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Conserved, ultraconserved and other classes of constrained non-coding elements 

(referred as CNEs) represent one of the mysteries of current comparative genomics. 

These elements are defined using various degrees of sequence similarity between 

organisms and several thresholds of minimal length and are often marked by extreme 

conservation that frequently exceeds the one observed for protein-coding sequences. 

We here explore the distribution of different classes of CNEs in entire chromosomes, in 

the human genome. We employ two complementary methodologies, the scaling of block 

entropy and box-counting, with the aim to assess fractal characteristics of different CNE 

datasets. Both approaches converge to the conclusion that well-developed fractality is 

characteristic of elements that are either marked by extreme conservation between two 

or more organisms or are of ancient origin, i.e. conserved between distant organisms 

across evolution. Given that CNEs are often clustered around genes, especially those 

that regulate developmental processes, we verify by appropriate gene masking that 

fractal-like patterns emerge irrespectively of whether elements found in proximity or 

inside genes are excluded or not. An evolutionary scenario is proposed, involving 

genomic events, that might account for fractal distribution of CNEs in the human 

genome as indicated through numerical simulations.  
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INTRODUCTION 

 

Long-range correlations were shown to be present in the nucleotide sequence of the 

non-protein-coding part of eukaryotic genomes, soon after such genomes were 

sequenced1–3. In previous studies, we investigated the distributional features that 

extend at a large-scale, of genomic elements such as protein coding sequences4, 

transposable elements5,6 and conserved noncoding elements7, by exploring the size 

distribution of inter-exon, inter-repeat and inter-CNE distances respectively. In most 

cases we observed power-law-like size distributions that often span several orders of 

magnitude.  

In information theory, entropy was conceived by Claude Shannon8 to be an estimator of 

the amount of information that is carried in a transmitted message. During the last 

decades, scale invariance and fractality have been found in time series from signal 

transmission in electronic engineering, earthquakes, economy, social sciences and 

many other fields. Very often, such studies have been carried out using the standard 

box-counting technique and, in several cases of systems characterized by long range 

correlations, Shannon entropy has also been used in applications including biological 

sequence analysis9–11.   
In a previous work12 we studied the scaling properties of the block entropy of the 

distribution of genes in whole chromosomes of eukaryotic genomes through a coarse-

graining reduction of the DNA sequence into a symbol sequence. The convention we 

followed was that zeros “0” in the symbol sequence stood for non-protein-coding 

nucleotides and ones “1” for nucleotides belonging to Protein Coding Segments (coding 

exons, denoted as PCSs). Several studies have shown that a linear scaling of the 

Shannon-like (or block) entropy H(n) with the length n of the word (called hereafter n-

word or block of length n) in semi-logarithmic plots  is a clear indication of long-range 

order and fractality, as we are going to discuss in the next section13–16. We verified this 

conjecture numerically in the case of finite Cantor-like symbol sequences12. Then, we 

showed that the genomic distribution of protein coding segments often exhibits this 
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particular scaling. In a more recent work17, we studied the scaling properties of the block 

entropy in the chromosomal distribution of Transposable Elements (TEs) and again we 

found the occurrence of the aforementioned scaling. The observed linearity in semi-

logarithmic plots in the two types of genomic components follows different modalities. 

We have been able to attribute the observed distributional patterns, as expressed by 

entropic scaling and their differences, to the different evolutionary history of PCSs and 

TEs by means of a simple model. The model is shown, through computer simulations, 

to reproduce the observed pattern and includes key evolutionary events characterising 

both genomic elements highly conserved in the course of evolution (e.g. protein coding 

segments and CNEs) and genomic elements mostly non-conserved (the studied 

populations of TEs). The proposed model is composed, in both of its variations (the one 

for conserved and the other for non-conserved elements), of biologically plausible 

molecular events and is based on a previous model formulated in the framework of 

aggregative dynamics18.  

In Athanasopoulou et al. the entropic scaling analysis of the considered TE 

chromosomal distributions is accompanied by a box-counting study throughout17. Box-

counting verified the appearance of fractality and self-similarity extending to several 

orders of magnitude in most cases where the aforementioned linear entropic scaling in 

semi-logarithmic scale was observed. In an older work of our group studying only 

chromosomal region (parts of chromosomes) where annotation about protein coding 

was available at the time, box-counting revealed indications of fractality in the 

distributions of genes19.  

In references 1-3 and in numerous other later works, several research groups 

investigated aspects of genomic / nuclear structure at several length scales and levels 

of organisation. Their converging results indicate that long-range order, correlations 

extending at several length scales and fractality are ubiquitous in the nucleotide 

juxtaposition and in the distribution of functional elements or compositional 

inhomogeneities in the genome. In a study of  Lieberman-Aiden et al.20 the organization 

of the eukaryotic nucleus according to the ‘fractal globule’ model has been proposed, 

through the combination of novel experimental and computational techniques. In this 

case, the fractal pattern has been revealed because the contact probability as a function 

of genomic distance across the genome shows a power law scaling at an important 
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range of lengths. It is beyond the scope of the present article to exhaustively review this 

rapidly growing domain of research. In numerous works, Shannon entropy, fractality and 

related concepts (lacunarity, succolarity) are employed in order to describe genomic 

structure and to derive information which can be used from understanding functional 

and evolutionary aspects of genomic organization up to medical and diagnostic 

purposes. To mention a few, Cattani and Pierro (see 21 and references given therein) 

present a fractality and Shannon entropy analysis of whole chromosomes at the level of 

nucleotide distributions, deriving results which demonstrate the complementarity of the 

used methodologies. This study also suggests a framework applicable to the 

classification of DNA sequences. At a different level, evidence of fractality could be 

searched and quantified by means of an analysis of digitalized microscopic images of 

chromatin. Metze, in a comprehensive review22, describes how changes in the fractal 

dimension derived from image analysis can be applied in cancer prognosis. It has to be 

noted that such techniques are also applicable outside the chromatin research, as 

fractality appears in a multiplicity of microscopic and middle scale biological patterns 

with crucial roles in the understanding of the micro-anatomy of relevant tissues; see e.g. 

the work of Pantic and co-workers23 where fractality analysis of digital micrographs 

succeeds to systematically distinguish between histologically similar brain regions.   

