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Abstract: 17	
  

Evolutionary innovation must occur in the context of some genomic background, which limits 18	
  

available evolutionary paths. For example, protein evolution by sequence substitution is 19	
  

constrained by epistasis between residues. In prokaryotes, evolutionary innovation frequently 20	
  

happens by macrogenomic events such as horizontal gene transfer (HGT). Previous work has 21	
  

suggested that HGT can be influenced by ancestral genomic content, yet the extent of such gene-22	
  

level constraints has not yet been systematically characterized. Here, we evaluated the 23	
  

evolutionary impact of such constraints in prokaryotes, using probabilistic ancestral 24	
  

reconstructions from 634 extant prokaryotic genomes and a novel framework for detecting 25	
  

evolutionary constraints on HGT events. We identified 8,228 directional dependencies between 26	
  

genes, and demonstrated that many such dependencies reflect known functional relationships, 27	
  

including, for example, evolutionary dependencies of the photosynthetic enzyme RuBisCO. 28	
  

Modeling all dependencies as a network, we adapted an approach from graph theory to establish 29	
  

chronological precedence in the acquisition of different genomic functions. Specifically, we 30	
  

demonstrated that specific functions tend to be gained sequentially, suggesting that evolution in 31	
  

prokaryotes is governed by functional assembly patterns. Finally, we showed that these 32	
  

dependencies are universal rather than clade-specific and are often sufficient for predicting 33	
  

whether or not a given ancestral genome will acquire specific genes. Combined, our results 34	
  

indicate that evolutionary innovation via HGT is profoundly constrained by epistasis and 35	
  

historical contingency, similar to the evolution of proteins and phenotypic characters, and 36	
  

suggest that the emergence of specific metabolic and pathological phenotypes in prokaryotes can 37	
  

be predictable from current genomes. 38	
  

 39	
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INTRODUCTION: 40	
  

A fundamental question in evolutionary biology is how present circumstances affect future 41	
  

adaptation and phenotypic change (Gould and Lewontin 1979). Studies of specific proteins, for 42	
  

example, indicate that epistasis between sequence residues limits accessible evolutionary 43	
  

trajectories and thereby renders certain adaptive paths more likely than others  (Weinreich et al. 44	
  

2006; Gong et al. 2013; de Visser and Krug 2014; Harms and Thornton 2014). Similarly, both 45	
  

phenotypic characters (Ord and Summers 2015) and specific genetic adaptations (Christin et al. 46	
  

2015; Conte et al. 2012) show strong evidence of parallel evolution rather than convergent 47	
  

evolution. That is, a given adaptation is more likely to repeat in closely related organisms than in 48	
  

distantly related ones. This inverse relationship between the repeatability of evolution and 49	
  

taxonomic distance implies a strong effect of lineage-specific contingency on evolution, also 50	
  

potentially mediated by epistasis (Orr 2005). 51	
  

Such observations suggest that genetic adaptation is often highly constrained and that the 52	
  

present state of an evolving system can impact future evolution. Yet, the studies above are 53	
  

limited to small datasets and specific genetic pathways, and a more principled understanding of 54	
  

the rules by which future evolutionary trajectories are governed by the present state of the system 55	
  

is still lacking. For example, it is not known whether such adaptive constraints are a feature of 56	
  

genome-scale evolution or whether they are limited to finer scales. Moreover, the mechanisms 57	
  

that underlie observed constraints are often completely unknown. Addressing these questions is 58	
  

clearly valuable for obtaining a more complete theory of evolutionary biology, but more 59	
  

pressingly, is essential for tackling a variety of practical concerns including our ability to combat 60	
  

evolving infectious diseases or engineer complex biological systems. 61	
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Here, we address this challenge by analyzing horizontal gene transfer (HGT) in 62	
  

prokaryotes. HGT is an ideal system to systematically study genome-wide evolutionary 63	
  

constraints because it involves gene-level innovation, occurs at very high rates relative to 64	
  

sequence substitution (Nowell et al. 2014; Puigbò et al. 2014), and is a principal source of 65	
  

evolutionary novelty in prokaryotes (Gogarten et al. 2002; Jain et al. 2003; Lerat et al. 2005; 66	
  

Puigbò et al. 2014). Clearly, many or most acquired genes are rapidly lost due to fitness costs 67	
  

(van Passel et al. 2008; Baltrus 2013; Soucy et al. 2015), indicating that genes retained in the 68	
  

long term are likely to provide a selective advantage. Moreover, not all genes are equally 69	
  

transferrable (Jain et al. 1999; Sorek et al. 2007; Cohen et al. 2011), and not all species are 70	
  

equally receptive to the same genes (Smillie et al. 2011; Soucy et al. 2015). However, 71	
  

differences in HGT among species have been attributed not only to ecology (Smillie et al. 2011) 72	
  

or to phylogenetic constraints (Nowell et al. 2014; Popa et al. 2011), but also to interactions with 73	
  

the host genome (Jain et al. 1999; Cohen et al. 2011; Popa et al. 2011). Indeed, studies involving 74	
  

single genes or single species support the influence of genome content on the acquisition and 75	
  

retention of transferred genes (Pal et al. 2005; Iwasaki and Takagi 2009; Chen et al. 2011; Press 76	
  

et al. 2013; Sorek et al. 2007; Johnson and Grossman 2014). For example, it has been 77	
  

demonstrated that the presence of specific genes facilitates integration of others into genetic 78	
  

networks (Chen et al. 2011), and that genes are more commonly gained in genomes already 79	
  

containing metabolic genes in the same pathway (Pal et al. 2005; Iwasaki and Takagi 2009). 80	
  

