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Abstract 

A pattern in which nucleotide transitions are favored several-fold over transversions is 

common in molecular evolution.  When this pattern occurs among amino acid 

replacements, explanations often invoke an effect of selection, on the grounds that 

transitions are more conservative in their effects on proteins.  However, the underlying 

hypothesis of conservative transitions has never been tested directly.  Here we assess 

support for this hypothesis using direct evidence: the fitness effects of mutations in 

actual proteins, measured via individual or paired growth experiments.  We assembled 

data from 8 published studies, ranging in size from 24 to 757 single-nucleotide 

mutations that change an amino acid.  Every study has the statistical power to reveal 

significant effects of amino acid exchangeability, and most studies have the power to 

discern a binary conservative-vs-radical distinction.  However, only one study suggests 

that transitions are significantly more conservative than transversions.  In the combined 

set of 1239 replacements, the chance that a transition is more conservative than a 

transversion is 53 % (95 % confidence interval, 50 % to 56 %), compared to the null 

expectation of 50 %.  We show that this effect is not large compared to that of most 

biochemical factors, and is not large enough to explain the several-fold bias observed in 

evolution.  In short, available data have the power to verify the "conservative transitions" 

hypothesis if true, but suggest instead that selection on proteins plays at best a minor 

role in the observed bias. 
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Introduction  

Of the 12 types of changes from one nucleotide to another, 8 are “transversions” 

between a purine (A or G) and a pyrimidine (C or T), and the other 4 are “transitions”.  

Early protein comparisons showed that related proteins often differ by transitions more 

than expected by chance (e.g., Fitch 1967; sources cited in Vogel 1972).  By the 1980's, 

this "transition bias" was well known (Li, et al. 1985).  By the 1990s, systematists had 

noted effects on phylogeny inference (Wakeley 1996), and methods were revised to 

give more weight to transversion differences (e.g., Sinsheimer, et al. 1997).   

In many early works, this bias is presented as a ratio of differences, which makes the 

expected ratio a complex function of the degree of sequence divergence.  As the use of 

rate models became routine in comparative sequence analysis, the phenomenon of 

transition bias was redefined as a bias in instantaneous rates, relative to a null model of 

equal rates.  Because every nucleotide site (e.g., a G site) may experience 1 type of 

transition (G�A) at rate α, and 2 types of transversion (G�C, G�T) at rate β, the 

aggregate rate ratio of transitions to transversions has a null expectation of R = α/(2β) = 

0.5.  In some contexts, the ratio is expressed differently as κ = α/β = 1.  When 

considering amino acid changes, it is more relevant to compare the 116 possible 

transitions and 276 possible transversions that change a codon so as to encode a 

different amino acid (assuming the canonical genetic code), leading to a null 

expectation of R = 116 α / (276 β) = 0.42 α/β.  Thus, the observation of roughly equal 

numbers of inferred transitions and transversions in classic works (e.g., Vogel and 

Kopun 1977), or in the extensive analysis of mammalian genes in Li (1997, Table 7.2), 
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indicates a bias of over 2-fold. Kumar (1996) estimates 2-fold to 5-fold rate biases in 

vertebrate mitochondrial genes (excluding 3rd positions).  Other estimates may be found 

in work cited by Rosenberg, et al. (2003), but there is not (to our knowledge) a 

systematic contemporary review of this issue.  

The causes of the observed bias have not been resolved.  The hypothesis of a 

mutational cause— a transition:transversion bias in mutation— was promoted early by 

Vogel (1972; see also Vogel and Kopun 1977).  This hypothesis was bolstered when 

DNA sequence comparisons revealed that a transition bias is observed in introns and 

other non-coding regions (Li, et al. 1985), suggesting a cause that (like mutation) acts at 

the level of DNA, across the entire genome.   

The alternative hypothesis that natural selection favors amino acid replacements via 

transitions is also common, and is argued on the grounds that transitions are “less 

severe with respect to the chemical properties of the original and mutant amino acids” 

(Rosenberg, et al. 2003) or “tend to cause changes that conserve the chemical 

properties of amino acids” (Wakeley 1996), or that “the biochemical difference in the 

protein product tends to be greater for transversions” (Keller, et al. 2007).   

