted loci, replication, genome stability 

and chromatin looping. 7–9,30,54 Here we report that ATRX binds the 3’ exons of ZNFs with 
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an atypical chromatin signature to establish or maintain H3K9me3 (Fig. 6). ZNFs 

represent the fastest expanding gene family encoding transcription factors in humans, 

with the greatest diversity of target sequences. 41–43,55 This property of ZNFs to recognize 

a multitude of motifs is generated through diverse combinations of their zinc finger 

motifs. 55 The average ZNF gene contains 9 independent zinc finger motifs and the 

number of motifs varies from gene to gene. Interestingly, these motifs are almost always 

located at the 3’ exons of ZNF gene loci and harbor an atypical chromatin signature 

consisting of both H3K9me3 and H3K36me3 (Fig. 6). 42,44 

 

Through an unbiased ChIP-seq approach and analysis of ENCODE data, we found that 

ATRX preferentially binds to the 3’ exons of a subset of ZNF genes containing this 

atypical chromatin signature. These ZNF genes are distinguished by the presence of a 

KRAB repressor domain, a higher than average number of zinc finger motifs, low levels 

of G-content and low probability of forming G-quadruplexes. Previous studies have 

shown that ATRX recognizes and resolves G-quadruplexes, relevant in the context of 

gene regulation. 15 However, our data suggests that ATRX binds and regulates these 

atypical chromatin regions by an alternative mechanism(s). 

 

We found that ATRX co-localizes and interacts with the previously reported 

ZNF274/TRIM28/SETDB1 complex 53 at ZNF 3’ exons with an atypical chromatin 

signature. Our data suggests a model whereby ZNF274 recognizes a DNA motif that is 

common in certain ZNF 3’ exons (i.e. those bound by ATRX), and recruits the 

TRIM28/SETDB1/ATRX complex to establish, maintain or protect H3K9me3. Of course, 

there are questions about this model that require further clarification. For example, we 

wonder why in the absence of ZNF274, ATRX still retains its ability to bind a subset of 

ZNFs. These results, coupled to the fact that we find atypical chromatin regions that are 
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enriched in TRIM28/SETDB1/ATRX but not ZNF274 (data not shown), suggests that 

other ZNF transcription factors may be involved in targeting ATRX to specific loci. Thus, 

the TRIM28/SETDB1/ATRX complex may be guided to unique loci or chromatin 

environments via ZNF proteins that may have cell- or stage-specific binding patterns. 

Moreover, while it has been established that KRAB-ZNF proteins recruit TRIM28 through 

their KRAB domain, and that KRAB in turn recruits SETDB1 56, the dynamics of ATRX 

recruitment to the complex are unclear. One possibility is that SETDB1 establishes basal 

H3K9me3 levels that are recognized and bound by the ATRX ADD domain, which in turn 

promotes further H3K9 methylation forming a feedback loop to maintain H3K9me3 

levels. 

 

Our loss-of-function studies revealed that H3K9me3 levels at atypical chromatin regions, 

in particular those at ZNF 3’ exons, are decreased after ATRX loss. Recent studies have 

reported similar effects upon ATRX loss at known ATRX target regions such as ERVs 

and imprinted loci. 20–22,25 However, the mechanisms underlying H3K9me3 loss in ATRX-

deficient cells remain unclear. Based on our observations, we hypothesize three non-

exclusive scenarios: 1) ATRX may facilitate SETDB1-mediated H3K9me3 deposition by 

promoting an optimal nucleosome structure for SETDB1 function, 2) ATRX binds 

H3K9me3 and blocks demethylase activity, and 3) ATRX may help to reestablish 

H3K9me3 after transcription or replication. These scenarios would also explain why 

H3K9me3 levels decrease after ATRX KO, despite the fact that SETDB1 binding 

remains unchanged. 

 

Functionally, loss of H3K9me3 in ATRX and ZNF274 KO cells may impact on the 

genomic stability of ZNFs. The ZNF family has expanded in the primate lineage through 

gene duplication. 41–43 ZNFs contain long stretches of highly similar sequences in their 3’ 
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exons and high levels of H3K36me3, a mark that enhances the resolution of double 

strand breaks (DSB) through the HR pathway. 57,58 Therefore, ZNF regions may be 

prone to recombine. As H3K9me3-rich heterochromatin regions are refractory to repair 

of DSB and HR, 59,60 we hypothesize that ATRX-mediated H3K9me3 enrichment at ZNF 

3’ exons protects them from HR. In this regard, recent studies demonstrated that ATRX 

can act as a suppressor of recombination at telomeres. 22,36,47,61 Furthermore, the notion 

that H3K9me3 at ZNF 3’ regions protects from HR has been previously suggested in at 

least two independent studies. 44,49 If this hypothesis is correct, ATRX may function, at 

least partially, as an epigenetic modulator of ZNF gene expansion, balancing the positive 

selective pressure for ZNF duplication and the deleterious effects that an excessive 

recombination rate has for genomic stability. Moreover, altered recombination levels at 

ZNFs, telomeres and other ATRX-regulated regions may be responsible, at least in part, 

for the defects in cell cycle and an increased percentage of DNA damage we observed 

in ATRX KO cells.  