However, to date, a systematic, large-scale analysis of such dependencies has not been presented. 81	
  

In this paper, we therefore set out to characterize a comprehensive collection of genome-wide 82	
  

HGT-based dependencies among prokaryotic genes, analyze the obtained set of epistatic 83	
  

interactions, and identify patterns in the evolution of prokaryotic genomes.  84	
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RESULTS: 85	
  

PGCE Inference 86	
  

We first set out to detect pairs of genes for which the presence of one gene in the genome 87	
  

promotes the gain of the other gene (though not necessarily vice versa) (Figure 1). Such “pairs of 88	
  

genes with conjugated evolution” (PGCEs) represent putative epistatic interactions at the gene 89	
  

level and may guide genome evolution. To this end, we obtained a collection of 634 prokaryotic 90	
  

genomes annotated by KEGG (Kanehisa et al. 2012) and linked through a curated phylogeny 91	
  

(Dehal et al. 2010). For each of the 5801 genes that varied in presence across these genomes, we 92	
  

reconstructed the probability of this gene’s presence or absence on each branch of the 93	
  

phylogenetic tree using a previously introduced method (Cohen and Pupko 2010), as well as the 94	
  

probability that it was gained or lost along these branches using a simple heuristic (Methods). 95	
  

We confirmed that genes’ presence/absence was robust to the reconstruction method employed 96	
  

(99.5% agreement between reconstruction methods used; Methods). As expected (Mira et al. 97	
  

2001), gene loss was more common than gene gain for most genes  (Supplemental Figure S1, 98	
  

Supplemental Text). We additionally confirmed that inferred gains of several genes of interest 99	
  

were consistent with gains inferred by an alternative HGT inference method (Methods; 100	
  

Supplemental Text, Supplemental Table S1). From the reconstructions, we estimated the 101	
  

frequency with which each gene was gained in the presence of each other gene, and followed 102	
  

previous studies (Maddison 1990; Cohen et al. 2012) in using parametric bootstrapping 103	
  

(Supplemental Figure S2) to detect PGCEs – gene pairs for which one gene is gained 104	
  

significantly more often in the presence of the other (Supplemental Figure S3, Supplemental 105	
  

Text). In total, we identified 8,415 PGCEs. We finally applied a transitive reduction procedure 106	
  

to discard potentially spurious PGCEs, resulting in a final network containing 8,228 PGCEs 107	
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connecting a total of 2,260 genes (Supplemental Figures S4, S5, Supplemental Text). A detailed 108	
  

description of the procedures used can be found in Methods, and the final list of PGCEs is 109	
  

supplied as Supplemental File S1.  110	
  

 111	
  

PGCEs represent biologically relevant dependencies 112	
  

Comparing this final set of PGCEs to known biological interactions, we confirmed that the 113	
  

obtained PGCEs represent plausible biological dependencies. For example, genes sharing the 114	
  

same KEGG Pathway annotations were more likely to form a PGCE (Figure 2A), as were genes 115	
  

linked in an independently-derived network of bacterial metabolism (Levy and Borenstein 2013) 116	
  

(Figure 2B). Moreover, PGCEs often linked genes in functionally related pathways 117	
  

(Supplemental Figure S6, Supplemental Text). We similarly identified specific examples in 118	
  

which PGCEs connected pairs of genes with well-described functional relationships. One such 119	
  

example is the PGCE connecting rbsL and rbsS (sometimes written rbcL/rbcS), two genes that 120	
  

encode the large and small subunits of the well-described photosynthetic enzyme ribulose-1-5-121	
  

bisphosphate carboxylase-oxygenase (RuBisCO), respectively. The rbsL subunit alone has 122	
  

carboxylation activity in some bacteria, but the addition of rbsS increases enzymatic efficiency, 123	
  

consistent with its PGCE dependency on rbsL (Figure 3A) (Andersson and Backlund 2008). 124	
  

Moreover, these genes are known to undergo substantial horizontal transfer (Delwiche and 125	
  

Palmer 1996).  126	
  

Multiple additional genes were found to promote rbsS gain (88 PGCEs in total, 127	
  

Supplemental Table S2), many of which, as expected, are associated with carbon metabolism. 128	
  

Other genes in this set, however, unexpectedly implicated nitrogen acquisition, as well as other 129	
  

pathways (Supplemental Table S3), in promoting rbsS gain. For example, all components of the 130	
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urt urea transport complex had a PGCE link with rbsS, as shown by the reconstructed 131	
  

phylogenetic history of urtA and rbsS (Figure 3B). This strict dependency could reflect 132	
  

nitrogen’s role as a rate-limiting resource for primary production in phytoplankton and other 133	
  

photosynthetic organisms (Eppley and Peterson 1979; Sohm et al. 2011). In comparing the 134	
  

reconstructions from which urtA-rbsS and rbsL-rbsS dependencies were inferred, we further 135	
  

observed that rbsS is gained only in lineages where both urtA and rbsL were previously present. 136	
  

