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Abstract: 1	
  

Evolutionary innovation must occur in the context of some genomic background, which limits 2	
  

available evolutionary paths. For example, protein evolution by sequence substitution is 3	
  

constrained by epistasis between residues. In prokaryotes, evolutionary innovation frequently 4	
  

happens by macrogenomic events such as horizontal gene transfer (HGT). Previous work has 5	
  

suggested that HGT can be influenced by ancestral genomic content, yet the extent of such gene-6	
  

level constraints has not yet been systematically characterized. Here, we evaluated the 7	
  

evolutionary impact of such constraints in prokaryotes, using probabilistic ancestral 8	
  

reconstructions from 634 extant prokaryotic genomes and a novel framework for detecting 9	
  

evolutionary constraints on HGT events. We identified 8,228 directional dependencies between 10	
  

genes, and demonstrated that many such dependencies reflect known functional relationships, 11	
  

including, for example, evolutionary dependencies of the photosynthetic enzyme RuBisCO. 12	
  

Modeling all dependencies as a network, we adapted an approach from graph theory to establish 13	
  

chronological precedence in the acquisition of different genomic functions. Specifically, we 14	
  

demonstrated that specific functions tend to be gained sequentially, suggesting that evolution in 15	
  

prokaryotes is governed by functional assembly patterns. Finally, we showed that these 16	
  

dependencies are universal rather than clade-specific and are often sufficient for predicting 17	
  

whether or not a given ancestral genome will acquire specific genes. Combined, our results 18	
  

indicate that evolutionary innovation via HGT is profoundly constrained by epistasis and 19	
  

historical contingency, similar to the evolution of proteins and phenotypic characters, and 20	
  

suggest that the emergence of specific metabolic and pathological phenotypes in prokaryotes can 21	
  

be predictable from current genomes. 22	
  

 23	
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INTRODUCTION: 1	
  

A fundamental question in evolutionary biology is how present circumstances affect future 2	
  

adaptation and phenotypic change (Gould and Lewontin 1979). Studies of specific proteins, for 3	
  

example, indicate that epistasis between sequence residues limits accessible evolutionary 4	
  

trajectories and thereby renders certain adaptive paths more likely than others  (Weinreich et al. 5	
  

2006; Gong et al. 2013; de Visser and Krug 2014; Harms and Thornton 2014). Similarly, both 6	
  

phenotypic characters (Ord and Summers 2015) and specific genetic adaptations (Christin et al. 7	
  

2015; Conte et al. 2012) show strong evidence of parallel evolution rather than convergent 8	
  

evolution. That is, a given adaptation is more likely to repeat in closely related organisms than in 9	
  

distantly related ones. This inverse relationship between the repeatability of evolution and 10	
  

taxonomic distance implies a strong effect of lineage-specific contingency on evolution, also 11	
  

potentially mediated by epistasis (Orr 2005). 12	
  

Such observations suggest that genetic adaptation is often highly constrained and that the 13	
  

present state of an evolving system can impact future evolution. Yet, the studies above are 14	
  

limited to small datasets and specific genetic pathways, and a more principled understanding of 15	
  

the rules by which future evolutionary trajectories are governed by the present state of the system 16	
  

is still lacking. For example, it is not known whether such adaptive constraints are a feature of 17	
  

genome-scale evolution or whether they are limited to finer scales. Moreover, the mechanisms 18	
  

that underlie observed constraints are often completely unknown. Addressing these questions is 19	
  

clearly valuable for obtaining a more complete theory of evolutionary biology, but more 20	
  

pressingly, is essential for tackling a variety of practical concerns including our ability to combat 21	
  

evolving infectious diseases or engineer complex biological systems. 22	
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Here, we address this challenge by analyzing horizontal gene transfer (HGT) in 1	
  

prokaryotes. HGT is an ideal system to systematically study genome-wide evolutionary 2	
  

constraints because it involves gene-level innovation, occurs at very high rates relative to 3	
  

sequence substitution (Nowell et al. 2014; Puigbò et al. 2014a), and is a principal source of 4	
  

evolutionary novelty in prokaryotes (Gogarten et al. 2002; Jain et al. 2003; Lerat et al. 2005; 5	
  

Puigbò et al. 2014b). Clearly, many or most acquired genes are rapidly lost due to fitness costs 6	
  