 

In the present work we focus on the study of several collections of Conserved 

Noncoding Elements (CNEs) using entropic scaling analysis and box-counting. The 

genesis and evolutionary dynamics of conserved noncoding elements remain an 

enigma. It has been calculated that approximately 5.5% of the human genome is under 

selective constraint; of that, 1.5% is believed to encode for polypeptide chains, 3.5% is 

assigned known regulatory functions, while there is little evidence suggesting possible 

roles for the remaining part24. The discovery of 481 ultraconserved elements (UCEs) of 

more than 200bp in length that are identical among human, mouse and rat genomes 

paved the way for a series of efforts with the aim to identify long sequences showing 

extreme levels of conservation25. Roughly 25% of those UCEs fall within known protein-

coding sequences. Since the identification of UCEs, researchers have focused on 

identifying conserved elements based on (i) lower thresholds of sequence similarity over 

whole genome alignments of two or more organisms, (ii) several thresholds of minimal 
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length of conserved sequence, and (iii) the filtering of elements located inside exonic 

sequences26,27. Throughout this article, we use the term CNE(s) for Conserved 

Noncoding Elements to refer to all such elements despite their specific characterization 

as UCNEs, CNEs, etc in the related literature. We use a particular name only whenever 

we want to refer to a specific class of elements.  

It is believed that gene deserts are enriched in CNEs28,29 while, in mammalian 

genomes, a large number of those elements is often located at such distances from the 

closest genes that exceed in some cases 2 Mb, which is the limit for any known cis 

regulatory element30,31. Little could be conjectured concerning what those distant CNEs 

actually perform in the cell; there is evidence, however, showing that they form an 

essential part of Gene Regulatory Blocks (GRBs) and that they could synergistically 

function alongside with their target genes32,33. Furthermore, the literature suggests that 

CNEs are selectively constrained and not mutational cold spots34. 

Since it is generally believed that sequence conservation across genomes is a key 

indication of functional relevance, the study of the sequence – specific characteristics of 

different classes of CNEs, as well as the mechanisms that might have led to their 

genesis, would be of paramount importance in an effort to crack the so far enigmatic 

regulatory code of our genome. 

In a recent study of our group7, the size distribution of the inter-CNE distances of a 

variety of CNE collections has been investigated and power-law-like distributions have 

been found in most cases. This means that the abundance of inter-CNE spacers 

depends linearly on the spacers’ length in double-log scale, and this is found to occur 

for a range of spacers values often higher that two decimal orders of magnitude and in 

some cases exceeding the three orders. In the study presented herein we include 

entropic scaling and box-counting of four additional data sets not present in 

Polychronopoulos et al.7. For completeness, we include plots for the complementary 

cumulative size distribution of the inter-CNE distances for these CNE collections not 

studied earlier (see Supplementary Data File). We also refer the interested reader to 

this recent work for further details about aspects of CNE biology and several 

conjectures about their role and organization in the vertebrate genome.  
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METHODS 

 

Box-counting method for the determination of fractality 

Box-counting is widely used for assessing the fractality of symbol sequences and of 

other types of discrete datasets35,36. Here we describe an one-dimension 

implementation of this method. We cover the chromosome with one dimensional 

“boxes” of length δ. The number of boxes overlapping CNEs is assumed to be the 

chromosomal length L(δ) occupied by CNEs. In a fractal structure the length measured 

in this way does not reach a fixed value as δ decreases36. This length scales as: L(δ) ~ 

δ
D. The exponent D is the negative fractal dimension Df of the fractal pattern we 

consider. The plots depicting how L(δ) scales as a function of δ are shown in  log-log 

scale. The slope of the linear part of the curve and the extent of the linearity are both 

informative for the characterization of the fractal pattern. Condition of existence of 

fractality is to obtain a value of Df below 0.9 and a linear extent (F) exceeding, let us 

say, one order of magnitude. The limits of the linear region may be seen as the lower 

and upper cutoffs of fractality, and they determine the range of (statistical) self-similarity 

for the considered spatial structure. In order to obtain results independent of the choice 

of the starting point for the box-counting, for each value of δ, we compute L(δ) ten 

times, using a frame shift equal to 1/40 of the length of the sequence, and then we 

average.  

In all chromosomal distributions of CNEs studied herein, two or three linearity regions 

are encountered. One is always found in the low-length region and is due to the (short 

relatively to inter-CNE distances) lengths of individual CNEs. The other one or two 

linear segments are located in the region of high length values and are due to the 

existence of lengthy spacers. The slope of these segments may deviate from -1 

significantly, if fractality is present. 

 

Block entropy scaling 

Let us consider a symbol sequence whose length is N, with symbols belonging to the 

binary alphabet {0, 1}. Let pn(A1,..., An) be the probability for a block or n-word (A1,..., An) 
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to be present in the sequence. The definition of ‘block entropy’ or ‘Shannon-like entropy’ 

for n-words is (see reference 13):  

 

H (n )= −∑ pn ( A1 , . . . ,An ) log2 pn ( A1 , .. . ,An )   (1) 

 

The most common interpretation for the entropy H(n) is that it represents a measure of 

the mean uncertainty in the prediction of an n-word. References 13-15 provide a survey 

of the main properties of block entropy and of other similar quantities. Only a summary 

of principal results of direct relevance to our study will be given here, while a more 

detailed analysis is included in reference 12.   