This indicates that while both rbsL and urtA may be necessary for the acquisition of rbsS, neither 137	
  

rbsL nor urtA are independently sufficient for the acquisition of rbsS. Other PGCEs may interact 138	
  

in similarly complex fashions in controlling the acquisition of genes, and thus such relationships 139	
  

may be gene-specific and involve a variety of biological mechanisms that may be difficult to 140	
  

generalize. For further analyses, we therefore focused on analyzing large-scale patterns of PGCE 141	
  

connectivity and on exploring how the dependencies between various genes structure the 142	
  

relationships between functional pathways. 143	
  

 144	
  

PGCE network analyses reveal evolutionary assembly patterns 145	
  

The rbsS-associated PGCEs described above show how PGCEs captured an assembly pattern 146	
  

involving multiple pathways. Therefore, we next set out to infer global evolutionary assembly 147	
  

patterns based on the complete set of PGCEs identified. Specifically, we used a network-based 148	
  

topological sorting approach (Supplemental Text) to rank all genes in the PGCE network. 149	
  

According to this procedure, genes without dependencies occupy the first rank, genes in the 150	
  

second rank have PGCE dependencies only on first rank genes, genes in the third rank have 151	
  

dependencies only on first and second rank genes, and so on until all genes are associated with 152	
  

some rank. In other words, the obtained ranking represents general patterns in the order by which 153	
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genes are gained throughout evolution, with the gain of higher-ranked genes succeeding the 154	
  

presence of the lower-ranked genes on which they depend. Using this approach, we found that 155	
  

genes could be fully classified into five ranks (Fig 4A). The first rank was by far the largest at 156	
  

1,593 genes (most genes do not have detectable dependencies), the second rank had 498 genes, 157	
  

and successive ranks showed declining membership until the last (fifth) rank, with only 5 genes 158	
  

(Supplemental Table S4).  159	
  

To identify evolutionary assembly patterns from these ranks, we examined the set of 160	
  

genes in each rank and identified overrepresented functional categories (Table 1). These enriched 161	
  

functional categories indicate that certain functional groups of genes consistently occupy specific 162	
  

positions in these evolutionary assembly patterns, whether in controlling other genes’ gain or in 163	
  

being controlled by other genes. For example, we found that the first rank was enriched for 164	
  

flagellar and pillar genes involved in motility, in addition to Type II secretion genes (many of 165	
  

which are homologous to or overlap with genes encoding pillar proteins) and certain two-166	
  

component genes. The second rank was enriched for various metabolic processes, whereas later 167	
  

ranks were enriched for Type III and Type IV secretion systems and conjugation genes. This 168	
  

finding suggests that habitat commitments are made early in evolution, mediated by motility 169	
  

genes that could underlie the choice and establishment of physical environments. This 170	
  

environmental choice is followed by a metabolic commitment to exploiting the new habitat. Last, 171	
  

genes for interaction with the biotic complement of these habitats are gained, and replaced 172	
  

frequently in response to evolving challenges. Considering two distinct but highly homologous 173	
  

pilus assembly pathways, one (fimbrial) was enriched in a low rank and one (conjugal) was 174	
  

enriched in a high rank, suggesting that the specific function of the gene rather than other 175	
  

sequence-level gene properties drove the ranking (Supplemental Figure S7A). We additionally 176	
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confirmed that the observed rank distribution for these functions is not explained by variation in 177	
  

the frequency of gene gain (Supplemental Figure S7B). Furthermore, as expected, we observed 178	
  

that the gains of genes appearing late in the sort were overrepresented in later branches of the 179	
  

tree compared to the gains of lower-ranked genes (Figure 4B, Supplemental Figure S8), 180	
  

suggesting that the chronology of gene acquisition reflects the overall assembly patterns in gain 181	
  

order.  182	
  

 183	
  

Evolution by HGT is predictable 184	
  

The chronological ordering of ranks was relatively consistent across the tree (Figure 4B), 185	
  

indicating that PGCE dependencies are universal across prokaryotes. Notably, this universality 186	
  

also implies that gene acquisition is predictable from genome content. Put differently, if PGCEs 187	
  

are universal, then PGCEs inferred in one clade of the tree are informative in making predictions 188	
  

about gene acquisition in a different clade. Indeed, studies of epistasis-mediated protein 189	
  

evolution indicate that the constriction of possible mutational paths should lead to predictability 190	
  

in evolution, if epistasis is sufficiently strong (Weinreich et al. 2006). To explore this hypothesis 191	
  

explicitly, we partitioned the tree into training and test sets (Figure 5A). As test sets, we selected 192	
  

the Firmicutes phylum, and the Alphaproteobacteria/Betaproteobacteria subphyla. Choosing 193	
  

whole clades as test sets (rather than randomly sampling species from throughout the tree) 194	
  

guarantees that true predictions are based on universal PGCEs, rather than clade-specific PGCEs. 195	
  

For each test set, we used a model phylogeny that excluded the test subtree as a training set, and 196	
  

inferred PGCEs based on this pruned tree (Supplemental Table S5, Supplemental Figure S9A). 197	
  

We then used these inferred PGCEs to score the relative likelihood of the gain of dependent 198	
  

genes on each branch in the test set, based on the genome content of the branch’s ancestor 199	
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(Figure 5A, Supplemental Table S5, Supplemental Text). We used a naïve and simplistic score: 200	
  

the proportion of genes upon which the gained gene depends that are present in the reconstructed 201	
  

ancestor of each branch. In both test sets, we found that prediction quality was surprisingly high 202	
  

(Figure 5B, Supplemental Figure S9B-C), suggesting that PGCEs are taxonomically universal 203	
  

and statistically robust in describing relationships between genes. This predictability is consistent 204	
  

with the hypothesis that gene-gene dependencies constrain the evolution of genomes by HGT. 205	
  