(van Passel et al. 2008; Baltrus 2013; Soucy et al. 2015), indicating that genes retained in the 7	
  

long term are likely to provide a selective advantage. Moreover, not all genes are equally 8	
  

transferrable (Jain et al. 1999; Sorek et al. 2007; Cohen et al. 2011), and not all species are 9	
  

equally receptive to the same genes (Smillie et al. 2011; Soucy et al. 2015). However, 10	
  

differences in HGT among species have been attributed not only to ecology (Smillie et al. 2011) 11	
  

or to phylogenetic constraints (Nowell et al. 2014; Popa et al. 2011), but also to interactions with 12	
  

the host genome (Jain et al. 1999; Cohen et al. 2011; Popa et al. 2011). Indeed, studies involving 13	
  

single genes or single species support the influence of genome content on the acquisition and 14	
  

retention of transferred genes (Pal et al. 2005; Iwasaki and Takagi 2009; Chen et al. 2011; Press 15	
  

et al. 2013; Sorek et al. 2007; Johnson and Grossman 2014). For example, it has been 16	
  

demonstrated that the presence of specific genes facilitates integration of others into genetic 17	
  

networks (Chen et al. 2011), and that genes are more commonly gained in genomes already 18	
  

containing metabolic genes in the same pathway (Pal et al. 2005; Iwasaki and Takagi 2009). 19	
  

However, to date, a systematic, large-scale analysis of such dependencies has not been presented.  20	
  

In this paper, we therefore characterize a comprehensive collection of genome-wide 21	
  

HGT-based dependencies among prokaryotic genes, uncover potential rules of genome evolution 22	
  

in prokaryotes, and demonstrate that the acquisition of genes is to some extent predictable based 23	
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on these rules. Overall, our study suggests that genetic innovation and adaptation are 1	
  

substantially constrained through gene-level epistatic interactions such as those that we describe 2	
  

influencing HGT. 3	
  

 4	
  

 5	
  

RESULTS: 6	
  

PGCE Inference 7	
  

We first set out to detect pairs of genes for which the presence of one gene in the genome 8	
  

promotes the gain of the other gene (though not necessarily vice versa) (Figure 1). Such “pairs of 9	
  

genes with conjugated evolution” (PGCEs) represent putative epistatic interactions at the gene 10	
  

level and may guide genome evolution. To this end, we obtained a collection of 634 prokaryotic 11	
  

genomes, annotated by KEGG (Kanehisa et al. 2012), and linked through a curated phylogeny 12	
  

(Dehal et al. 2010). For each of the 5801 genes that varied in presence across these genomes, we 13	
  

reconstructed the probability of this gene’s presence or absence on each branch of the 14	
  

phylogenetic tree using a previously introduced method (Cohen and Pupko 2010), as well as the 15	
  

probability that it was gained along these branches. We further confirmed that genes’ 16	
  

presence/absence was robust to the reconstruction method employed (99.5% agreement between 17	
  

reconstruction methods used; Methods). From these reconstructions, we estimated the frequency 18	
  

with which each gene was gained in the presence of each other gene, and followed previous 19	
  

studies (Maddison 1990; Cohen et al. 2012) in using parametric bootstrapping (Figure S1) to 20	
  

detect PGCEs – gene pairs for which one gene is gained significantly more often in the presence 21	
  

of the other (Figure S2, SI Text). In total, we identified 8,415 PGCEs. We finally applied a 22	
  

transitive reduction procedure to discard potentially spurious PGCEs, resulting in a final network 23	
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containing 8,228 PGCEs connecting a total of 2,260 genes (Figures S3, S4, SI Text). A detailed 1	
  

description of the procedures used can be found in Methods, and the final list of PGCEs is 2	
  

supplied as File S1.  3	
  

 4	
  

PGCEs represent biologically relevant dependencies 5	
  

Comparing this final set of PGCEs to known biological interactions, we confirmed that the 6	
  

obtained PGCEs represent plausible biological dependencies. For example, genes sharing the 7	
  

same KEGG Pathway annotations were more likely to form a PGCE (Figure 2A), as were genes 8	
  

that are linked in an independently-derived network of bacterial metabolism (Levy and 9	
  

Borenstein 2013) (Figure 2B). Moreover, PGCEs often linked genes in functionally related 10	
  

pathways (Figure S5, SI Text). We similarly identified specific examples in which PGCEs 11	
  

connected pairs of genes with well-described functional relationships. One such example is the 12	
  