For purposes of evaluation, we can break down either the mutational hypothesis or the 

selective hypothesis into (1) a claim that there is an underlying bias (mutational or 

selective) favoring transitions, and (2) a claim that this bias accounts for the observed 

evolutionary bias.  For the mutational hypothesis, the existence of an underlying bias is 

indicated in direct studies of mutation (e.g., Schaaper and Dunn 1991; Lynch 2010; 

Schrider, et al. 2013; Zhu, et al. 2014), and by many indirect estimates based on the 
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asumption of neutral sequence divergence (Petrov and Hartl 1999; Rosenberg, et al. 

2003; Zhao, et al. 2004; Jiang and Zhao 2006; Morton, et al. 2006), though Keller, et al. 

(2007) report a lack of bias in grasshoppers.  The bias typically is 2-fold to 4-fold over 

null expectations. In theory, a bias in mutation of magnitude B can cause a B-fold effect 

on the rate of evolution (Yampolsky and Stoltzfus 2001; McCandlish and Stoltzfus 

2014).  That is, the observed magnitude of mutation bias appears to be sufficient, in 

principle, to account for the observed evolutionary bias.  

For the selective hypothesis, arguments to the effect that transitions are more 

conservative typically invoke a biochemical factor (or a composite such as the 

Grantham index) that correlates with patterns of evolutionary divergence, and is found 

to be more conserved by transitions than by transversions (e.g., Vogel and Kopun 1977; 

Zhang 2000). This form of argument suffers from a logical circularity: if mutation shapes 

patterns of evolutionary amino acid replacement, then biochemical factors chosen for 

their ability to make sense of evolutionary patterns are not independent of mutation.   

Presumably no biochemical factor, nor any simple combination of factors, fully captures 

the effects of replacements in complex proteins operating in a complex milieu.  Indeed, 

the use of biochemical surrogates would seem unnecessary, given the availability of 

more direct measurements.  Systematic laboratory studies of the effects of amino acid 

replacements in proteins have been carried out for 25 years (e.g., Kleina and Miller 

1990).  Whereas early studies summarized by Yampolsky and Stoltzfus (2005) typically 

reported crude measures of biochemical or growth effects (e.g., a 2-valued scale of "-" 

and "+"), a number of more recent studies report a continuous measure of fitness for 

each mutant (e.g., Sanjuan, et al. 2004; Carrasco, et al. 2007; Domingo-Calap, et al. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2015. ; https://doi.org/10.1101/027722doi: bioRxiv preprint 

https://doi.org/10.1101/027722
http://creativecommons.org/licenses/by/4.0/


   6

2009; Peris, et al. 2010; Jacquier, et al. 2013; Roscoe, et al. 2013; Acevedo, et al. 2014; 

Bloom 2014; Firnberg, et al. 2014; Thyagarajan and Bloom 2014; Wu, et al. 2014).  

Such studies provide direct evidence on the relative conservativeness of transitions and 

transversions that change amino acids.  

Here we focus on whether direct measurements of fitness support the conservative 

transitions hypothesis, based on a collection of 8 studies comprising measured fitness 

values for 544 transitions and 695 transversions that change an amino acid.  We assess 

the power of each study by comparing mutant fitnesses for each type of replacement 

(e.g., Ser to Pro) with a cross-validation predictor and with 2 existing measures of amino 

acid exchangeability called EX (Yampolsky and Stoltzfus 2005) and U (Tang, et al. 

2004).  We find that, for every mutation study, even the smallest, there is a significant 

correlation with one or more of these predictors; half of the studies show a highly 

significant correlation (P < 0.001).  More importantly, for most studies, measured fitness 

values correlate significantly with a conservative-vs-radical distinction based on EX or 

U.  Specifically, a replacement designated as "conservative" has a 65 % (EX) or 64 % 

(U) chance of being more fit than a "radical" replacement.   