 

Despite the evidence that ATRX suppresses recombination at certain genomic regions, 

there are alternative explanations for its role at ZNFs. For instance, we find that Class I 

ZNFs tend to be late replicating. Thus, it is possible that ATRX facilitates DNA replication 

at atypical chromatin regions. This idea is in line with the finding that ATRX KO cells 

subjected to replicative stress have a higher accumulation of stalled replication forks. 

39,40 Moreover, a replication defect can also explain the higher levels of DNA damage 

and the cell cycle delay observed in ATRX and ZNF274 KO cells. Furthermore, it has 

been suggested that the chromatin environment can affect RNA polymerase 

processivity, in turn affecting the RNA splicing machinery. 62 Thus, the levels of 

H3K9me3 at ZNFs could affect alternative splicing. Because the RNA-seq analyses 

performed in this study were focused only on global expression levels, potential changes 
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in isoform expression, polymerase processivity, and other related mechanisms, remain 

to be explored. 

 

Several recent studies have found that the ATRX/DAXX complex deposits the H3.3 

histone variant at several H3K9me3-containing regions, such as telomeres, imprinted 

regions and retrotransposons. 7,20–22,25 Interestingly, H3K9me3 levels in those regions 

are frequently decreased upon ATRX inactivation. How similar these H3.3/H3K9me3 

regions are to the H3K9me3/H3K36me3 atypical chromatin signature remains an open 

question. While our data suggests that DAXX has a minimal role in maintaining 

H3K9me3 at ZNF 3’ regions, we cannot exclude the possible involvement of H3.3.  

 

In summary, we demonstrate here that ATRX regulates H3K9me3 levels at the 3’ exons 

of ZNFs and other loci containing an atypical chromatin signature. This unexpected 

function sheds light onto the complex genomic regulatory pathways that ATRX 

participates in, and may be important for the future understanding of diseases in which 

ATRX is mutated or altered. 
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MATHERIALS AND METHODS 
 

XL-MNase ChIP 

Cross-linked-MNase ChIP was performed with Cell Signaling SimpleChIP Enzymatic 

Chromatin IP Kit (cat. #9003) following manufacturer’s instructions with modifications. 

Briefly, K562 and LAN6 (2-4 x 106) cells were cross-linked with 1% formaldehyde in 

PBS, 100mM NaCl, 1mM EDTA pH 8.0, 50mM HEPES pH 8.0, for 10 minutes at room 

temperature. Reaction was quenched with 125 mM glycine. Cells were lysed to obtain 

nuclei and chromatin was digested with Micrococal Nuclease (MNase) (NEB, cat. 

#M0247S) at 37°C for 20 minutes. Nuclei were disrupted by brief sonication (4 cycles, 20 

sec ON/OFF, high power) in a Bioruptor Twin. Chromatin was quantified and 40-80 ug 

was incubated with antibody at 4°C overnight with 1% taken as input sample. After 

incubation, Magna protein A/G magnetic beads (Millipore, cat. #16-663) were added for 

3 hours at 4°C. Beads were washed following the manufacturer’s protocol, followed by 

an extra LiCl buffer wash (10mM Tris-HCl pH 8.0, 1mM EDTA pH 8.0, 1% sodium 

deoxicholate, 1% Igepal, 250mM LiCl). DNA bound to complexes was eluted at 65°C for 

30 mins, treated with RNAse A (10mg/ml) for 1 hour at 37°C, with Proteinase K 

(20mg/ml) for 3 hours at 55°C and then cross-linking was reversed for 4-6 hours at 65°C. 

DNA was purified using the Qiagen MinElute PCR purification kit and subsequently 

analyzed and quantified using an Agilent 2100 Bioananalyzer High Sensitivity Kit. 

 

Native ChIP 

Native ChIP was performed as previously described 63 with minor changes. Briefly, 

nuclei isolated from K562 and LAN6 (4-6 x 106) cells were treated with MNase 

(Affymetrix Cat #70196Y) and ~40-80ug of digested chromatin was immunoprecipitated 
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with specific antibodies. The immunoprecipitated material was treated with Proteinase K 

for 3h at 56 °C and purified using the Qiagen MinElute PCR purification kit. 

 

Antibodies 

See Table S4 for a full list of antibodies and concentrations used for each assay. 

 

Library preparation and ChIP-seq 

ChIP-seq libraries were prepared as previously described 63 and libraries were 

sequenced single-end on Illumina HiSeq 2500 and NextSeq 500. See Table S5 for 

detailed descriptions (number and size of reads, etc.) of the sequenced samples. 