More broadly, this analysis and our finding that PGCEs can predictably determine future 206	
  

evolutionary gains provide substantial evidence that the preponderance of parallel evolution over 207	
  

convergent evolution (Ord and Summers 2015; Conte et al. 2012) may be the result of specific, 208	
  

identifiable genetic dependencies entraining the evolutionary trajectory taken by similar 209	
  

genomes.  210	
  

 211	
  

DISCUSSION: 212	
  

Combined, our findings provide substantial evidence to suggest that gene acquisitions in bacteria 213	
  

are governed by genome content through numerous gene-level dependencies. Our ability to 214	
  

detect these underlying dependencies is clearly imperfect, owing to various data and 215	
  

methodological limitations (Supplemental Text, Supplemental Figure S3). Therefore, in reality 216	
  

the complete dependency network is likely much denser than that described above and includes 217	
  

numerous dependencies and constraints that our approach may not be able to detect. 218	
  

Consequently, our estimates should be considered as a lower bound on the extent of gene-gene 219	
  

interactions, and accordingly, the predictability of HGT. 220	
  

Notably, even considering such caveats, our observations dramatically expand our 221	
  

knowledge of the constraints on HGT. Previous studies of such constraints demonstrated that 222	
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genes frequently acquired by HGT tend to occupy peripheral positions in biological networks, 223	
  

are often associated with specific cellular functions, and are phylogenetically clustered (Jain et 224	
  

al. 1999; Cohen et al. 2011). These observations suggested that properties of transferred genes 225	
  

are also important determinants of HGT regardless of recipient genome content (Jain et al. 1999; 226	
  

Cohen et al. 2011; Gophna and Ofran 2011) and that the acquisition of certain genes is clade-227	
  

specific (Popa et al. 2011; Andam and Gogarten 2011). In contrast, our analysis demonstrates the 228	
  

importance of recipient genome content in influencing the propensity of a new gene to be 229	
  

acquired. In fact, to some extent, properties previously reported as determining the general 230	
  

“acquirability” of genes across all species may reflect an average constraint across genomes. By 231	
  

considering also variation in genomes acquiring genes, our analysis focused on specific 232	
  

biological effects, whose strengths may vary from genome to genome. 233	
  

Importantly, our model that gene acquisition is affected by recipient genome content is 234	
  

consistent with the observed enrichment of HGT among close relatives, which presumably have 235	
  

similar genome content (Gogarten et al. 2002; Andam and Gogarten 2011; Popa et al. 2011; 236	
  

Popa and Dagan 2011). This taxonomic clustering of innovation by HGT is also in agreement 237	
  

with previous studies that demonstrated that phenotypic and genetic parallel evolution is more 238	
  

common than convergent evolution, potentially due to the effects of historical contingency 239	
  

(Gould and Lewontin 1979; Conte et al. 2012; Christin et al. 2015; Ord and Summers 2015). 240	
  

However, in contrast to other studies, we present direct evidence that the mechanism by which 241	
  

contingency controls evolution is epistasis. Furthermore, the universality of PGCEs shows that 242	
  

the constraints underlying the effect of contingency operate outside the context of parallel 243	
  

evolution.  244	
  

 Put differently, since each phylum-level clade is subject to an independent evolutionary 245	
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trajectory, it is unlikely that the same dependency patterns would repeat solely due to parallel 246	
  

evolution. Moreover, our ability to predict where exactly along the tree gains of a specific gene 247	
  

are likely to occur (Figure 5B) suggests that PGCEs successfully capture how variation in the 248	
  

genomic content (even among closely related species) affects future gain events. Such PGCE 249	
  

specificity therefore indicates that observed dependencies are not a trivial byproduct of prevalent 250	
  

gene transfer events among taxonomically closely related genomes (e.g., due to homologous 251	
  

recombination constraints; Popa et al. 2011). Nonetheless, the relative contributions of each of 252	
  

these various processes governing the assembly of prokaryotic genomes (and the evolution of 253	
  

complex systems in general) clearly deserve future study. 254	
  

It should also be noted that while our analysis revealed several intriguing patterns, the 255	
  

precise interpretation of some of these patterns remains unclear. For instance, the observed 256	
  

correspondence of topological ranks of genes to chronology suggests that evolutionary age is a 257	
  

potential contributor to such ranking, especially considering that our reconstructions likely lack 258	
  

many genes that have not been retained in any extant genomes. However, the biological 259	
  

plausibility and statistical robustness of PGCEs demonstrated above strongly argue that the 260	
  

observed evolutionary patterns are the result of constraint-inducing dependencies. Future work 261	
  

may therefore aim to quantify the trade-off between functional and chronological determinants in 262	
  

apparent evolutionary constraints.   263	
  

Finally, we demonstrate the predictability of genomic evolution by horizontal transfer 264	
  

from current genomic content. As stated above, this finding also suggests that such dependencies 265	
  

are fairly universal across the prokaryotic tree. It should be noted that our approach was designed 266	
  

specifically to understand the PGCE network’s significance and universality, rather than predict 267	
  

gene acquisition. It is likely that an approach specifically engineered for gene acquisition 268	
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prediction would substantially outperform our approach. The estimates of predictability of 269	
  

genomic evolution presented here are accordingly quite conservative. 270	
  

The determinism and predictability of evolutionary patterns therefore appear to be an 271	
  

outcome not only of intramolecular epistasis in proteins or phylogenetic constraints, but also of 272	
  

genome-wide interactions between genes. This suggests that the evolution of medically, 273	
  

economically, and ecologically important traits in prokaryotes depends on ancestral genome 274	
  

content and is hence at least partly predictable, potentially informing research in the 275	
  

epidemiology of infectious diseases, bioengineering, and biotechnology. 276	
  

 277	
  

METHODS 278	
  

All mathematical operations and statistical analyses were performed in R 2.15.3 (R Core Team 279	
  