However, the same studies typically do not show significant conservativeness of 

transitions.  In the combined data, a transition has a 53 % chance (CI, 50 % to 56 %) of 

being more fit than a transversion, only slightly above the null expectation of 50 %. We 

show that this effect is not large compared to that of most biochemical predictors, and is 

not large enough to explain the several-fold bias toward transition replacements 

observed in evolutionary studies.  The mutation-bias hypothesis, though not proven, 

remains an obvious possibility, while the selective hypothesis would seem untenable.  
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Results  

The literature search described in Materials and Methods (see also Supplementary 

Material) resulted in the 8 data sets in Table 1, each of which provides measures of 

fitness based on individual growth or paired growth (Sanjuan, et al. 2004; Carrasco, et 

al. 2007; Domingo-Calap, et al. 2009; Peris, et al. 2010; Jacquier, et al. 2013; Rihn, et 

al. 2013; Rihn, et al. 2015).  We will refer to these 8 data sets as 8 studies, although 

they correspond to 7 publications, one of which (Domingo-Calap, et al. 2009) reports 

separate mutant fitness distributions for 2 different phages.  Because measures of 

growth from different studies are not scaled in the same way, we convert fitnesses to 

within-study quantiles, e.g., the median fitness in a study is assigned a quantile of 0.5, 

and the fitness at the 95th percentile is assigned a quantile of 0.95.   

Correlation of mutant fitnesses with amino acid exchangeability  

To assess the power of mutation studies individually and collectively, we correlate 

observed mutant fitness quantiles with expected values from three independent 

predictors: the EX matrix (Yampolsky and Stoltzfus 2005), the U matrix of Tang, et al 

(2004), and a cross-validation predictor.  The cross-validation predictor applied to a 

given target study is constructed from all other studies (i.e., excluding the target study), 

and is simply a matrix of mean quantiles for each type of replacement (e.g., Ala to Val).   

EX and U are used on the grounds of being powerful and mutationally unbiased 

predictors, whereas various biochemical predictors are less powerful (as will become 

apparent below), and various evolution-based measures other than U (e.g., PAM, 
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BLOSUM), though perhaps powerful, cannot be used, because they are not known to 

be free of the mutational effects that we wish to exclude.  The EX matrix, based on a 

meta-analysis of early mutation studies (which reported phenotypes other than fitness), 

was designed specifically to serve as a mutationally unbiased measure of 

exchangeability in models that separate selection from mutation.  In a comparative 

evaluation, EX was shown to be as powerful, or more powerful, than a representative 

sample of other predictors (Yampolsky and Stoltzfus 2005).  The "universal evolutionary 

index" or U matrix of Tang, et al (2004) is based on modeling evolution of thousands of 

genes, using a method designed to separate codon-level mutational effects from 

protein-level effects.  It purports to be a measure of evolutionary acceptability that 

scales directly with the rate of evolution.  

The results of using EX, U and a cross-validation predictor (Table 1) indicate that even 

small studies of mutant fitnesses have considerable power to reveal generic effects of 

amino acid exchangeability.  For instance, for the study of 135 HIV capsid mutants by 

Rihn, et al., there is a significant correlation between the fitness reported for a mutant 

and the predictor for the relevant replacement type (e.g., Val to Ala), whether the 

predictor is EX, U, or a cross-validation predictor based on the other studies.  This 

shows, not only that individual studies are powerful, but that there is a consistency 

across studies: although most effects of an amino acid replacement in a protein are very 

context-dependent (which is why the R2 values are small), generic effects of 

exchangeability are seen across sites and proteins.  
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Ability to distinguish conservative from radical replacements 

The conservative transitions hypothesis proposes that transitions collectively are more 

conservative than transversions.  How well do mutant fitness studies distinguish 

conservative replacements from radical ones?  We construct two versions of this 

distinction, EXB and UB (the "B" indicates a binary distinction, as opposed to a 

continuous measure), simply by designating higher-exchangeability replacements as 

"conservative", and the remainder as "radical".   

Table 2 shows how well studies of mutant fitness distinguish conservative from radical 

replacements, and how well they distinguish transitions from transversions.  The 

measure of effect-size used here is the chance that a mutant designated as 

"conservative" is more fit than a randomly chosen "radical" mutant.  This statistic is not 

affected by the relative sizes of the 2 classes; its range is from 0 to 1, with a null 

expectation of 0.5; higher values indicate that nominally "conservative" changes are 

indeed conservative.  We call this measure AUC because it has the same meaning as 

the area under a ROC (receiver-operating characteristic) curve for a binary classifier.  

That is, as pointed out by Hanley and McNeil (1982), the AUC for a binary classifier is 

equivalent to the chance that a randomly chosen positive instance will be ranked higher 

than a randomly chosen negative instance (see Methods).  

Even small studies have significant power to distinguish conservative from radical 

substitutions based on EXB and UB.  In the combined data set, the AUC is 0.65 for EXB 

and 0.64 for UB.  That is, a conservative replacement according to EXB has a 65 % 

chance of being more fit than a randomly drawn radical replacement.   
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However, the same studies typically do not distinguish transitions from transversions.  