 

ChIP-seq analysis 

Sequenced reads were aligned to the GRCh37 (hg19) assembly using Bowtie 1.0.0. 64 

Redundant reads were eliminated using MACS2 (2.1.0) 65 filterdup option with default 

parameters. The estimated background reads and optimal normalization factor between 

ChIP and Input samples was calculated with the R NCIS package 1.0.1 66 using a shift 

size of 75bp. Peak calling was performed with MACS2 callpeak using the --ratio option 

with the estimated value from NCIS. ChIP/Input fold enrichment pileups were created 

with the macs2 bdgcmp tool using the -m FE option and converted to bigWig files using 

the bedGraphToBigWig program (v4) from the UCSC binaries. For some samples, a 

second peak calling was performed using SICER 67 1.1 using a window of 200bp, 

allowing gaps of 400pb and filtering for q-values < 1x10-8 (see Table S6 for details). All 

peaks overlapping with ENCODE blacklisted regions 45 were eliminated. When available, 

a final list of peaks overlapping the MACS2 and SICER peaks was obtained from the 

intersectBed program from bedtools 2.17.0. 68 See Table S6 for GEO accessions, 

details of analysis parameters (q-values, etc.), and results for all the datasets analyzed. 
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For all the ATRX-related analysis, the K562 ATRX-H300 ChIP-seq sample was used 

due to its high quality, low percentage of background, and high number of reads (Table 

S5). 

 

Gene and coordinate analyses 

All analyses were performed using Ensembl genes (putative genes, pseudogenes and 

genes unmapped to chromosomes were excluded). For human the Ensembl genes 75 

version (GRCh37.p13) was used. For mouse the Ensembl genes 77 version 

(GRCm38.p3) was used. The lists of ZNF genes were downloaded from Biomart, using 

the InterPro id for the Zinc Finger C2H2 domain (IPR007087) as a filter, manually 

analyzed and curated. Repeats coordinates were obtained from the repmask table from 

the UCSC Genome Browser for hg19. Bed files for subsequent analysis were generated 

using the following coordinates: promoters (-3kb to TSS), intergenic (regions falling 

outside genes or promoters).  

 

Correlation analysis 

Correlation heatmaps were generated with the bigwigCorrelate program from the 

DeepTools suite (v 1.5.9.1) 69 using the spearman correlation method. Fold enrichment 

over input bigwig files were used as inputs. For genome-wide analysis, all chromosomes 

were divided in 10kb non-overlapping bins. Bins falling in the blacklisted regions from 

Encode were excluded. For gene-specific analysis, a bed file with the coordinates from 

TSS to TES was used. 

 

Analysis of genomic distribution and correlation with chromatin states 

Bed files with the coordinates of the chromatin states for K562 calculated in 48 were 

generated. Similar chromatin states were merged into single categories (states 1-3 were 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2016. ; https://doi.org/10.1101/027789doi: bioRxiv preprint 

https://doi.org/10.1101/027789
http://creativecommons.org/licenses/by-nc/4.0/


 27

fused as promoters, states 4-7 as enhancers, 10-11 as transcription, 14-15 as 

repetitive). The probability of overlap between ATRX peaks and the HMM states, genes, 

promoters and intergenic regions was calculated with The Genomic HyperBrowser. 70 

ATRX peaks were randomized 10,000 times preserving its segment length and inter-

segment gaps. Observed/expected values were calculated by dividing the overlap of the 

ATRX peaks over the overlap of the randomized regions.  

 

Gene Ontology analysis 

Genes overlapping ATRX significant peaks were obtained using intersectBed from the 

Bedtools suite. Gene Ontology analysis was performed with DAVID 71 using default 

parameters. See Table S1 for the list of genes overlapping ATRX peaks. 

 

Generation of ZNF classes 

Average ATRX ChIP/Input enrichment per gene was obtained with the computeMatrix 

program from the DeepTools suite. The genes were then clustered by kmeans into 3 

groups using R (v 3.0.1). Bed files from each ZNF Class are provided in Additional File 

1.  

 

Protein domain analysis 

The protein sequence of the ZNFs was obtained with Biomart. The sequences were 

matched to all the Prosite motifs using the ScanProsite tool with default parameters. In-

house scripts were used to parse the ScanProsite output and count the number of motifs 

per ZNF gene. 

 

G-content and g-quadruplex analysis 
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G-content at the 3’ region of ZNF genes (last 3kb) was calculated with in-house scripts. 

The probability of G-quadruplex formation was calculated using the quadparser program 

72 with default parameters. 

 

Average enrichment analyses 

The color plots showing the distribution of genetic features among ZNF classes were 

drawn using the image function of R. Darker colors represent presence of KRAB 

domains, a higher number of zinc finger motifs, high G content at the C-terminal ZNF 

region (last 3kb of the gene) and presence of sequences predicted to form G-

quadruplexes. For RNA-seq data, the Z-score of the RNA-seq normalized signal 

(log2(RPKM+1)) from K562 ENCODE data was calculated and plotted. Red colors 

match high expression signals, while blue colors match low expression signals. ZNFs 

are sorted from high to low ATRX enrichment from top to bottom. The calculated values 

used to generate color plots of Figure 2C are provided in Additional File 2. 