2016). Probabilistic ancestral reconstructions were obtained using the gainLoss program (Cohen 280	
  

and Pupko 2010). Phylogenetic simulations and plots were performed with the APE library 281	
  

(Paradis et al. 2004). Network analyses and algorithms were implemented using either the igraph 282	
  

(Csardi and Nepusz 2006) or NetworkX (Hagberg et al. 2013) libraries, and visualized using 283	
  

Cytoscape v3.1.1 (Shannon et al. 2003).  284	
  

 285	
  

Phylogenies 286	
  

We used a pre-computed phylogenetic tree (Dehal et al. 2010) as a model of bacterial evolution. 287	
  

We mapped all extant organisms in this tree to organisms in the KEGG database by their NCBI 288	
  

genome identifiers, and pruned all tips that did not directly and uniquely map to KEGG. This 289	
  

yielded a phylogenetic tree connecting 634 prokaryotic species. For analyses involving subtrees 290	
  

of this phylogenetic tree, we used iTOL (Letunic and Bork 2011) to extract subtrees. 291	
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 292	
  

Inferring phylogenetic histories for genes 293	
  

We used the gainLoss v1.266 software (Cohen and Pupko 2010), a set of presence/absence 294	
  

patterns of orthologous genes from KEGG (Kanehisa et al. 2012), and the phylogenetic tree 295	
  

described above to infer 1) the probabilities of presence and absence of genes at internal nodes of 296	
  

the tree, 2) gain and loss rates of each gene, and 3) tree branch lengths within a single model. 297	
  

Specifically, in running gainLoss, we assumed a stationary evolutionary process, with gene gain 298	
  

and loss rates for each gene modeled as a mixture of three rates drawn from gamma distributions 299	
  

defined based on overall initial presence/absence patterns. A complete list of parameters used for 300	
  

gainLoss runs is given in the Supplemental Text and as Supplemental File S2. The gainLoss log 301	
  

file for the principal run on the full tree is also included as Supplemental File S3. Based on these 302	
  

models, we obtained a probabilistic ancestral reconstruction based on stochastic mapping for 303	
  

each of 5801 genes that were present in at least one species and absent in at least one species, 304	
  

and filtered out genes that were found to be gained less than twice throughout the tree, yielding 305	
  

5031 genes which we further analyzed.  306	
  

 307	
  

Inferring gains and presence of genes on branches. 308	
  

To focus on gain events with strong support and where the gained gene is retained (rather than 309	
  

gain events where the gene is subsequently lost along the same branch), we used a simple model 310	
  

for computing the probability of different evolutionary gain/loss scenarios based on gainLoss 311	
  

ancestral reconstructions rather than directly using gainLoss gain inferences (Supplemental 312	
  

Text). Specifically, we assumed that unobserved gains and losses are not relevant, and that 313	
  

evolutionary scenarios are defined by the states at the ancestor and descendant nodes of each 314	
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branch (regardless of branch length). With these assumptions, we used the probabilities of 315	
  

presence and absence of each of 5031 genes at each node and tip on the tree to compute the 316	
  

probability of each branch undergoing each scenario: 1) gain (absent in ancestor and present in 317	
  

descendant), 2) presence (present in both ancestor and descendant), and 3) loss (present in 318	
  

ancestor and absent in descendant; Supplemental Text). For a gene X on a branch with ancestor 319	
  

A and descendant B, we assume:  320	
  

1. Pr(X present on branch) = Pr(X present in A ∩ X present in B) =  321	
  

Pr(X present in A) * Pr(X present in B) 322	
  

2. Pr(X gained on branch) = Pr(X absent in A ∩ X present in B) =  323	
  

Pr(X absent in A) * Pr(X present in B) 324	
  

3. Pr(X lost on branch) = Pr(X present in A ∩ X absent in B) =  325	
  

Pr(X present in A) * Pr(X absent in B) 326	
  

Note again that these probability estimates are distinct from those obtained by using the gainLoss 327	
  

continuous-time Markov chain on the same ancestral reconstruction, which consider also 328	
  

hypothetical gains that are not retained and are thus not relevant to our analysis (Supplemental 329	
  

Text).  330	
  

  331	
  

Robustness analysis of reconstruction method 332	
  

We used a maximum-parsimony reconstruction as inferred by gainLoss to benchmark the 333	
  

accuracy of the gainLoss reconstruction by stochastic mapping. In this analysis, only internal 334	
  

node reconstructions were considered, as tip reconstructions (for which the states are known) are 335	
  

not informative about algorithm performance. Since the maximum-parsimony reconstruction is 336	
  

binary (presence/absence) and the stochastic mapping reconstruction is probabilistic, for 337	
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purposes of comparison we rounded the probabilities of the stochastic mapping reconstruction to 338	
  

obtain a presence/absence reconstruction (i.e., a probability >0.5 denotes presence and <=0.5 339	
  

denotes absence). We computed the agreement between the two reconstructions as the 340	
  

percentage of internal node reconstructions that agree on the state of the gene. 341	
  