Two standard ways exist for the reading of symbol sequence and for the extraction of 

the probability distribution of n-words: ‘gliding’ and ‘lumping’. In the present work, 

‘lumping’ has been used throughout. During this mode of reading, we do not proceed to 

the exhaustive reading of all possible words of length n (this is the method of gliding). 

Only n-words sampled with a constant step equal to n are considered. This is equivalent 

to say that after reading the initial n-word of the sequence, the next counted n-word is 

the one starting at n+1 and so on up to the end of the sequence.  

Block entropy presents scaling properties which may serve the purpose of classification 

of the symbol sequences according to their long-range properties. Ebeling and Nicolis14 

have proposed the form of equation (2) for the scaling of H(n): 

 

H (n )=e+gn
μ0( ln n)μ1 +nh           (2) 

 

in the case of symbolic sequences which are the outcome of a non-linear dynamics, 

especially in cases of language-like processes14–16. In the very important case of the 

Feigenbaum attractor of the logistic map and for n=2k (k=2, 3, 4 …), Grassberger13, see 

also37,38, has shown that, the scaling is of the form:   

 

H (n )= log 2(3n /2 )                            (3) 
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if the sequence is read by gliding. In this system, linearity in semi-logarithmic plot holds, 

which in terms of equation (2) corresponds to: g≠ 0 , h= 0 , μ0= 0 ,  μ1>0  39. This form 

of entropic scaling is assumed to be valid for a wide range of fractal symbol-sequences. 

As a consequence, the linearity between H(n) and logn is attributed  to the scale-free 

structure of these sequences which gives rise to long-range correlations. In a previous 

work12 we have verified this hypothesis for Cantor-like symbol-sequences (of both, 

deterministic and probabilistic type).  

For every chromosomal data set we have produced a surrogate random sequence 

retaining its ‘0’/‘1’ composition but without any trace of the initial internal structure left. 

The entropic scaling (H(n) vs. n) curve of the initial chromosome and that of the 

surrogate one are presented within the same plot. Random surrogates are also used 

along with model generated sequences.  

The extent (E) of linearity in semi-logarithmic scale is used as a quantifier of fractality of 

a chromosomal distribution of CNEs. When two linear segment exist, we symbolize with 

E* the sum of their lengths.  We introduce and use heuristically as an estimator of the 

degree of internal structure of a sequence the ratio R of the entropy value of the 

surrogate sequence over the entropy value of the studied (genomic or simulated) 

sequence. R is computed for the value of n at which the surrogate sequence reaches its 

maximum entropy. Beyond this value its entropy starts decreasing due to finite size 

effects. High values of R denote a high degree of order of the studied sequence.   

 

Datasets  

We consider published CNE datasets, derived from whole genome alignments of the 

human with other genomes, ranging from  elephant shark to mammals:  

(i) 82,335 ‘Mammalian’ CNEs, mapped on the human genome (hg17)28.  

(ii) 16,575 ‘Amniotic’ CNEs, mapped on the human genome (hg17)28. 

(iii) 3,124 ‘Human – Fugu’ CNEs mapped on the human genome (hg17)40.   

(iv) 4,782 ‘Human – Elephant Shark’ CNEs mapped on the human genome (hg17)41.  

(v) 2,614 ‘Rodent’ extremely constrained sequences mapped on hg17, some of which 

act as developmental enhancers42. 

(vi) 4,386 ‘UCNEs’ or ‘CNEs 95-100’ (Ultraconserved Noncoding Elements, longer than 

200bp) mapped on the human genome (hg19) that display sequence similarity in the 
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range of 95% - 100%  between human and chicken whole genome alignments33. These 

elements represent the most constrained subset of sequences, while the next four sets 

have been described in a recent study using less stringent thresholds of sequence 

similarity43.  

(vii) 4,635 ‘CNEs 90-95’ (longer than 200bp) mapped on the human genome (hg19) 

that display sequence similarity in the range of 90% - 95% between human and chicken 

whole genome alignments43.  

(viii) 5,860 ‘CNEs 85-90’ (longer than 200bp) mapped on the human genome (hg19) 

that display sequence similarity in the range of 85% - 90% between human and chicken 

whole genome alignments43.  

(ix) 7,615 ‘CNEs 80-85’ (longer than 200bp) mapped on the human genome (hg19) that 

display sequence similarity in the range of 80% - 85% between human and chicken 

whole genome alignments43.  

(x) 10,010 ‘CNEs 75-80’ (longer than 200bp) mapped on the human genome (hg19) 

that display sequence similarity in the range of 75% - 80% between human and chicken 

whole genome alignments43.  

For additional details about the used data sets and the subsequent treatment see 

Supplementary Data File. The suite of utilities BEDTools has been used for the genomic 

analyses44.    

 

Masking of genic regions 

We have masked the entire sequence stretches annotated as genic in the human 

genome. Furthermore, we have masked flanks surrounding every gene: 5 kb at both 5' 

and 3' ends, so that we cover regulatory elements the position of which might be 

principally determined by the spatial organization of the gene under regulation. The 

region located upstream of transcription start sites is usually particularly enriched in 

such regulatory sequences. Extended symmetric flanks of 50 kb or 100 kb have also 

been masked, where possible, in a similar way (see “Results” section). We use custom 

scripts and BEDTools in order to perform the masking. Note that by masking, we mean 

shadowing all those elements that overlap genes and flanking regions and not removing 

the genes themselves, as the latter would affect the studied genomic landscape. For 

genomic coordinate data of masked genes, see Supplementary Data File.   
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We do not proceed to the masking of other specific classes of sequences, e.g. 

transposable elements, that have been shown to form fractal-like patterns within the 

genome, because there is no evidence suggesting CNE – TE functional inter-play or 

systematic co-localization. Only a small proportion of TEs is reported to have been 

exapted to the role of a CNE, but those are too few to influence and alter the entire CNE 

distribution45. 