 

Metagene analysis 

ZNF genes were ordered by ATRX enrichment from high to low. The metagene plots 

were generated with DeepTools using the ordered gene file and the ChIP/Input bigwig 

tracks. All genes from TSS to TES were scaled to a 5kb region +/- 1kb with sliding 

windows of 100 bp. Metagene values were calculated using computeMatrix. Values were 

plotted with heatmapper and the average enrichment profiles were plotted with profiler. 

The matrices for all heatmaps and profile plots are provided in Additional File 3. The 

data sources can be found in Table S6. 

 

Motif analysis 
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The ZNF274-bound regions were obtained from the summit peaks generated by 

MACS2. A fasta file from these coordinates was created using in-house scripts and used 

as input for MEME-ChIP (v. 4.1.0.0). 73 The sequences were compared to the JASPAR 

vertebrate database; other options were set as defaults. The regions matching the motifs 

(fimo output) were parsed, sorted by class and counted using in-house scripts. 

 

Repli-seq analysis 

Repli-seq bigwig files generated by the ENCODE project for K562 were analyzed using 

DeepTools. The average signal per ZNF was calculated with computeMatrix and then 

plotted in R using the heatmap.2 function. Calculated Repli-seq values are provided in 

Additional File 4. 

 

Co-immunoprecipitation of chromatin bound proteins 

K562 cells were harvested for each IP (50 x 106) using PBS supplemented with protease 

inhibitor without EDTA, 1 mM DTT and 0.05% NP-40 and incubated on ice for 3 min and 

centrifuged at 500 x g for 5 min at 40 C. The nuclei were washed with PBS and re-

suspended in EX 100 buffer (10 mM Hepes pH 7.6, 100 mM NaCl, 1.5 mM MgCl2, 0.5 

mM EGTA, 10% glycerol) and digested with MNase (NEB, cat. #M0247S) at 37°C for 10 

min. The reaction was stopped with EGTA (10mM) followed by spinning (10,000xg for 10 

min at 4°C). The collected supernatant containing mononucleosome particles was used 

for IP. 4μg of ATRX antibody (HPA001906) or Rabbit IgG were added to each IP and 

incubated overnight (rotating at 4°C). 25μl of protein A+G magnetic bead slurry 

(Millipore, cat. #16-663) were washed twice with PBS and once with EX 100 buffer and 

incubated with the immunocomplexes for 2.5 hours at 4°C followed by 2 x 5 min washes 

with buffer G250 (50 mM Tris pH 7.5, 250 mM NaCl and 0.5% NP-40) and one 5 min 

wash with G150 (50 mM Tris pH 7.5, 150 mM NaCl and 0.5% NP-40). Laemmli sample 
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buffer was added to each sample, boiled at 95°C, and run on NuPAGE 4-12% bis-tris 

gels (Thermo Fisher).  

 

Generation of ATRX and ZNF274 KO cell lines by CRISP/Cas9 

Single guide RNAs (sgRNAs) targeting the exons of the ATRX gene were designed 74 

and cloned into the lentiCRISPR V2 vector (addgene #52961, see sgRNAs sequences in 

Table S7). Lentiviral production using HEK293T cells was performed using standard 

laboratory protocols. To generate stable cell lines, K562 (~1x106) cells were infected 

with virus for each CRISPR guide and either an empty lentiCRISPR V2 or a lentiCRISPR 

V2 containing a non-specific sgRNA was used as a control. Infected cells were selected 

(puromycin 2ug/ml; 3 weeks) and subsequently single clones were sorted into 96-well 

plates using an IMI5L cell sorter (BD Biosciences) for ATRX and ZNF274 KO. Clones 

were grown in selection for 3-4 weeks and tested for KO by DNA sequencing and 

immunoblot analysis. For the generation of ATRX KO cell lines two individual clones 

from two independent sgRNAs were selected and expanded (KO1 and KO2) for further 

analyses. For the generation of ZNF274 KO cells, two independent sgRNAs were used; 

clones could only be obtained from one. One clone from each CAS9-only infection (V2) 

and non-specific sgRNA (random) were randomly chosen for controls. The four most 

likely off-target loci of each sgRNA were also sequenced to assure specificity KO with no 

off-target mutations observed in any of the clones (data not shown). For the generation 

of double KO clones, the ATRX KO2 clone was infected with lentiCRISPR V2 targeting 

ZNF274, selected, sorted and analyzed as above. In order to determine the allele-

specific mutations, gDNA was extracted from each clone, amplified with specific primers 

to the target gRNA sequence (Table S7), cloned into the pCR4-TOPO vector, 

transformed into bacteria, and single bacterial colonies sequenced. 
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Generation of DAXX KD cell lines by CRISP/Cas9 

K562 cells were infected and selected as described above, with the exception that single 

cells were not sorted. Pools of KD cells were maintained in constant selection 

(puromycin 1ug/ml) and analyzed by immunoblotting to assess the efficiency of the KD. 