 342	
  

Comparison of analyzed gains to reconciliation-based HGT inference. 343	
  

We compared gains inferred by our method for several genes central to the PGCE network to 344	
  

gain events reported in a searchable database of horizontally acquired genes inferred by a 345	
  

sequence-based reconciliation method (Jeong et al. 2015). To this end, we classified all branches 346	
  

supporting a gain event for each of these genes with >50% probability by our method as ‘true’ 347	
  

gains. We next searched the reconciliation database (all queries performed between January 15th 348	
  

and February 20th, 2016) for each gene, identifying orthologous genes across 2,472 genomes that 349	
  

exhibit HGT according to reconciliation (excluding events that occurred on branches without 350	
  

descendants). We manually compared descendants of the remaining events from our method 351	
  

with the genomes experiencing gene acquisition in the reconciliation dataset to assess overlap 352	
  

between these two methods (see Supplemental Text).  353	
  

 354	
  

Quantifying PGCEs 355	
  

We defined a “pair of genes with conjugated evolution” (PGCE) as a gene pair (i, j) for which 356	
  

the presence of one gene i encourages the gain of the other, j. Considering these genes as 357	
  

phylogenetic characters, we therefore aim to detect pairs for which “gain” state transitions for 358	
  

character j are enriched on branches where character i remains in the “present” state. This 359	
  

problem is related to previous methods for detecting coevolution or correlation between 360	
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phylogenetic characters (Maddison 1990; Huelsenbeck et al. 2003; Cohen et al. 2012). Given N 361	
  

branches and k genes, there are 2 N X k matrices, P and G, describing the probabilities, 362	
  

respectively, of presence and gain of each gene along each branch (using our model for 363	
  

estimating gains described above). The test statistic for a dependency between each gene pair (i, 364	
  

j) is the expected number of branches where the gain of gene j occurs, while conditioning on the 365	
  

presence of gene i (cell Cij in a k x k matrix C). Counting transitions of one character (gene j 366	
  

gain) given some state of another character (gene i presence) yields a standard test statistic for 367	
  

testing correlated evolution of binary characters on phylogenies (Maddison 1990). To compute C 368	
  

across N branches, we sum the conditional probabilities of the gain of gene j in the presence of 369	
  

gene i across the tree, i.e. the products of the two N x k matrices, P (presence) and G (gain), for 370	
  

each gene pair: 371	
  

𝐶!" =    𝐺!"𝑃!"

!

!!!

 

 372	
  
Entries in C which are significantly larger than a null expectation of gains represent PGCEs 373	
  

between the row and column genes of C.  374	
  

 375	
  

Null distribution for PGCEs 376	
  

For two independently evolving genes i and j, the counted gains of j in the presence of i, Cij, will 377	
  

be distributed under the null hypothesis (independent evolution) as some function of the 378	
  

prevalence of i (the sum of Pi, the vector of probabilities of presence of i across branches of the 379	
  

tree), the expected number of branches where j is gained (the sum of Gj, the vector of 380	
  

probabilities of gains of j across nodes of the tree), and the topology and branch lengths of the 381	
  

tree (τ): 382	
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𝐶!"   ~  𝑓(𝑃! ,𝐺! , τ) 

We followed previous studies (Cohen et al. 2012; Huelsenbeck et al. 2003; Maddison 1990) by 383	
  

approximating this null distribution via parametric bootstrapping. Specifically, we simulated the 384	
  

evolution of 105 genes along the tree using the APE library function rTraitDisc() (Paradis et al. 385	
  

2004). For the gain and loss rates used in these simulations, we used gainLoss gain and loss rates 386	
  

estimated for the 5801 empirical genes. We fit gamma distributions to these values by maximum 387	
  

likelihood using the function fitdistr() from the MASS library (Venables and Ripley 2002). For 388	
  

both gains and losses, we increased the shape parameter of the gamma distribution (by a factor of 389	
  

3 for gains, 1.5 for losses), to ensure that simulated genes showed sufficiently large numbers of 390	
  

gains. This was necessary because parametric bootstrapping with the rates inferred by gainLoss 391	
  

resulted in left skewed distributions of gene gains (compare Supplemental Figures S2A, S2C, 392	
  

and S2E), which were likely to confound null models. For our null models to be applicable, the 393	
  

distribution of simulated gene gains should be roughly similar to the distribution of gains among 394	
  

empirical genes (see Supplemental Figure S2, Supplemental Text).  395	
  

These simulated genes should evolve independently and thus represent a null model for 396	
  

PGCEs. As above, we constructed matrices representing the probabilities of presence and gain of 397	
  

these 105 genes across all of the branches of the phylogeny (Pnull and Gnull). We then multiplied 398	
  

these matrices of simulated genes to compute a 105 x 105 matrix Cnull of expected branch counts 399	
  

under a model of independence. We excluded gene pairs with Cij ≤ 1 from further analysis, as it 400	
  

may be difficult to distinguish between no association and a lack of statistical power for such 401	
  

pairs (Supplemental Figure S3A), reducing overall power in computing false discovery rates 402	
  

(Bourgon et al. 2010). As a null distribution for each pair of genes i and j with Cij > 1, we used 403	
  

the 1000 simulated genes with prevalence closest to gene i (rows of Cnull), and the 1000 404	
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simulated genes with a number of gains closest to gene j (columns of Cnull). We used the 106 405	
  

simulated observations in the resulting submatrix of Cnull as a null distribution for Cij. Notably, 406	
  

Cij includes non-integer count expectations, whereas Cnull represents integer counts (because the 407	
  

true reconstruction is known). Consequently, we floored values in Cij, such that all counts were 408	
  

truncated at the decimal point. The comparison of Cij to this null distribution yields an empirical 409	
  

p-value; we rejected the null hypothesis of independence between genes i and j for the Cij 410	
  

observation at a 1% false discovery rate (Benjamini and Hochberg 1995) (P < 7 x 10-6).  411	
  