 

The “Segmental-duplication / CNE elimination” model 

In previous works we formulated a version of the aforementioned evolutionary model 

describing genomic dynamics relevant to the evolution of Protein Coding Segments 

(PCSs) or of CNEs, based on quite general prerequisites, mainly related to the 

conserved character of these genomic elements and the underlying genomic 

dynamics4,7. This model, through computer simulations, generates fractal-like patterns, 

like the ones observed in real chromosomes. Ηere we only briefly describe the structure 

of the model while we refer the reader to these previous works for a detailed description 

of its biological background. The “Segmental-duplication / CNE elimination” model 

dynamics builds upon models for the explanation of fractality in aggregation patterns in 

physicochemical systems18. Our model takes into account the one-dimensional topology 

of DNA and includes molecular events known to have occurred in genome dynamics 

over the course of evolutionary time. Note that we have also introduced elsewhere a 

different model which focuses on the genomic dynamics of mostly non conserved 

elements, like TEs, and accounts for the particular distributional characteristics of these 

elements in genomes. 

Occasional loss of function of some CNEs and their subsequent degradation46, whole 

genome duplications and regularly occurring segmental duplications47–51 together with 

other types of genome dynamics (e.g. insertions of transposable elements and other 

parasite sequences) can be integrated in the “Segmental-duplication / CNE elimination” 

model. Its propensity to generate fractality, as evaluated through box-counting, and the 

aforementioned entropic scaling, both observed in chromosomal distributions, is 

testable by means of computer simulations. The genomic events included are: 

  i     Segmental duplications of chromosomal regions.   
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 ii    Eliminations at random of a number of CNEs which is lower or equal to the 

number of those ones that get duplicated. 

iii         Additional eliminations of CNEs that have not undergone duplication.  

iv   Insertions of sequences that expand the chromosomal length (for example 

insertion of transposable elements, microsatellite expansions or intruding retroviruses 

etc).  

v   Deletions of sequence regions (assuming that they are under weak or no 

purifying selection).  

Characteristic cases of simulations are shown in the last two figures. Note that we have 

chosen to include here the same examples of simulations which are included in the 

aforementioned work where the chromosomal distributions of CNEs had been studied 

examining the form of the cumulative distribution of inter-CNE distances7. Initially, 1000 

markers (representing CNEs) are randomly dispersed in a sequence 2 Mbp long. The 

box-counting and entropic scaling plots corresponding to the initial random CNE 

distribution may be found in the Supplementary Data File. The penultimate figure 

depicts snapshots of the emerging distributional pattern through time. Plots are 

generated every 50 segmental duplication events. The length of the region involved in 

each segmental duplication (SD) event is obtained from a uniform distribution with 

maximum the 5% of the actual length of the simulated sequence. A number of CNEs 

equal to 90% of the number of the duplicated CNEs (denoted as: fr = 90%) is eliminated 

after each SD event in these numerical simulations. No further eliminations of CNEs 

that have not undergone duplication are taken into consideration here. In the upper half 

of the last figure, plots for numerical experiments, where fr takes the values 80% and 

100%, are shown. These plots must be evaluated in comparison to parts e & f of the 

penultimate figure, as for all of them, 150 SD events have been simulated. Next, in the 

lower half of the last figure, the plots for numerical experiments are presented, where 

the number of SD events is the same, but additionally, we consider eliminations of non-

duplicated CNEs (one or two after each SD event). These plots have to be evaluated in 

comparison to parts e & f of the penultimate figure again. In the last table, the 

quantitative aspects of these numerical experiments are summarized, while in the 

“Discussion” section, conclusions about the convergence between genomic and 

simulated chromosomal distributions of CNE are drawn. 
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RESULTS 

 

Entropic scaling and box-counting are performed for the CNE sets which are described 

in the “Methods” section for all chromosomes of the human genome. In each case, 

chromosomes are treated as symbol-sequences by replacing nucleotides belonging to 

the considered CNE set with ‘1’s while replacing with ‘0’s the rest of the nucleotides.  

The overall result of the present study is that almost all CNE collections we have 

examined herein present fractality, often highly developed, in some cases above 3 

orders of magnitude, as measured through box-counting. Their entropic scaling reveals 

that most of them exhibit considerable linearity in semi-logarithmic scale and a ratio R 

well above unity. Although R does not represent a measure of fractality, it indicates the 

extent to which a given genomic sequence has reduced its block entropy (thus, it might 

be seen as more organized) with respect to its random surrogate. Block entropy is 

expected to be strongly reduced when fractality is developed, and inspection of the last 

table, where metrics of model-generated sequences are presented, corroborates this 

view. 

 

Fractality measured by box-counting and entropic scaling in the distribution of 

various CNE collections in entire chromosomes 

Figure 1 shows eight examples of box-counting plots for different CNE datasets in entire 

human chromosomes. Quantification of fractality is effected by means of the extent F of 

linear segments in log-log scale and the associated slope which equals the negative 

fractal dimension D. The convention we follow here is that D values around 1 (+/- 0.1) 

denote lack of fractality, while fractal-like geometry is present when D falls lower than 

0.9. We always observe lack of fractality in the linear segment for the low length regions 

(at the left side of the plots). When we replace the CNE in each chromosome with a 

single ‘1’ symbol, the low length linear segment disappears while the rest of the plot 

remains unaffected. This indicates that this linearity relates to the length variation of the 

CNEs which as expected is short ranged, and thus, shows no trace of fractality. Such 
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plots are not presented here, as a similar analysis is presented in the case of our study 

for the chromosomal distribution of TEs. On the other hand, at the high length region, 

linearity with absolute slope clearly lower than unity is often observed. In several cases, 

this linearity is divided into two regions, which indicates that the scaling features of the 

CNE chromosomal distribution are different at different length scales. This displays an 

analogy with the similar observation (see Figure 2 and Table 1) that segmented linearity 

is also exhibited in the entropic scaling plot. This feature is compatible with the non-

universality of the model we propose (see in the “Methods” and the “Discussion”) where 

also a unique slope is not generated.  