The double ATRX KO/DAXX KD was obtained by infecting and selecting ATRX KO2 cell 

line. Pools of cells infected with random sgRNA were used as control. 

 

Comet assay 

The alkaline comet assay was performed as described with modifications. 75 K562 

(1X105) cells were washed with cold PBS, resuspended, and diluted in 100 uL of 0.5% 

low melting point agarose to be pipetted onto slides covered with 1.5% agarose. Cells 

were lysed (2.5M NaCl, 100 mM EDTA, 10mM Tris, pH 10, 1% Triton and 10% DMSO) 

for 24h at 4oC, incubated in electrophoresis buffer (300 mM NaOH, pH 13,1 mM EDTA) 

for 30 min and subjected to electrophoresis in the dark for 25 min at 25 V and 300 mA. 

Slides were neutralized 3x with Tris buffer (0.4M Tris, pH 7.5) for 5 min, dried with 100% 

ethanol and stained with ethidium bromide (20 ug/mL). Cells were imaged on a Nikon 

Eclipse® microscope and ≥100 random cells were analyzed with CellProfiler software. 

Cell images were segmented using pixel intensity of 0.5 as threshold to generate masks 

matching the nucleoid. The comet tail was calculated by subtracting the nucleoid-

integrated intensity from the comet-integrated intensity. For each sample, a positive 

control with cells treated with hydrogen peroxide (H2O2) (100uM for 30 min at 25oC) was 

analyzed concurrently. Experimental analysis was performed in a blinded fashion.  

 

Cell cycle analysis  

K562 (3x106) cells were pulsed with 10 uM of BrdU for 45 min, washed with PBS, and 

fixed in 70% cold ethanol for 1 hour on ice. The cells were then washed 2x with cold 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2016. ; https://doi.org/10.1101/027789doi: bioRxiv preprint 

https://doi.org/10.1101/027789
http://creativecommons.org/licenses/by-nc/4.0/


 32

PBS and incubated in 2M hydrochloric acid for 30 min at room temperature. After 

incubation, cells were washed 2x with cold PBS and once with cold PBS-T solution 

(PBS, 0.2% Tween, 1% BSA), then stained with anti-BrdU FITC PBS-T (eBioscience, cat 

#11-5071-41) for 30 min in the dark. Cells were washed once with cold PBS-T, once 

more with cold PBS and then stained for 30 min on ice with a PI/RNAse solution (PBS, 

20ug/ml PI, 10ug/ml RNAse). FACS analysis (10,000 cells per sample) was performed 

using BD FACS Canto II and FlowJo 10. 

 

H3K9me3 enrichment analysis 

The significantly reduced H3K9me3 domains in the K562 ATRX KO2 H3K9me3 ChIP-

seq were calculated with the SICER-df program. 67 Only regions overlapping significant 

H3K9me3 peaks in the V2 control were taken into account. H3K9me3 peaks in the 

H3K9me3 that were not significantly reduced compared to V2 were marked as 

unchanged. Bed files with the reduced and unchanged regions coordinates are provided 

in Additional File 5. 

 

Statistical analyses 

The hypergeometric test and permutation tests implemented in the R coin package (v 

1.0-24) were the primary statistical tests utilized (See Table S2 for details). See Table 

S3 for the results of all the performed tests. 

 

ChIP-qPCR and RT-qPCR 

ChIP-qPCR and RT-qPCR were performed as described. 76 See Table S7 for the list of 

primers used in our ChIP-qPCR and RT-qPCR experiments. 

 

Data Access 
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The datasets supporting the results of this article are available in the Gene Expression 

Omnibus (GEO) repository with the accession number GSE70920. 
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FIGURE LEGENDS 

 

Figure 1. ATRX binds to the 3’ regions of ZNF genes in K562 cells. (A) Observed 

over expected random distribution of significant ATRX peaks within HMM chromatin 

categories in K562. 48 In (A) and (C) error bars represent standard deviation. Asterisks 

represent significantly overrepresented regions (* pvalue < 0.05; **** pvalue < 1x10-4) 

assessed by the hypergeometric test (see Tables S2 and S3 for details of statistical 

tests). (B) Gene Ontology analysis of genes that overlap with significant ATRX peaks in 

their gene bodies. (C) Observed over expected random distribution of significant ATRX 

peaks in ZNFs and non-ZNF (other) promoters and gene bodies in K562. The red line 

represents the expected value of a random distribution. (D) Hilbert curve plot of 

chromosome 19 showing the ZNF clusters (red, left), highly enriched ATRX regions in 