 412	
  

Constructing a PGCE network. 413	
  

For each entry in Cij for which we observed a significant association, we recorded an edge from 414	
  

gene i to gene j in a network of PGCEs. To focus purely on direct interactions, we subjected this 415	
  

network to a transitive reduction (Hsu 1975). This reduction requires a directed acyclic graph 416	
  

(DAG). To identify the largest possible DAG in our PGCE network, we identified and removed 417	
  

the minimal set of edges inducing cycles (Supplemental Text). We performed a transitive 418	
  

reduction of the resulting DAG using Hsu’s algorithm (Hsu 1975) (Supplemental Text).  419	
  

 420	
  

Mapping biological information to the network. 421	
  

We used network rewiring (as implemented in the rewire() function of the igraph library (Csardi 422	
  

and Nepusz 2006)) to generate null distributions of the PGCE network by randomly exchanging 423	
  

edges between pairs of connected nodes, while excluding self-edges. In each permutation, we 424	
  

performed 5N rewiring operations, where there are N edges in the network, to ensure sufficient 425	
  

randomization. To estimate the relationship between the PGCE network and biological 426	
  

information we calculated the number of edges shared between the PGCE network and a 427	
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metabolic network of all bacterial metabolism obtained from KEGG (Kanehisa et al. 2012; Levy 428	
  

and Borenstein 2013), and the number of edges shared between members of the same functional 429	
  

pathway as defined by KEGG, in both the original and randomized networks.  430	
  

To determine whether genes with certain functional annotations were more likely to associate 431	
  

with one another in the PGCE network, we examined the KEGG Pathway annotations of each 432	
  

pair of genes in the network. We counted the number of edges leading from each pathway to 433	
  

each other pathway, and obtained an empirical p-value for this count by comparing it to a null 434	
  

distribution of the expected counts obtained by random rewiring as above.  435	
  

 436	
  

Topological sorting of PGCE networks 437	
  

To identify global patterns in our PGCE network, we performed topological sorting (Kahn 1962) 438	
  

with grouping. Topological sorting finds an absolute ordering of nodes in a directed acyclic 439	
  

graph (DAG), such that no node later in the ordering has an edge directed towards a node earlier 440	
  

in the ordering. Grouping the sort allows nodes to have the same rank in the ordering if 441	
  

precedence cannot be established between them, giving a unique solution. For a description of 442	
  

the algorithm used, see Supplementary Text. 443	
  

 444	
  

Prediction of HGT events on branches. 445	
  

We used the PGCE network to predict the occurrence of specific HGT events (gene acquisitions) 446	
  

on the tree in the following fashion. We used two test/training set partitions, with the clades of 447	
  

Firmicutes and the Alpha/Betaproteobacteria as independent test sets, and the training sets as the 448	
  

rest of the tree without these clades. To “train” PGCE networks, we performed ancestral 449	
  

reconstruction of gene presence, PGCE inference, and network processing just as for the entire 450	
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tree. We only attempted to predict genes with at least one PGCE dependency (“predictable” 451	
  

genes). We then considered each branch in the test set independently, attempting to predict 452	
  

whether each predictable gene was gained on that branch based on the reconstructed genome at 453	
  

the ancestor node. For each predictable gene-branch combination, our prediction score was the 454	
  

proportion of the predictable gene’s PGCE dependencies that are present in the ancestor. This is 455	
  

the dot product of the gene presence/absence pattern of the ancestor node (Ai across i potentially 456	
  

present genes) and a binary vector denoting which genes in the PGCE network the predictable 457	
  

gene depends on (Pi across i genes in potential PGCEs), scaled by Pi: 458	
  

𝑠𝑐𝑜𝑟𝑒 =   
𝐴!𝑃!
𝑃!

 

Note that this value ranges between 0 and 1 for each predicted gene. As true gains, we used our 459	
  

reconstructed gene acquisition events for each branch in the test set. We arbitrarily called any 460	
  

predictable gene-branch pair with a Pr(gain) > 0.5 as a gain, and any predictable gene-branch 461	
  

pair with Pr(gain) <= 0.5 as no gain. We filtered out any gene-branch pair where the gene was 462	
  

known to be present with Pr > 0.4, as in these cases the gene is probably already present. We 463	
  

analyzed the accuracy of our prediction scores using receiver operating characteristic (ROC) 464	
  

analysis and by comparing scores of the gain branches to those of the no-gain branches. 465	
  

 466	
  

Data Access 467	
  

Parameter and log files for principal analyses are provided as Supplemental Files S2 and S3. 468	
  

Data and code are provided as Supplemental File S4.  469	
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FIGURE LEGENDS 482	
  

Figure 1. Workflow for deriving the PGCE network. (A): a model phylogeny and a set of 483	
  

gene presence/absence patterns at the tips are used to generate an ancestral reconstruction, from 484	
  

which gains are inferred. Filled circles represent the presence of a gene (distinguished by color), 485	
  

empty circles represent absence of that gene. Inverted triangles represent points on the phylogeny 486	
  

where the gene of the indicated color is inferred to be gained. (B): Based on inferred gain and 487	
  

loss rates, many evolutionary scenarios are independently simulated and used as a null 488	
  

expectation for evolutionary independence. Filled circles indicate presence of the simulated gene 489	
  

and empty circles indicate absence, inverted triangles represent gains of the simulated gene on 490	
  

the phylogeny. (C): A null distribution derived from simulated gene evolution is used to identify 491	
  

dependencies between real genes. (D): These dependencies are modeled as a network. Filled 492	
  

circles indicate genes (nodes), arrows indicate dependencies (edges).  493	
  

 494	
  

Figure 2. PGCEs are enriched for biologically meaningful interactions. (A): The observed 495	
  

number of PGCE edges connecting genes in the same pathway (dotted line), compared to the 496	
  

expected distribution obtained from 1000 rewired networks with identical degree distributions. 497	
  