In Figure 2 we present eight examples of H(n) plotted versus n (the block- or word-

length) for several CNE collections in different human chromosomes. In each plot, the 

curve for the genomic curve is accompanied by the curve of a surrogate sequence of 

length equal to the length of the studied chromosome and the same number of CNEs 

positioned at random. The degree of entropic scaling is measured by the extent E of the 

linearity in semi-logarithmic scale as well as the ratio R of the entropy values of the 

surrogate and the genomic curve computed at the maximum of the surrogate curve (see 

in the “Methods” section for details). 

In Table 1, average values of all human chromosomes for each CNE dataset of: (i) The 

Fractality-related Linearity (FrL) which is the sum of the box-counting linear segments 

corresponding to fractal dimension lower than 0.9; (ii) Linearity E (or E* if more than one 

linear segment is found); and (iii) The ratio R. Additionally, averages of the five highest 

values for FrL and E are also provided in Table 1 as additional quantifiers of the box-

counting and entropic scaling fractality for each CNE collection.  

In the Spreadsheet within the Supplementary Data File, metrics for all individual 

chromosomes for all CNE datasets are provided. Simple inspection reveals that these 

metrics differ for the several collections.  This variation lies in accordance with the 

proposed model, as discussed below.  

 

Fractality measured by box-counting and entropic scaling in the distribution of 

CNE collections in gene-masked chromosomes 

As briefly presented in the “Introduction”, fractality revealed through the box-counting 

and entropic scaling approaches is evidenced in the chromosomal distribution of 
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protein-coding segments12,19. Published studies also suggest that some CNEs are 

spatially linked with genes that mostly encode for transcription factors and regulators of 

development (collectively referred as trans-dev genes)30,52. To exclude the possibility 

that the fractality patterns reported herein stem from the analogous patterns followed by 

genes12, we mask all protein coding sequences as well as extended proximal regulatory 

regions, in the three of the studied datasets exhibiting the most pronounced fractality. In 

Figures 3 and 4 we show plots analogous to the ones presented in Figures 1 and 2, 

while in Table 2 average quantities for masked chromosome sets are provided, 

following the conventions set in Table 1. Flanks of 5 kb are used upstream and 

downstream of each gene, while occasionally extended symmetric masking of 50 and 

100 kb has been employed. The corresponding plots are given in the Supplementary 

Data File. All the quantities for individual chromosomes are given in the Spreadsheet 

within the Supplementary Data File. The chromosomes that contain less than 100 CNE 

instances, a case often encountered after masking, are excluded from our study due to 

poor statistics. The observed linearities in log-log and semi-log scale for the box-

counting and entropic scaling plots respectively, as well as R values in entropic plots, 

are not only preserved but slightly increased in all studied cases. The comparisons are 

made with averages of the corresponding values of the same unmasked chromosomes 

(see numbers in parentheses in Table 2). This indicates that even if we exclude from 

our study those CNEs that might be associated somehow with genes due to their spatial 

co-occurence, the remaining CNEs still follow the chromosomal distribution that appears 

in the cases of the non-gene-masked genomes. Even if extended masking is applied, 

fractality is still evident. 

 

Box-counting and entropic scaling of CNE distributions derived by the 

“Segmental-duplication / CNE elimination” model 

In Figures 5 & 6, plots for numerical experiments of the proposed model are shown. The 

corresponding metrics are presented in Table 3.  Three different aspects of the model 

are studied that correspond to key variables of the underlying molecular dynamics.  

In Figure 5 and in the first part of Table 3, the effect of allowing Segmental Duplications 

(SD), a common phenomenon that is known to have shaped the human genome47–51, is 

monitored as successive snapshots are taken, each after 50 additional SDs. As 
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described in the “Methods”, elimination of most of the duplicated CNEs and, 

occasionally, loss of non-duplicated ones are incorporated in the model. These 

molecular events are introduced into the model through the percentage of duplicated 

CNE which are lost (denoted by fr) and a number of lost non-duplicated CNEs between 

consecutive Segmental Duplication events. In the numerical experiment depicted in 

Figure 5, we set fr equal to 90% and no loss of non-duplicated CNEs is allowed. The 

plots corresponding to the random initial condition of the numerical experiment are 

shown in Supplementary Data File. As more and more events of SDs occur, we observe 

a progressive increase of all metrics reflecting fractality of the final CNE distribution in 

the artificial simulated chromosome. If they occur through time in a constant or variable 

rate, the proposed model predicts that the more ancient a dataset of studied CNEs is, 

the more pronounced the fractal properties of its chromosomal distribution will be. 

Bursts of duplication activity or whole genome duplications events51,53 are expected to 

contribute to the emergence of fractality. 

In Figure 6, the impact of the loss rate of duplicated (upper half) and non-duplicated 

CNEs (lower half) is monitored. In Table 3 (second and third part respectively) the 

corresponding quantities are given. In most cases, we observe increase of metrics 

indicating fractality, when loss of either duplicated or non-duplicated CNEs increases. 

Assuming that the proposed model describes the essential dynamics responsible for the 

emergence of fractality, the CNE datasets identified in taxa which have incurred the 

most CNE losses would exhibit the most well developed fractality.  