Only one study shows a marginally significant result (p = 0.019 for the largest study).  

The combined results for the entire set of 1239 replacements are shown at the bottom 

of Table 2.  For the combined data, the AUC is 0.53, with a 95 % confidence interval of 

0.50 to 0.56 (based on 400 bootstrap replicates).  

One might object that this approach is framed incorrectly, in that it uses the entire 

distribution of mutational effects, whereas the distribution of changes fixed in evolution 

is obviously weighted toward more modest effects, because natural selection removes 

the most damaging ones whether they are transitions or transversions.  If the changes 

actually accepted in evolution are mostly in the top 50 %, or the top 5 %, of the fitness 

distribution, then this is the fraction that should be examined most closely to test the 

conservative transitions hypothesis.  

The effect of testing for a ti:tv effect at successively higher thresholds of fitness is 

shown in Figure 1. In fact, the AUC does not go up if we filter out the low end, but stays 

close to 0.5.  

Another way to explore the upper end of the fitness distribution is to consider studies of 

mutational effects that focus on beneficial mutations (Ferris, et al. 2007; MacLean, et 

al. 2010; Miller, et al. 2011; Schenk, et al. 2012).  These studies are small, with only 15 

to 38 mutants, and have little power to distinguish effects of exchangeability.  For the 

combined set of 111 beneficial mutants shown in Table 3, the AUC for the conservative 

transitions hypothesis is 0.40 (95 % CI, 0.28 to 0.51), suggesting that perhaps beneficial 

transitions are not more, but less fit than beneficial transversions.  
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Gauging the evolutionary effect size 

As mentioned above, the conservative transitions hypothesis has 2 parts, a claim that 

transitions are conservative, and a claim that this conservativeness accounts for an 

evolutionary pattern.  The present set of studies suggests that transitions are more 

conservative, but only slightly.  How important could an effect of this size be?   

One way to ask this question is to compare the ti:tv distinction to various biochemical 

distinctions.  Any quantitative property of an amino acid can be used to create a 

conservative-vs-radical distinction, e.g., for a measure of the polarity of each amino 

acid, the "conservative" changes will be the ones with the least change in polarity.  The 

AAindex database (Kawashima and Kanehisa 2000) has data on nearly 250 

biochemical factors (see Methods).  The random sample of 25 factors from AAIndex 

shown in Figure 2 indicates that biochemical predictors typically are (1) considerably 

more powerful than the ti:tv distinction, and (2) considerably less powerful than EX and 

U (to view the full set of predictors, see Supplementary Material, section 3).  

Yet, natural selection has the ability to amplify small differences into major effects. 

Perhaps a difference with an effect size of AUC = 0.53 might translate into a several-

fold bias in terms of evolutionary acceptance.   

How do these two relate to each other?  The U matrix illustrates this relationship, 

because values of U scale with evolutionary rates, and UB has a known power as a 

conservative-radical distinction, namely AUC = 0.64.  The ratio of U values for 

conservative replacements relative to radical ones is 2.7.   That is, conservative 
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replacements as defined by UB are 2.7-fold more likely to be accepted in evolution than 

radical ones.   

This pair of values, AUC = 0.64 and evolutionary bias = 2.7, represents one point in the 

relationship between evolutionary acceptability and classification power for mutant 

fitness effects.  There is another point where AUC = 0.5 (no power) and evolutionary 

bias = 1 (no effect).  We can fill in the relationship further by randomizing UB, as shown 

in Figure 3.  The results show that, when about 75 % of the values are randomized, UB 

has an AUC of 0.53, equal to that of the transition:transversion distinction.  This 

corresponds to an evolutionary bias of 1.3.  The confidence interval of AUC from 0.50 to 

0.56 for the transition:transversion distinction corresponds to the interval of 1.0 to 1.6 in 

evolutionary bias.  That is, the expected evolutionary effect of the transition:transverion 

bias is a 1.3-fold bias, with a confidence interval from 1.0 (no effect) to 1.6.  This makes 

it unlikely that selection plays the major role in causing the evolutionary 

transition:transversion bias, which typically is several-fold favoring transitions.  