(B): The observed number of PGCE edges that also appear in a bacteria-wide metabolic network, 498	
  

compared to the expected distribution. 499	
  

 500	
  

Figure 3. The phylogenetic history of rbsL, urtA and rbsS. The presence of each gene in each 501	
  

branch in the phylogenetic tree is illustrated with a colored circle, with the circle’s diameter 502	
  

scaled to denote the probability of presence. (A): rbsL and rbsS evolutionary histories; (B): urtA 503	
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and rbsS evolutionary histories. The long branch leading to Archaea (bottom-most clade) was 504	
  

reduced in size for graphical purposes. 505	
  

 506	
  

Figure 4. Topological sorting of the PGCE dependency network reveals assembly patterns 507	
  

that govern the evolutionary process. (A): Binned dependencies among the six ranks of genes 508	
  

in the topological sort (left to right). Node size represents the number of genes in each rank 509	
  

(using natural logarithm-scale). Edge width represents the number of PGCEs between genes in 510	
  

different rank (natural logarithm-scale), all edges are directed to the right. (B) The gain of genes 511	
  

from each rank in each branch of the phylogenetic tree is illustrated (circles). The different colors 512	
  

represent different ranks. Circle sizes correspond to the proportion of gains on a branch 513	
  

attributed to genes of that rank (e.g. a large red circle indicates that most gains on a branch 514	
  

correspond to rank 1). The branch to Archaea (lower clade) has been reduced in size for 515	
  

graphical purposes. See also Supplemental Figure S7.  516	
  

 517	
  

Figure 5. PGCE dependencies lead to taxonomically robust predictability of gene 518	
  

acquisition. (A): Workflow for predicting gene acquisition between clades of the tree. A training 519	
  

set is used to build a PGCE dependency model, which is then used to predict on which specific 520	
  

branches genes are likely to be gained (green circles), based on dependencies inferred from the 521	
  

training set (red and blue circles). (B): performance of PGCEs in predicting gene acquisitions in 522	
  

two test sets (indicated clades of the prokaryotic tree). Areas under each curve: Firmicutes, 0.73; 523	
  

Alpha/Beta-proteobacteria, 0.68. The diagonal dotted line represents the performance of a purely 524	
  

random prediction. See also Supplemental Figure S9. 525	
  

  526	
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FIGURES 527	
  

 528	
  
  529	
  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2016. ; https://doi.org/10.1101/027649doi: bioRxiv preprint 

https://doi.org/10.1101/027649
http://creativecommons.org/licenses/by-nc/4.0/


	
   26	
  

 530	
  
  531	
  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2016. ; https://doi.org/10.1101/027649doi: bioRxiv preprint 

https://doi.org/10.1101/027649
http://creativecommons.org/licenses/by-nc/4.0/


	
   27	
  

 532	
  
  533	
  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2016. ; https://doi.org/10.1101/027649doi: bioRxiv preprint 

https://doi.org/10.1101/027649
http://creativecommons.org/licenses/by-nc/4.0/


	
   28	
  

 534	
  
  535	
  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2016. ; https://doi.org/10.1101/027649doi: bioRxiv preprint 

https://doi.org/10.1101/027649
http://creativecommons.org/licenses/by-nc/4.0/


	
   29	
  

 536	
  
  537	
  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2016. ; https://doi.org/10.1101/027649doi: bioRxiv preprint 

https://doi.org/10.1101/027649
http://creativecommons.org/licenses/by-nc/4.0/


	
   30	
  

TABLES 538	
  
Table 1. Functional groups are enriched in different ranks of the topological sort. 539	
  
Annotation label P-value1 Enrichment Ratio2 

Rank 1 Enrichments   
Cell motility 1.94E-07 1.40 
Bacterial motility proteins  1.85E-11 1.41 
Type II secretion system 2.61E-05 1.33 
Two-component system  3.65E-04 1.25 
Flagellar system 1.01E-09 1.43 
Pilus system 2.11E-04 1.38 
Metabolism3 3.37E-05 0.91 
Xenobiotics biodegradation and metabolism3 1.07E-06 0.69 
Carbohydrate metabolism3 0.00012 0.84 
Type IV secretion system3 1.26E-09 0.20 
Rank 2 Enrichments   
Metabolism 1.47E-04 1.23 
Carbohydrate metabolism 3.08E-06 1.58 
Rank 4 Enrichments   
Pathogenicity 1.88E-06 21.6 
Conjugal transfer pilus assembly protein 1.08E-04 15.0 
Type III protein secretion pathway protein 1.88E-06 21.6 
ABC-2 type and other transporters 2.31E-04 12.5 
Type IV secretion system 1.30E-03 8.04 
1: from a hypergeometric test. All annotations displayed are significant at a 1% false discovery rate. 540	
  
2: The ratio of the observed proportion of genes with this label in the indicated rank to the expected proportion 541	
  
based on all genes in the network. 542	
  
3: These annotations are depleted (i.e. enrichment ratio significantly less than one) in the first rank. 543	
  
  544	
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