As we will see in the following section, the predictions based on the simulations 

presented herein (Figures 5, 6, and Table 3) fit well with what is observed in genomic 

CNE datasets (Figures 1, 2, and Table 1).  

 

 

 

DISCUSSION 

 

Fractality is widespread in the chromosomal distribution of CNEs identified using 

various threshold sets, between organisms of various evolutionary distances. We have 

to stress here that fractality as measured in different datasets does not indicate 
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universality, as no unique fractal dimension is reached. This complies with the proposed 

model, where, also the obtained slopes vary, depending on the parameters, although in 

both genomic and model-derived sequences, extended linearity has been obtained in 

several cases. An analogous picture emerges in the study of power-law-like 

distributional patterns for many CNE datasets and for sequences generated by using 

the same model7.   

In order to compare the degree of capturing self-similarity and fractality features in 

genomic sequences by means of inter-CNE distances statistics, entropic scaling and 

box-counting, we focus on the ‘mammalian’ dataset. CNEs belonging to this dataset 

have been exapted in a relatively recent time period, and thus they do not have adopted 

the self-similar pattern in all chromosomes. From reference 7 we deduce that, in 19 out 

of 22 human chromosomes (where such CNEs have been found), a power-law-like 

distribution pattern has been identified, although with only a moderate extent of the 

linear segment, if compared to all the other studied datasets. In the present work we 

find fractality by means of box-counting in only six chromosomes for the same dataset. 

The inclusion of entropic scaling in this comparison is not straightforward, as a 

moderate linear segment in semi-log scale and an R value just above unity are 

widespread and even intuitively they cannot be assigned to the occurrence of a clear 

fractal / self-similar pattern. If, however, we set a threshold of ¾ orders of magnitude 

extent of linearity (E > 0.75), we find only five chromosomes exceeding this value. If we 

set a threshold of 1.5 for the ratio R, we find again five chromosomes located above this 

threshold. Thus we might conclude that box-counting and entropic scaling constitute 

methodologies more stringent than the simple distance statistics (expressed in the form 

of power-law distributions between the distances of consecutive CNEs) for the 

evaluation of long-range order and emergence of fractality in symbol sequences.  

 

The inspection of cases of gene-masked datasets (see Figures 3, 4 and Table 2) shows 

that the dynamics that shaped the fractal-like pattern is not a simple result of the 

coexisting distribution of protein-coding genes, notwithstanding that the two populations 

of genomic elements are expected to influence one another, although such interactions 

are not included in our simple model. The slight increase of fractality observed in the 

masked chromosomes is probably an indication that, when all the CNEs are examined 
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together, the resulting distributions might reflect a superposition of two distinct 

dynamics. These different dynamics should express the differences in the evolution and 

thus in the genomic modalities of gene-uncorrelated CNEs and of genes (with which 

gene-proximal CNEs are spatially associated). This superposition of distributions with 

different spatial characteristics is expected to reduce the observed linearity extent in 

box-counting and entropic scaling plots in double logarithmic and semi-logarithmic scale 

respectively. 

 

The proposed model predicts that more ancient CNE datasets are expected to exhibit 

more developed fractality compared to more recently exapted ones. Inspection of our 

findings as tabulated in Table 1 does support this prediction in all cases where a relation 

of age between several CNE datasets can be established. ‘Mammalian’ and ‘Amniotic’ 

CNE collections represent the most clear such case, as they were generated using the 

same parameters (minimal sequence length and similarity thresholds) by the same 

research team, while they were exapted in different evolutionary periods, with 'Amniotic' 

being older. Fractality as measured by box-counting and both linearity extent and the 

ratio R in the entropic scaling representation are higher in the ‘Amniotic’ than in the 

‘Mammalian’ dataset. Comparison between ‘Rodent’ and ‘Homo – Elephant Shark’ 

datasets, which are also of clearly different evolutionary depth, again verifies this 

tendency.  

 

In the list of the used datasets (see “Methods”), four recently identified CNE 

collections43 display sequence similarity between human and chicken whole genome 

alignments gradually increasing from 75% to 95%.  They have been numbered datasets 

(vii) – (x) and their box-counting and entropic scaling properties are listed (see Table 1) 

along with dataset (vi) which consists of the most conserved ‘Homo – Chicken’ CNEs 

with similarity above 95% (and up to 100%) named UCNEs33. A gradual increase of all 

their fractality metrics is evidenced, which follows the gradual increase of the sequence 

similarity thresholds employed for the identification of these datasets. As mentioned in 

the “Introduction”, for reasons of completeness, size distribution of the inter-CNE 

distances for the four CNE collections recently identified have also been computed. The 

results are tabulated in the Spreadsheet within the Supplementary Data File, and the 
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corresponding plots are given in the Supplementary Data File. They present a power-

law-like pattern in their inter-CNE spacers size distribution (also found in many other 

CNE collections)7. The extent of the log-log linearity gradually increases from less 

conserved to ultra conserved elements, as is the case for their fractality metrics. In 

order to interpret these converging results, we ask for the association, if any, between 

the sequence similarity thresholds used in the identification of a dataset and the 

antiquity of the elements within this dataset. In order to address this problem, we 

computed the overlap of each of datasets (vi) – (x) with datasets (iii) and (iv), the latter 

ones comprising the 'ancient' sets of elements. The results are presented in the 

Supplementary Data File and show that the more conserved class of elements (UCNEs) 

overlap at a large extent with ancient elements, both Fugu and shark. Moreover, there is 

a gradual shift in the fraction of overlap with ancient elements as we go from the least 

(CNEs of similarity 75-80%) to the most (UCNEs or CNEs of similarity >95%) conserved 

classes of elements. This finding is compatible with the hypothesis that the proposed 

“Segmental-duplication / CNE elimination” model is at the origin of the observed 

fractality (along with self-similarity and inter-CNE size distributions following a power-

law pattern) of CNE chromosomal positioning.  