PGCE connecting rbsL and rbsS (sometimes written rbcL/rbcS), two genes that encode the large 13	
  

and small subunits of the well-described photosynthetic enzyme ribulose-1-5-bisphosphate 14	
  

carboxylase-oxygenase (RuBisCO), respectively. The rbsL subunit alone has carboxylation 15	
  

activity in some bacteria, but the addition of rbsS increases enzymatic efficiency, consistent with 16	
  

its PGCE dependency on rbsL (Figure 3A) (Andersson and Backlund 2008). Moreover, these 17	
  

genes are known to undergo substantial horizontal transfer (Delwiche and Palmer 1996). 18	
  

Multiple additional genes were found to promote rbsS gain (88 PGCEs in total, Table 19	
  

S1), many of which, as expected, are associated with carbon metabolism. Other genes in this set, 20	
  

however, unexpectedly implicated nitrogen acquisition, as well as other pathways (Table S2), in 21	
  

promoting rbsS gain. For example, all components of the urt urea transport complex had a PGCE 22	
  

link with rbsS, as shown by the reconstructed phylogenetic history of urtA and rbsS (Figure 3B). 23	
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This strict dependency could reflect nitrogen’s role as a rate-limiting resource for primary 1	
  

production in phytoplankton and other photosynthetic organisms (Eppley and Peterson 1979; 2	
  

Sohm et al. 2011). In comparing the reconstructions from which urtA-rbsS and rbsL-rbsS 3	
  

dependencies were inferred, we further observed that rbsS is gained only in lineages where both 4	
  

dependencies were previously present. This indicates that while both rbsL and urtA may be 5	
  

necessary for the acquisition of rbsS, neither rbsL nor urtA are independently sufficient for the 6	
  

acquisition of rbsS. Other PGCEs may interact in similarly complex fashions in controlling the 7	
  

acquisition of genes, and thus such relationships may be gene-specific and involve a variety of 8	
  

biological mechanisms that may be difficult to generalize. For further analyses, we therefore 9	
  

focused on analyzing large-scale patterns of PGCE connectivity and on exploring how the 10	
  

dependencies between various genes structure the relationships between functional pathways. 11	
  

PGCE network analyses reveal evolutionary assembly patterns 12	
  

The rbsS-associated PGCEs described above show how PGCEs captured an assembly pattern 13	
  

involving multiple pathways. Therefore, we next set out to infer global evolutionary assembly 14	
  

patterns based on the complete set of PGCEs identified. Specifically, we used a network-based 15	
  

topological sorting approach (SI Text) to rank all genes in the PGCE network. According to this 16	
  

procedure, genes without dependencies occupy the first rank, genes in the second rank have 17	
  

PGCE dependencies only on first rank genes, genes in the third rank have dependencies only on 18	
  

first and second rank genes, and so on until all genes are associated with some rank. In other 19	
  

words, the obtained ranking represents general patterns in the order by which genes are gained 20	
  

throughout evolution, with the gain of higher-ranked genes succeeding the presence of the lower-21	
  

ranked genes on which they depend. Using this approach, we found that genes could be fully 22	
  

classified into five ranks (Fig 4A). The first rank was by far the largest at 1,593 genes (most 23	
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genes do not have detectable dependencies), the second rank had 498 genes, and successive 1	
  

ranks showed declining membership until the last (fifth) rank, with only 5 genes (Table S3).  2	
  

To identify evolutionary assembly patterns from these ranks, we examined the set of 3	
  

genes in each rank and identified overrepresented functional categories (Table 1). These enriched 4	
  

functional categories indicate that certain functional groups of genes consistently occupy specific 5	
  

positions in these evolutionary assembly patterns, whether in controlling other genes’ gain or in 6	
  

being controlled by other genes. For example, we found that the first rank was enriched for 7	
  

flagellar and piliar genes involved in motility, in addition to Type II secretion genes (many of 8	
  

which are homologous to or overlap with genes encoding piliar proteins) and certain two-9	
  

component genes. The second rank was enriched for various metabolic processes, whereas later 10	
  

ranks were enriched for Type III and Type IV secretion systems and conjugation genes (Table 1). 11	
  