K562 (fold enrichment over input >5, blue, middle), and overlap (right). The blue dot and 

the red arrow mark the start (5’) and end (3’) of the chromosome, respectively (see 

diagram on left). The green dots indicate the start and end of centromere, which is 

excluded from the analysis. (E) UCSC Genome browser screenshot of a typical ZNF 

cluster (genes in blue) on chromosome 19. The enrichment over input signal in K562 for 

ATRX, H3K9me3 and H3K36me3 ChIP-seq is shown. Significant peaks represented as 

bars below enrichment tracks. Normalized RPKM signal for RNA-seq is also shown. (F) 

Zoomed in snapshot of two ZNFs contained within the ZNF cluster shown in (E). (G) 

Average K562 enrichment ChIP-seq profiles of ATRX, H3K9me3 and H3K36me3 over 

all ZNF gene bodies +/- 1kb (n = 736). 

 

Figure 2. ATRX and the ZNF274/TRIM28/SETDB1 complex bind to ZNF genes with 

an atypical chromatin signature and distinctive genomic and epigenetic features. 

(A) Average K562 enrichment ChIP-seq profiles of ATRX, H3K9me3 and H3K36me3 at 
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ZNFs classified by their ATRX content. Class I contains high levels of ATRX (n = 91), 

Class II contains medium to low levels of ATRX (n = 303) and Class III is devoid of 

ATRX enrichment (n = 342). (B) Spearman correlation heatmap of K562 ChIP-seq signal 

at ZNF Class I genes (left) and ZNF Class III genes (right). (C) Left: Distribution of 

genetic features among ZNF classes (sorted from high to low ATRX enrichment from top 

to bottom). Dashed lines show separation of the three classes. Colors represent 

presence of KRAB domains (black), number of zinc finger motifs (pink), G content at the 

C-terminal ZNF region (last 3kb of the gene) (gray) and presence of sequences 

predicted to form G-quadruplexes (brown). RNA-seq bar shows the Z score of the 

normalized RPKM signal (log2(RPKM+1)) in K562; red = high expression signal and  

blue = low expression signal. For statistical tests between the classes see Table S3. 

Right: Box plots displaying the number of ZNF motifs, G-content at the ZNF region and 

RNA-seq values in K562 per ZNF Class. Asterisks show significant differences (pvalue < 

1x10-4). (D) Metagene analysis of ChIP-seq enrichment over input profiles at ZNF gene 

bodies +/- 1kb. (E) Spearman correlation heatmaps between ChIP-seq profiles genome-

wide (left) and at ZNF genes (right). Black boxes indicate the significant correlations. (F) 

Immunoblots for endogenous ATRX Co-IP of chromatin bound proteins in K562 cells 

after pulldown with IgG or ATRX antibody. DAXX used as a positive control for the ATRX 

IP.  

 

Figure 3. ATRX binding to ZNF 3’ exons is conserved across human cell lines. (A) 

Heatmap of ATRX ChIP-qPCR enrichment over ZNF genes in several human cell lines. 

The color represents the average enrichment of at least 2 independent biological 

replicates per cell line. ZNF class I genes show significant enrichment as compared to 

IgG for all assessed cell lines (for details see Table S3). (B) H3K9me3 (left) and ZNF274 

(right) ChIP-seq enrichment over the same panel of ZNFs as in (A) for cell lines with 
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available ENCODE data. (C) RNA-seq normalized expression values (log2(RPKM+1)) 

from ENCODE for the panel of ZNF genes shown in (A) and (B). (D) Metagene profiles 

of ATRX and H3K9me3 ChIP-seq data over ZNFs gene bodies +/- 1kb in LAN6 

neuroblastoma cell line. (E) Observed over expected random distribution of significant 

ATRX peaks in ZNFs and non-ZNF (other) promoters and gene bodies for LAN6. (F) 

UCSC Genome browser screenshot of a typical ZNF cluster (genes in blue) on 

chromosome 19. The enrichment over input signal for ATRX and H3K9me3 ChIP-seq in 

LAN6 is shown. Significant peaks represented as bars below enrichment tracks. (G) 

Zoomed in snapshot of two ZNFs contained within the ZNF cluster shown in (F).  

 

Figure 4. ATRX deficient cells have decreased levels of H3K9me3 at 3’ exons of 

ZNFs and other atypical chromatin regions. (A) Western blot of ATRX in chromatin 

preparations from control (V2) and two CRISPR ATRX KO K562 cell lines. Amido Black 

staining of histones is shown as a loading control. (B) ATRX ChIP-qPCR over ZNF 

genes in control and ATRX KO K562 cell lines. (C) Same as in (B) with H3K9me3 native 

ChIP-qPCR. In both (B) and (C), bars represent average of at least 3 biological 

replicates and the error bars represent the SEM. (D) Box plot of the H3K9me3 changes 

(represented in % with respect to the control) observed in the ZNF classes and non-ZNF 