Discussion 

Based on a collection of 8 studies that report fitnesses for replacement mutations, we 

have assessed the prospects for the hypothesis that the conservativeness of 

replacements via transition accounts for their increased frequency in evolution.   

Even small studies reveal predictable patterns of amino acid exchangeability, and most 

have sufficient power to distinguish a binary conservative-vs-radical distinction. 

However, the same studies typically do not show significant conservativeness of 

transitions.  Overall, the chance of a transition mutation being more fit than a 
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transversion is 53 % (95 % CI, 50 % to 56 %).  This effect size is not large compared to 

that of most biochemical predictors, and is not large enough to explain the several-fold 

bias toward transition replacements observed in evolutionary studies.  

The finding that the conservativeness of transitions is a rather weak effect increases the 

prospects for the alternative mutational explanation, in which the rate at which new 

alleles are introduced by transition mutations is several-fold higher than for 

transversions, and this bias predisposes evolutionary change to happen via transitions.   

Though this idea may be familiar, it relates to a rather substantial and unresolved issue 

in evolutionary genetics, which is the extent to which evolution in nature happens in the 

"gene pool" regime imagined by the architects of the Modern Synthesis, in the kind of 

mutation-driven regime imagined by early mutationists and later molecular evolutionists, 

or something in between (see McCandlish and Stoltzfus 2014).  For many, years the 

mutationist view has suffered from an association with neutral evolution (e.g., the two 

remain conflated in Nei 2013).  This may explain the ongoing popularity of the 

conservative transitions hypothesis: a mutation bias is the obvious explanation for 

transition bias in the evolution of introns and other non-coding sequences, but was not 

accepted for protein sequences, which are assumed to be "under selection" and thus 

not subject to such biases.  Yet it is clear theoretically that mutation-biased adaptation is 

possible and, more generally, that mutation and selection can both contribute to 

orientation or direction in evolution (Yampolsky and Stoltzfus 2001; Stoltzfus 2006).  

The results presented here also prompt the question of how the lore that transitions are 

conservative was estabished.  In a survey of the literature, we found that, when the 
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alleged conservativeness of transitions is attributed to a source, the source is often 

Zhang (2000), or early works such as Fitch (1967), Grantham (1974) or Vogel and 

Kopun (1977). Grantham does not directly address this issue, but a genetic-code-based 

calculation shows that the mean Grantham distance for transition-mediated 

replacements is lower than that for transversions, e.g., as indicated in Table 2 of Xia, et 

al (1998).  The study by Vogel and Kopun is often cited as evidence for the conservative 

transitions hypothesis, because they present a calculation that, for 3 different 

biochemical measures, suggests that transitions are more conservative.  Nevertheless, 

Vogel and Kopun themselves favored a mutational explanation (see hypothesis 3 on p. 

179), arguing that the effect size is too small for conservativeness of transitions to 

account for the evolutionary bias.  

These prior studies are inconclusive for 2 very general reasons.  The first is that none 

reports an effect size sufficient to account for the evolutionary bias.  For instance, 

Zhang's (2000) analysis of 3 possible conservative:radical distinctions finds that the 

distinction based on Miyata, et al (1979) yields the largest evolutionary effect size, 

which is a 2-fold effect, i.e., radical replacements are roughly half as likely to 

accumulate, relative to null expectations.  However, though the effect of 

conservativeness is strong, the link reported between transitions and conservativeness 

is weak.  According to Zhang (2000), the chance that a transition is conservative by 

Miyata's measure is 35 %, compared to 33 % for transversions, a proportional 

difference of only 6 % (i.e., 2 / 33 = 0.06).  Miyata-conservativeness may be a 2-fold 

evolutionary effect, but if transitions are only 6 % more Miyata-conservative than 

transversions, the overall bias will be far less than 2-fold.  
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Second, none of these works escapes the kind of logical circularity pointed out by di 

Giulio (2001; see also Yampolsky and Stoltzfus 2005), in which a measure of 

evolutionary tendencies (e.g., PAM, BLOSUM) is invoked to argue for effects of 

selection rather than mutation, ignoring the fact that the pattern of evolution is 

influenced (to an unknown degree) by mutational effects.  This is an indirect form of the 

Panglossian fallacy, i.e., it is formally a fallacy of arguing that transitions are more 

adaptive simply because they happen more often, without inquiring into why they 

happen more often.   