This finding suggests that habitat commitments are made early in evolution, mediated by motility 12	
  

genes that could underlie the choice and establishment of physical environments. This 13	
  

environmental choice is followed by a metabolic commitment to exploiting the new habitat. Last, 14	
  

genes for interaction with the biotic complement of these habitats are gained, and replaced 15	
  

frequently in response to evolving challenges. Considering two distinct but highly homologous 16	
  

pilus assembly pathways, one (fimbrial) was enriched in a low rank and one (conjugal) was 17	
  

enriched in a high rank, suggesting that the specific function of the gene rather than other 18	
  

sequence-level gene properties drove the ranking (Figure S6A). We additionally confirmed that 19	
  

the observed rank distribution for these functions is not explained by variation in the frequency 20	
  

of gene gain (Figure S6B). Furthermore, as expected, we observed that the gains of genes 21	
  

appearing late in the sort were overrepresented in later branches of the tree compared to the gains 22	
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of lower-ranked genes (Figures 4B, S7), suggesting that the chronology of gene acquisition 1	
  

reflects the overall assembly patterns in gain order.  2	
  

Evolution by HGT is predictable 3	
  

The chronological ordering of ranks was relatively consistent across the tree (Figure 4B), 4	
  

indicating that PGCE dependencies are universal across prokaryotes. Notably, this universality 5	
  

also implies that gene acquisition is predictable from genome content. Put differently, if PGCEs 6	
  

are universal, then PGCEs inferred in one clade of the tree are informative in making predictions 7	
  

about gene acquisition in a different clade. Indeed, studies of epistasis-mediated protein 8	
  

evolution indicate that the constriction of possible mutational paths should lead to predictability 9	
  

in evolution, if epistasis is sufficiently strong (Weinreich et al. 2006). To explore this hypothesis 10	
  

explicitly, we partitioned the tree into training and test sets (Figure 5A). As test sets, we selected 11	
  

the Firmicutes phylum, and the Alphaproteobacteria/Betaproteobacteria subphyla. Choosing 12	
  

whole clades as test sets (rather than randomly sampling species from throughout the tree) 13	
  

guarantees that true predictions are based on universal PGCEs, rather than clade-specific PGCEs. 14	
  

For each test set, we used a model phylogeny that excluded the test subtree as a training set, and 15	
  

inferred PGCEs based on this pruned tree (Table S4, Figure S8A). We then used these inferred 16	
  

PGCEs to score the likelihood of the gain of dependent genes on each branch in the test set, 17	
  

based on the genome content of the branch’s ancestor (Figure 5A, Table S4, SI Text). We used a 18	
  

naïve and simplistic score: the proportion of genes upon which the gained gene depends that are 19	
  

present in the reconstructed ancestor of each branch. In both test sets, we found that prediction 20	
  

quality was surprisingly high (Figure 5B, Figure S8B), suggesting that PGCEs are taxonomically 21	
  

universal and statistically robust in describing relationships between genes. This predictability is 22	
  

consistent with the hypothesis that gene-gene dependencies constrain the evolution of genomes 23	
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by HGT. More broadly, this analysis and our finding that PGCEs predictably determines future 1	
  

evolutionary gains provide substantial evidence that the preponderance of parallel evolution over 2	
  

convergent evolution (Ord and Summers 2015; Conte et al. 2012) may be the result of specific, 3	
  

identifiable genetic dependencies that similarly impact the evolutionary trajectory taken by 4	
  

similar genomes.  5	
  

DISCUSSION: 6	
  

Combined, our findings provide substantial evidence to suggest that gene acquisitions in bacteria 7	
  

are governed by genome content through numerous gene-level dependencies. Our ability to 8	
  

detect these underlying dependencies is clearly imperfect, owing to various data and 9	
  

methodological limitations (SI Text, Figure S2). In reality the complete dependency network is 10	
  

therefore likely much denser than that described above and includes numerous dependencies and 11	
  

constraints that our approach may not be able to detect. Consequently, our estimates should be 12	
  

considered as a lower bound on the extent of gene-gene interactions and accordingly the 13	
  

predictability of HGT. 14	
  

Notably, even considering such caveats, our observations dramatically expand our 15	
  

knowledge of the constraints on HGT. Previous studies of such constraints demonstrated that 16	
  

genes frequently acquired by HGT tend to occupy peripheral positions in biological networks 17	
  

(Jain et al. 1999; Cohen et al. 2011), are often associated with specific cellular functions, and are 18	
  

phylogenetically clustered. These observations suggested that properties of transferred genes are 19	
  

also important determinants of HGT regardless of recipient genome content (Jain et al. 1999; 20	
  

Cohen et al. 2011; Gophna and Ofran 2011) and that the acquisition of certain genes is clade-21	
  

specific (Popa et al. 2011; Andam and Gogarten 2011). In contrast, our analysis demonstrates the 22	
  

importance of recipient genome content in strongly influencing the propensity of a new gene to 23	
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be acquired. In fact, to some extent, properties previously reported as determining the general 1	
  

“acquirability” of genes across all species may reflect some average constraint across genomes. 2	
  