The underlying assumption here is that the observed gradual overlap of a series CNE 

collections with another dataset of known antiquity implies that the extent of this overlap 

expresses the order of antiquity for most of the elements belonging to the considered 

series of CNE collections. This assumption cannot be considered to hold true for all 

elements belonging to these CNE classes, as some of these elements might also be of 

ancient origin, though not detectable as they might have been deviated beyond 

recognition from ancient CNEs.  

 

The ‘Homo – Fugu’ CNE dataset presents more developed fractality than any other 

CNE collection. Also, it presents the highest value for the ratio R. Notice that ‘Homo – 

Fugu’ dataset exceeds the fractality developed by the ‘Homo – Elephant Shark’ dataset, 

despite that our common ancestor with teleosts (like Fugu) is more recent than our 

common ancestor with cartilaginous fishes (including sharks). This result may be 

understood on the basis of the finding of Lee et al.54 who concluded that the jawed 

vertebrate ancestor had initially a great number of UCEs which have been diverged 
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beyond recognition (i.e. they ceased to be under purifying selection) in teleosts, but 

survived in tetrapods. This complies with our finding that the ‘Homo – Fugu’ dataset 

exhibits the globally best scores as deduced by inspection of Table 1, if we take into 

account the predicted dependence of the extent of fractality on the intensity of the CNE 

loss based on the “Segmental-duplication / CNE elimination” model properties, see 

Figure 6 and Table 3. The finding of Lee et al. corresponds to type (iii) events of the 

model (i.e. high number of non-duplicated CNEs lost). The significance of whole 

genome and segmental duplications for this model also lies in accordance with the view 

of Wang et al.55, which correlates the numerous eliminations of UCEs that occurred in 

the teleost fish with the whole genome duplication that occurred in the ray-fish lineage. 

The role of whole genome duplication is twofold: (a) It makes possible the subsequent 

elimination of duplicated CNEs due to redundancy (type (ii) events of the model), i.e. 

high number of duplicated CNEs lost, expressed by a high fr value; (b) Simultaneously, 

it provides an important sequence extension which contributes to the formation of 

lengthy inter-CNE distances which favours fractality established at successive length 

scales. Convergent to the maximal fractality of ‘Homo – Fugu’ dataset herein is our 

previous observation studying the extent of power-law-like linearity in the distributions of 

inter-CNE distances where the maximum linearity is again observed in Human – 

Teleosts datasets7. 
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Figure 1: Examples of whole chromosome box-counting plots for eight different CNE 

datasets. Linear segments are generated by linear regression.  Solid and dashed lines stand 

for presence and absence of fractality respectively.  

 

Figure 2: Examples of whole chromosome block entropy H(n) plots for eight different CNE 

datasets. Random surrogates are also included. Genomic sequence is shown in black and 

the random surrogate is shown in red. Dashed linear segments are parallel to the linear 

regression green line. 

 

Figure 3: Examples of whole chromosome box-counting plots for CNE datasets after masking 

of genes and symmetric 5’ and 3’ flanks of 5 kb or 100 kb each. Plotting conventions are as in 

Figure 1.  

 

Figure 4: Examples of whole chromosome block entropy H(n) plots for CNE datasets after 

masking of genes and symmetric 5’ and 3’ flanks of 5 kb or 100 kb each. Plotting conventions 

are as in Figure 2.  

 

Figure 5: Box-counting and block entropy H(n) plots for numerical simulations according to 

The “Segmental-duplication / CNE elimination” model. The number of segmental duplications 

increases with a step of 50 SDs. In all cases, a number of CNEs equal to the 90% of the 

duplicated ones (denoted as fr = 90%) are eliminated after each segmental duplication. No 

eliminations of non-duplicated CNEs occur. Box-counting and entropic scaling plots 

corresponding to the initial random CNE distribution may be found in the Supplementary Data 

File.  

 

Figure 6: Box-counting and block entropy H(n) plots for numerical simulations according to 

The “Segmental-duplication / CNE elimination” model. The number of segmental duplications 

remains constant (SD = 150, cf. Figure 5e&f). In the upper half of the Figure the percentage 

of duplicated CNEs (fr) and in the lower half the number of non-duplicated CNEs which have 

been lost after each SD vary.  
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TABLE 1* 
 

 
 
Conserved Noncoding 
Elements datasets.  
 

Box-counting plots Entropic scaling plots 
Average# 

Fractality-related 
Linearity (FrL)&: 

F2+F3 

Average 
of the 5 
highest 

FrL 
values 

Average# 

Linearity E 
or E* (1 or 2 

linear§ 
segments) 

Average of 
the 5 highest 

linearity 
values 

 
Average# of R 

values$ 

 
‘Mammalian’ CNEs 

 

 
2.05 

 
2.10 

 
0.78 

 
1.10 

 
1.48 

 
‘Amniotic’ CNEs 

 

 
2.39 

 
3.06 

 
1.45 

 
1.93 

 
1.88 

‘Rodent’ (Homo – 
Mouse – Rat) CNEs 

 

 
2.57 

 
2.95 

 
1.60 

 
1.92 

 
1.99 

‘Homo – Elephant 
Shark’ CNEs 

 

 
2.76 

 
3.07 

 
1.68 

 
2.35 

 
2.50 

 
‘Homo – Fugu’ CNEs 

 