The fallacy is not avoided by invoking biochemical factors.  The popular composite 

indices of "biochemical" distance constructed by Grantham (1974) and Miyata, et al 

(1979) are based on choosing biochemical factors that fit well with observed 

evolutionary patterns from earlier protein comparisons.  Likewise, all 3 "biochemical" 

measures used by Vogel and Kopun (1977) are based on fitting to protein comparisons.  

The problem with this approach is suggested by Figure 4, which shows the 

conservativeness of transitions for a random sample of the biochemical indices in the 

AAindex database (Kawashima and Kanehisa 2000).  Roughly half make transitions 

seem conservative, and the other half make them seem radical.   

As shown earlier (Figure 2), this is not because biochemical indices are generally poor 

predictors of exchangeability.  Instead, among many moderately powerful predictors, 

there are ones that make transitions seem favorable, and others that make 

transversions seem favorable.  Thus, converting evolutionary patterns into biochemical 

descriptors before re-applying them to the analysis of evolutionary patterns does not 

allow one to escape a logical circularity: if early molecular evolutionists had found that 
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transversions dominate evolution, they could have rationalized this pattern by appeal to 

biochemistry just as easily as they rationalized the observed dominance of transitions.  

Materials and Methods  

Identification of studies and data sets for inclusion.  

An initial core set of studies (Sanjuan, et al. 2004; Carrasco, et al. 2007; Roscoe, et al. 

2013) was expanded by including other work cited by these studies.  Then this set was 

expanded further by open-ended searches based on keywords or by tracking citations.  

In general, no text-based search does a good job of recovering mutation-scanning 

studies of the desired type.  Narrow searches (e.g., "distribution of mutational effects") 

implicate only a fraction of true positives and did little to expand the core set of studies; 

broad searches (e.g., "mutation" plus "fitness") implicate so many false positives that 

they are impractical and were abandoned.  Most relevant studies cite the pioneering 

work of Sanjuan (2004) or the seminal review by Eyre-Walker and Keightley (2007).  

Candidate studies identified in this manner were screened for appropriateness, 

ultimately resulting in the 8 studies listed in Table 1.  The search covered literature 

published through December, 2014 and does not include more recent studies.    

As noted in Materials and Methods, we restricted our attention to studies with (1) a size 

of at least 20 replacement mutants; (2) measures of growth (fitness) rather than simply 

biochemical activities; and (3) a random or arbitrary set of mutants.  Most excluded 

studies of mutational effects have only a few mutants, or they report effects on binding 

or activity (but not on fitness), or they are focused on achieving particular outcomes 
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rather than exploring a random set of variants, or they use deep sequencing to identify 

and quantify mutants, an approach that introduces uncontrolled nucleotide biases 

(Supplementary Material, section 2).  

Processing and management of mutation data 

Starting from raw data tables supplied by authors (either directly, or via published 

supplements), all further processing and analysis steps were encoded in scripts.   For 

each study used here, there is a an R-Markdown (Rmd) file that (when executed in an 

appropriate environment, such as RStudio) describes and executes the steps (e.g., 

cleaning, re-coding, sequence integration) to convert input data into a standard tabular 

form in which there is a single row describing each mutant and its effects. The figures 

and tables in this paper are generated by further Rmd scripts that operate on the 

standardized input data.   

Other data sources 

Values of U are from Tang, et al. (2004), and values of EX are from published 

supplements. Biochemical indices from the AAIndex database were accessed via the 

Interpol package (Heider 2012) and custom R code.   

Note that, although AAindex lists 533 biochemical indices, less than half are pure 

biochemical indices.  The others are based on some method of counting occurrences in 

naturally evolved proteins, e.g., frequency with which an amino is found in a helix.  

Because the distribution of an amino acid in an evolving set of natural proteins will 

depend on the distributions of its closest mutational neighbors, such measures are not 
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mutationally unbiased. They were removed using a custom list of name exclusion 

patterns ("[fF]requenc", "[pP]reference", "[cC]ompositi", "[pP]ropensit", "[dD]istribution", 

"[iI]nformation", "[wW]eights", "[oO]ccurrence", "[Pp]roportion", "probability", "mutability", 

"Geisow", "Janin"), resulting in a set of 247 indices.  