H3K9me3-bound genes upon ATRX KO. Asterisks show significant changes with 

respect to the non-ZNF genes (* pvalue < 0.05; **** pvalue < 1x10-4).  (E) ChIP-seq 

metagene profile of H3K9me3 in control (V2) and ATRX KO (KO2) K562 cell lines over 

ZNFs. (F) Distribution of reduced and unchanged H3K9me3 regions after ATRX KO in 

atypical chromatin and H3K9me3-only regions. (G) Observed over expected distribution 

of reduced and unchanged regions at atypical chromatin. Asterisks show significantly 

overrepresented regions (pvalue < 1x10-4) (H) Genomic distribution of atypical chromatin 

regions.  
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Figure 5. ZNF274 KO reduces ATRX and H3K9me3 levels at ZNFs. (A) ZNF274, (B) 

ATRX and (C) H3K9me3 ChIP-qPCR in K562 ZNF274 KO and K562 double 

ZNF274/ATRX KO at ZNF genes. Single ATRX KO2 cells are used for the H3K9me3 

ChIP for comparison. In all graphs, the bars represent the average of at least two 

independent biological replicates. Error bars depict SEM. Results of statistical 

comparisons in Table S3. A non-specific sgRNA (random) used as control (see Table 

S7). (D) Chromatin immunoblot of γH2A.X in control (Rnd) and ZNF KO K562 cells. 

Histones used as loading control. (E) Representative K562 cell cycle profiles of control 

(random), ATRX and ZNF274 single and double KO assessed by BrdU/PI staining. n ≥ 6 

biological replicates. (F) Graph depicting quantifications of (E). The bars show the 

average % of cells in each phase, error bars depict SEM. Asterisks show significant 

changes compared to the control (* pvalue < 0.05; ** pvalue < 0.01). 

 

Figure 6. Model of ATRX regulation at ZNF 3’ exons. Left: ATRX forms a complex 

with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of 

H3K9me3 at ZNF 3’ exons. The presence of the mark establishes an atypical 

H3K9me3/H3K36me3 domain. Right: Upon ATRX depletion, H3K9me3 and the atypical 

chromatin domains at ZNF 3’ exons are lost. Loss of ATRX induces altered cell cycle, 

increased DNA damage and possibly recombination between ZNFs. 

 

 

Supplementary Figure S1. ATRX correlates with H3K9me3 genome-wide in K562 

cells. (A) Correlation plot of ATRX ChIP-seq enrichment with re-analyzed ENCODE 

datasets for histone modifications, TFs and histone variants in K562 cells. (B) 
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Distribution of ATRX significant peaks in genes (TSS-TES), promoters (-3kb to TSS), 

intergenic and repetitive (regions masked by repeat masker) sequences in K562. 

 

Supplementary Figure S2. Independent antibodies for ATRX ChIP-seq analysis 

show similar enrichment patterns in K562 cells. (A) Correlation of enrichment over 

ZNF genes for two independent antibodies in K562. Each dot represents one ZNF gene. 

X axis = average enrichment over input for the ATRX Santa Cruz (SC) antibody; Y axis = 

average enrichment over input for the ATRX Abcam antibody. Antibodies show a high 

enrichment correlation. (B) Average enrichment ChIP-seq profile of ATRX Abcam over all 

ZNF gene bodies +/- 1kb shows enrichment at the 3’ region in K562. The pattern is very 

similar to the one observed for ATRX SC (see Fig. 1G, left). (C) UCSC Genome browser 

screenshot of a typical ZNF cluster in chromosome 19 (blue genes). The enrichment 

over input signals for both ATRX antibodies are shown. Significant peaks are shown as 

bars below enrichment tracks. (D) Zoomed in snapshot of two genes contained in the 

ZNF cluster shown in (C). 

 

Supplementary Figure S3. ATRX is enriched at atypical chromatin regions 

genome-wide in K562 cells. (A) Metagene plots of ATRX enrichment over input in 

atypical chromatin (left), H3K9me3-only (middle) and H3K36me3-only (right) peaks. The 

regions are sorted by ATRX enrichment from high to low from top to down, respectively. 

(B) Average enrichment ChIP-seq profile from the plots shown in (A). (C) Observed over 

expected enrichment of ATRX peaks in atypical, H3K9me3-only and H3K36me3-only 

regions in K562. 
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Supplementary Figure S4. ATRX-bound ZNFs show particular genetic and 

epigenetic features. (A) K562 Repli-seq average enrichments over ZNFs at distinct 

points of the cell cycle. S1 and S2 are early S phase, whereas S3 and S4 represent the 

late stages of S phase. Genes are sorted by Class (ATRX enrichment from high to low, 

top to bottom, respectively). (B) Enrichment of ZNF274 binding motifs in different ZNF 

Classes (top). Logos of the three identified ZNF274 binding motifs (bottom). (C) 

Metagene plots over ZNFs of ZNF274 and H3K9me3 in different cell lines show that the 

pattern observed in K562 is maintained in most cell lines. The genes are sorted as in 

(A). (D) ATRX ChIP-seq metagene profiles of ATRX enrichment over ZNFs in K562 cells 

and human erythroblasts. (E) ATRX and H3K9me3 ChIP-seq metagene profiles over 

ZNFs in two mouse cell types. Mouse ZNF genes were sorted from top to bottom by 

their ATRX enrichment in Embryonic Stem Cells (mESC) from high to low. See Table S6 

for ChIP-seq data sources. 