 
3.20 

 
3.60 

 
1.98 

 
2.39 

 
2.81 

‘Homo – Chicken’ 
CNEs Seq. similarity 

75 - 80% 
 

 
No fractality found 

 
0.85 

 
1.00 

 
1.25 

‘Homo – Chicken’ 
CNEs Seq. similarity 

80 - 85% 
 

 
1.64 

 
1.95 

 
1.04 

 
1.21 

 
1.31 

‘Homo – Chicken’ 
CNEs Seq. similarity 

85 - 90% 
 

 
2.45 

 
2.94 

 
1.11 

 
1.36 

 
1.44 

‘Homo-Chicken’ CNEs 
Seq. similarity 90 - 

95% 
 

 
2.81 

 
3.18 

 
1.12 

 
1.64 

 
1.63 

‘Homo-Chicken’ CNEs 
Seq. similarity > 95%, 
also called ‘UCNEs’ 

 
2.81 

 
3.12 

 
1.49 

 
2.04 

 
2.47 
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* Detailed tables of all F1, F2, F3 for box-counting plots and E or E* along with 
R for entropic scaling plots for all studied CNE sets are given in 
Supplementary Spreadsheet and the corresponding plots in Supplementary 
Data File. 

# Averages are calculated for all human chromosomes where the CNE 
instances of a given CNE collection are more than 100.  

& Using the box-counting method linearity in double-log scale is considered to 
express fractality if its absolute slope is less than 0.9. When two such linear 
segments are found, the overall linearity is denoted as Fractality-related 
Linearity (FrL).  

§ In entropic scaling plots linearity is studied in semi-log scale and is denoted 
by E.  When two linear segments are found, the overall linearity is denoted by 
Ε

*.  

$ In entropic scaling plots deviation from randomness is also measured by 
means of the ratio R of the entropies of surrogate over genomic sets 
measured for the word lengh where the maximum in the surrogate sequence 
curve is observed (for details see in the “Methods”).  
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TABLE 2* 
 

Conserved Noncoding 
Elements datasets. Here 
gene masking is applied 
with 5kb flanks before 
and after each gene§   

 
 

Box-counting plots 

 
 

Entropic scaling plots 

 Average 
Fractality - 

related 
Linearity (FrL): 

F2+F3 

Average 
of the 5 
highest 

FrL 
values 

Average 

Linearity 
E or E* (1 
or 2 linear 
segments) 

Average 
of the 5 
highest 
linearity 
values 

Average 
of R 

values 

‘Homo – Elephant 
Shark’ CNEs 

 

2.72 

(2.73) 

3.07 

(3.07) 

1.87 

(1.80) 

2.35 

(2.29) 

2.43 

(2.41) 

 
‘Homo – Fugu’ CNEs 

 

3.04 

(3.06) 

3.30 

(3.19) 

2.32 

(2.14) 

2.41 

(2.35) 

3.18 

(2.88) 

‘Homo-Chicken’ CNEs 
Seq. similarity >95%, 
also called ‘UCNEs’ 

2.96 

(2.85) 

3.00 

(2.88) 

2.09 

(1.38) 

2.30 

(1.48) 

2.83 

(2.55) 

 

* The adopted notation is as in Table 1. Detailed tables of all F1, F2, F3 for 
box-counting plots and E or E* along with R for entropic scaling plots for all 
studied CNE sets are given in Supplementary Spreadsheet and the 
corresponding plots in Supplementary Data File. 

§ Here only CNEs belonging to intergenic regions are studied. The number in 
parentheses below each average quantity (FrL, E, R) are the corresponding 
average quantities calculated for complete CNE sets for the same 
chromosomes before masking.  
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TABLE 3* 
 

Data sets generated by the 
“Segmental-Duplication / CNE 
Elimination” Model (for details see 
in the “Methods”) 

 
Figure 

location 

Box-counting plots Entropic scaling plots       
Fractality - related 

Linearity (FrL): 
F2+F3 

Linearity E or E* 
(1 or 2 linear 
segments) 

 
R  

      

 
Random initial CNE distribution 
 

suppl. 
data 

 
- 

 
- 

 
1.00 

 
  50 Segmental Duplications#  
 

 
Fig.5a,b 

 
- 

 
0.96 

 
1.32 

 
100 Segmental Duplications# 

 

 
Fig.5c,d 

 
1.5 

 
1.26 

 
1.74 

 
150 Segmental Duplications#  
 

 
Fig.5e,f 

 
4.5 

 
1.26 

 
2.39 

 
200 Segmental Duplications# 
 

 
Fig.5g,h 

 
4.5 

 
1.60 

 
2.87 

Fraction of eliminated duplicated 
CNEs (fr) = 80%& 

 

 
Fig.6a,b 

 
4.8 

 
1.04 

 
2.20 

Fraction of eliminated duplicated 
CNEs (fr) = 90%& 

 

 
Fig.5e,f 

 
4.5 

 
1.26 

 
2.39 

Fraction of eliminated duplicated 
CNEs (fr) = 100%& 

 

 
Fig.6c,d 

 
4.8 

 
1.45 

 
2.68 

No elimination of non-duplicated 
CNEs§ 
 

 
Fig.5e,f 

 
4.5 

 
1.26 

 
2.39 

1 elimination of non-duplicated 
CNEs per  Segm. Duplication§ 

 

 
Fig.6e,f 

 
4.8 

 
1.50 

 
2.56 

2 eliminations of non-duplicated 
CNEs per  Segm. Duplication§ 

 

 
Fig.6g,h 

 
5.1 

 
1.87 

 
2.87 

 

* The adopted notation is as in Table 1.  

# Segmental Duplications which occurred after a random initial CNE 
distribution. Fraction of eliminated duplicated CNEs (fr) = 90%. No elimination 
of non-duplicated CNEs. 

&150 Segmental Duplications. No elimination of non-duplicated CNEs. 

§ 150 Segmental Duplications. Fraction of eliminated duplicated CNEs (fr) = 
90%. 
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