Tests of power and effect  

The results presented here rely mainly on standard statistical procedures.  When P 

values are reported in Table 1 for a linear predictor, this is from the t-test in the built-in 

linear model (lm) function in R.  When P values are reported for binary predictors in 

Tables 2 and 3, this is based on the Wilcoxon-Mann-Whitney test as implemented in the 

"wilcox.test" function of the R "stats" package, using a one-sided test.  When confidence 

intervals are given on an AUC value, this is based on re-sampling using 400 bootstrap 

replicates.   

The only unfamiliar methods involve the use of binary predictors. To convert a 

biochemical index C to a binary distinction, we first convert it to a pairwise similarity by 

the formula Sij = 1 – abs(Ci – Cj) / max, where max is the maximum absolute difference. 

Converting a continuous measure of similarity into a binary measure is a simple matter 

of assigning all values above a particular quantile to the "conservative" class, and the 

rest to the "radical" class.  To ensure that a constructed predictor is comparable to the 

transition:transversion distinction, the threshold is chosen so that the conservative class 

is the same size as the transition class in the data to be tested.  

As explained above, we can define a measure of effect-size with intuitive properties that 

we designate as AUC, based on an application of ROC analysis that may not be 
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obvious.  In ROC analysis of a binary classifier, each instance has a binary state (e.g., 

disease vs. non-disease), and the classifier makes a ranking of instances and predicts 

the binary state based on a threshold.  The ROC curve plots the true-positive rate 

against the false-negative rate, and the area under this curve is equivalent to the 

chance that a randomly chosen positive instance is ranked higher than a randomly 

chosen negative one (Hanley and McNeil 1982).  If we treat the fitness study as the 

classifier that supplies a ranking for each mutant, and the conservative-radical 

distinction as the binary state of a mutant, then the AUC is the chance that a mutant of a 

nominally conservative type has a higher fitness than a randomly chosen mutant of a 

nominally radical type. The relationship of AUC to the Wilcoxon-Mann-Whitney test is 

explained by Manley (1982).  Calculating AUC from the test statistic is an algebraic 

conversion based on the formula AUC = (pairs – WMW_statistic(x, y)) / pairs, where x 

and y are vectors representing the two samples, and pairs = length(x) * length(y).   This 

formula applies specifically to wilcox.test in the R "stats" package (some other 

implementations define the test statistic in a different way).  

Note that converting fitnesses to within-study quantiles allows us to compare studies, 

and allows us to combine data for across-study tests.  The use of quantiles rather than 

absolute fitnesses does not have any effect on a within-study AUC or Wilcoxon-Mann-

Whitney test, which is non-parametric.  
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Figures and legends 

 

Figure 1. The relative conservativeness of transitions for distributions of mutant effects 

truncated at the low end of fitness.  The advantage of transitions (AUC) is shown as a 

function of threshold quantile for left-truncated data, e.g., the AUC value for x = 0.2 is 

computed without the bottom 20 % of the distribution.  Under the conservative 

transitions hypothesis, one might expect that, even if there is no advantage over the 

entire distribution, an advantage will appear at the high end.  In fact, this is not 

observed.  As mentioned in the text, AUC = 0.53 for the complete set of data, 

corresponding to a truncation threshold of 0, i.e., no truncation.  As the threshold 

increases, AUC decreases (rather than increases), though the differences are 

insignificant.   
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Figure 2.  Relative power of conservative-radical distinctions based on some 

biochemical factors.  Binary predictors based on 25 randomly chosen biochemical 

factors from the AAIndex database were applied to the prediction of mutant fitnesses in 

mutation-scanning experiments (for the full set of predictors, see Supplementary 

Material, section 3).  The AUC is the chance that a randomly chosen mutant designated 

as "conservative" by the predictor has a higher fitness than one designated as "radical".  

Most predictors are more powerful than the ti:tv distinction (AUC = 0.53).  
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Figure 3.   Relationship between power to predict mutant fitnesses and evolutionary 

effect size.  AUC and evolutionary acceptance ratio are shown for increasingly 

randomized verions of UB.  For the unrandomized UB, the power in predicting mutational 

effects is AUC = 0.64, and this corresponds to an evolutionary acceptance ratio of 2.7 

for conservative versus radical replacements.  To estimate the evolutionary acceptance 

ratio for more modest values of AUC, we can weaken UB by randomly re-assigning 

"conservative" or "radical" labels to an increasingly large fraction of replacement types 

(200 replicates at each level of randomization).  The AUC of 0.53 is reached at about 75 