 

Supplementary Figure S5. Characterization of ATRX KO K562 cell lines. (A) 

Mutations observed in the ATRX KO K562 cell lines. The brown diagrams show the 

ATRX gene with exons as boxes and introns as lines. The black lines show the zoom in 

to the exons that are mutated in the KO1 cell line (top) and the KO2 (bottom) cell line. 

The WT sequence is shown as comparison to the KO sequences. The pink bases in the 

WT depict the region targeted by the sgRNA, the red dashes show the bases that were 

deleted in the mutant clones of ATRX. Each allele indicates the type of mutation and the 

consequence at the protein level. Blue upper case bases are exonic; grey lower case 

bases are intronic. (B) Chromatin immunoblots in control V2 and ATRX KO K562 cell 
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lines of proteins that interact with ATRX. Amido black staining of histones is shown for 

loading.  

 

Supplementary Figure S6. ATRX KO K562 cells have higher percentage of DNA 

damage and defects in cell cycle. (A) Representative slides of the comet assay 

performed in WT, control V2, ATRX KO1 and ATRX KO2 K562 cells. (B) Quantification of 

4 independent comet assay replicates (>100 cells analyzed per replicate). Asterisks 

show significant differences compared to the V2 control (* pvalue < 0.05; **** pvalue < 

1x10-4). (C) Chromatin immunoblot of γH2A.X in ATRX KO K562 cells. Histones are 

shown as a loading control. (D) Representative K562 cell cycle profiles of control V2 and 

ATRX KO1 and KO2 cells assessed by BrdU/PI staining profiles. The numbers show the 

average of at least 5 independent experiments. (E) Quantification of at least 5 

independent BrdU/PI profile replicates. The bars show the average % of cells in each 

phase, error bars depict SEM. Asterisks show significant changes compared to the 

control V2 (* pvalue < 0.05; ** pvalue < 0.01). 

 

Supplementary Figure S7. Effect of ATRX KO at ZNFs in K562 cells. (A) Native 

ChIP-qPCR of H3K36me3 over the 3’ exon region of ZNF genes in control V2 and ATRX 

KO K562 cell lines. (B) RT-qPCR of the panel of ZNFs from (A) in V2, KO1 and KO2 

cells. (C-E) ChIP-qPCR of ZNF274 (C), TRIM28 (D) and SETDB1 (E) in V2, KO1 and 

KO2 cell lines using the same ZNF panel as in (A). All graphs show the average of at 

least three independent biological replicates. Error bars represent SEM. For details 

about statistical comparisons see Table S3. 
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Supplementary Figure S8. H3K9me3 loss in ATRX KO K562 cell line. (A) UCSC 

genome browser screenshot of a typical ZNF cluster in chromosome 19 (blue genes). 

The enrichment over input signals for ATRX and H3K9me3 in control V2 and ATRX KO2 

cells is shown. Significant peaks are shown as bars below the enrichment tracks. (B) 

Zoomed in screenshot of two genes contained in the ZNF cluster shown in (A). (C) 

Metagene plot of H3K9me3 ChIP-seq enrichment in H3K9me3-bound genes in control 

V2 and ATRX KO2 cells. The genes are ordered by their H3K9me3 enrichment from high 

to low from top to bottom, respectively. 

 

Supplementary Figure S9. DAXX KD does not affect H3K9me3 levels at ZNF genes 

in K562 cells. (A) Immunoblot of K562 whole cell extracts in control (Rnd) and DAXX 

single KD and double DAXX KD/ATRX KO cells. GAPDH is used as a loading control. 

(B) H3K9me3 ChIP-qPCR over ZNF genes in control and DAXX KD and ATRX KO 

single and double mutant K562 cells. Bars show the average of at least two biological 

replicates; the error bars depict SEM. 

 

Supplementary Figure S10. Characterization of ZNF274 KO K562 cell lines. 

Mutations observed in the ZNF274 KO K562 cell lines. The brown diagrams show the 

ZNF274 gene with exons as boxes and introns as lines. The black lines show the zoom 

in to the exon that is mutated in the single ZNF274 (Z274) KO cell line (top) and the 

double ZNF274 + ATRX KO (bottom, Z274/ATRX KO) cell line. The WT sequence is 

shown as comparison to the KO sequences. The pink bases in the WT depict the region 
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targeted by the sgRNA, the red dashes show the bases that were deleted in the mutant 

clones of ATRX. Green bases indicate insertions. Each allele indicates the type of 

mutation and the consequence at the protein level. 
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