% randomization, where the evolutionary effect size is 1.3.   
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Figure 4.  The relative advantage of transitions as indicated by a random sample of 

biochemical factors.  Each biochemical attribute of an amino acid is converted to a 

pairwise similarity measure, so that each possible amino acid replacement has a 

similarity score.  Here the AUC is the chance that a replacement due to a randomly 

chosen transition (from the pool of actual mutants from the 8 studies) has a higher 

similarity score (for the given biochemical attribute) than a randomly chosen 

transversion.  The resulting distribution indicates that many biochemical factors make 

transitions seem more conservative (AUC > 0.5), but a roughly equal number make 

transversions seem more conservative (AUC < 0.5). For the full set of predictors, see 

Supplementary Material, section 3.  
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Tables  

Table 1.  Power of 8 studies to discern generic effects of exchangeability.   

  Cross-validation EX Tang's U  

name N R2 P a R2 P a R2 P a 

Jacquier (TEM1) 757 0.021 1.0e-04 ** 0.085 2.9e-16 ** 0.053 1.6e-10 ** 

Rihn (HIV 

integrase) 

156 0.040 0.012 * 0.069 9.0e-04 ** 0.074 6.1e-04 ** 

Rihn (HIV capsid) 135 0.034 0.033 * 0.056 5.9e-03 ** 0.17 5.6e-07 ** 

Carrasco (TEP) 52 0.097 0.025 * 0.045 0.13 0.056 0.091 

Peris (f1) 51 0.12 0.014 * 0.16 3.1e-03 ** 0.21 6.2e-04 ** 

Domingo-Calap 

(Qbeta) 

32 0.13 0.040 * 0.10 0.073 0.17 0.018 * 

Sanjuan (VSV) 32 0.32 1.3e-03 ** 0.12 0.053 0.18 0.014 * 

Domingo-Calap 

(phiX174) 

24 0.24 0.017 * 0.37 1.7e-03 ** 0.51 9.4e-05 ** 

Combined 1239 0.047 6.3e-07 ** 0.088 9.4e-21 ** 0.090 3.2e-16 ** 

(a) P values for the null hypothesis of no correlation (*, P < 0.05; **, P < 0.01). 
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Table 2.  Power of 8 studies to detect various binary distinctions. 

  EXB UB TiTv 

name N AUC P a AUC P a AUC P a 

Jacquier (TEM1) 757 0.66 2.8e-14 ** 0.61 4.0e-08 ** 0.54 0.019 * 

Rihn (HIV 

integrase) 

156 0.64 2.1e-03 ** 0.67 7.2e-05 ** 0.540 0.191 

Rihn (HIV capsid) 135 0.60 7.1e-03 ** 0.63 7.4e-04 ** 0.50 0.50 

Carrasco (TEP) 52 0.64 0.037 * 0.61 0.087 0.50 0.50 

Peris (f1) 51 0.60 0.13 0.72 4.6e-03 ** 0.54 0.31 

Domingo-Calap 

(Qbeta) 

32 0.60 0.16 0.65 0.076 0.75 0.084 

Sanjuan (VSV) 32 0.61 0.13 0.75 6.1e-03 ** 0.31 0.93 

Domingo-Calap 

(phiX174) 

24 0.81 5.8e-03 ** 0.94 1.6e-04 ** 0.34 0.85 

Combined 1239 0.65 6.5e-18 ** 0.64 1.6e-12 ** 0.53 0.024 * 

(a) P values for a one-sided test where the alternative is that nominally conservative 

replacements, or transitions, are more fit (*, P < 0.05; **, P < 0.01)  
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Table 3.  Relative advantage of transitions in 4 studies of beneficial mutations 

  EXB UB TiTv 

name N AUC P a AUC P a AUC P a 

Schenk (TEM1) 38 0.46 0.63 0.40 0.84 0.49 0.53 

MacLean (RpoB) 31 0.45 0.68 0.47 0.62 0.35 0.93 

Miller (ID11) 27 0.58 0.30 0.62 0.18 0.25 0.96 

Ferris (phi6) 15 0.69 0.18 0.64 0.20 0.39 0.76 

NA 111 0.52 0.50 0.50 0.57 0.40 0.95 

(a) P values for a one-sided test where the alternative is that nominally conservative 

replacements, or transitions, are more fit (*, P < 0.05; **, P < 0.01)  
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