By considering also variation in genomes acquiring genes, our analysis focused on specific 3	
  

biological effects, whose strengths may vary from genome to genome. 4	
  

Importantly, our model that gene acquisition is affected by recipient genome content is 5	
  

consistent with the observed enrichment of HGT among close relatives, which presumably have 6	
  

similar genome content (Gogarten et al. 2002; Andam and Gogarten 2011; Popa et al. 2011; 7	
  

Popa and Dagan 2011). This taxonomic clustering of innovation by HGT is also in agreement 8	
  

with previous studies that demonstrated that phenotypic (Gould and Lewontin 1979; Ord and 9	
  

Summers 2015) and genetic (Conte et al. 2012; Christin et al. 2015) parallel evolution is more 10	
  

common than convergent evolution, potentially due to the effects of contingency (Gould and 11	
  

Lewontin 1979; Conte et al. 2012; Christin et al. 2015; Ord and Summers 2015). However, in 12	
  

contrast to other studies, we present direct evidence that the mechanism by which contingency 13	
  

controls evolution is epistasis. Furthermore the universality of the PGCEs shows that the 14	
  

constraints underlying the effect of contingency operate outside the context of parallel evolution.  15	
  

It should also be noted that while our analysis revealed several intriguing patterns, the 16	
  

precise interpretation of some of these patterns remains unclear. For instance, the observed 17	
  

correspondence of topological ranks of genes to chronology suggests that evolutionary age is a 18	
  

potential contributor to such ranking, especially considering that our reconstructions likely lack 19	
  

many genes that have not been retained in any extant genomes. However, the biological 20	
  

plausibility and statistical robustness of PGCEs demonstrated above strongly argue that the 21	
  

observed evolutionary patterns are the result of constraint-inducing dependencies. Future work 22	
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may therefore aim to quantify the trade-off between functional and chronological determinants in 1	
  

apparent evolutionary constraints.   2	
  

Finally, we demonstrate the predictability of genomic evolution by horizontal transfer 3	
  

from current genomic content. As stated above, this finding also suggests that such dependencies 4	
  

are fairly universal across the prokaryotic tree. It should be noted that our approach was designed 5	
  

specifically to understand the PGCE network’s significance and universality, rather than predict 6	
  

gene acquisition. It is likely that an approach specifically engineered for gene acquisition 7	
  

prediction would substantially outperform our approach. The estimates of predictability of 8	
  

genomic evolution presented here are accordingly quite conservative. 9	
  

The determinism and predictability of evolutionary patterns therefore appear to be an 10	
  

outcome not only of intramolecular epistasis in proteins or phylogenetic constraints, but also of 11	
  

genome-wide interactions between genes. This suggests that the evolution of medically, 12	
  

economically, and ecologically important traits in prokaryotes depends on ancestral genome 13	
  

content and is hence at least partly predictable, potentially informing research in the 14	
  

epidemiology of infectious diseases, bioengineering, and biotechnology. 15	
  

 16	
  

METHODS 17	
  

All mathematical operations and statistical analyses were performed in R 2.15.3 (2012). 18	
  

Probabilistic ancestral reconstructions were obtained using the gainLoss program (Cohen and 19	
  

Pupko 2010). Phylogenetic simulations and plots were performed with the APE library (Paradis 20	
  

et al. 2004). Network analyses and algorithms were implemented using either the igraph (Csardi 21	
  

and Nepusz 2006) or NetworkX (Hagberg et al. 2013) libraries, and visualized using Cytoscape 22	
  

v3.1.1 (Shannon et al. 2003).  23	
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 1	
  

Phylogenies 2	
  

We used a pre-computed phylogenetic tree (Dehal et al. 2010) as a model of bacterial evolution. 3	
  

We mapped all extant organisms in this tree to organisms in the KEGG database by their NCBI 4	
  

genome identifiers, and pruned all tips that did not directly and uniquely map to KEGG. This 5	
  

yielded a phylogenetic tree connecting 634 prokaryotic species. For analyses involving subtrees 6	
  

of this phylogenetic tree, we used iTOL (Letunic and Bork 2011) to extract subtrees. 7	
  

 8	
  

Inferring phylogenetic histories for genes 9	
  

We used the gainLoss v1.266 software (Cohen and Pupko 2010), a set of presence/absence 10	
  

patterns of orthologous genes from KEGG (Kanehisa et al. 2012), and the phylogenetic tree 11	
  

described above to infer 1) the probabilities of presence and absence of genes at internal nodes of 12	
  

the tree, 2) gain and loss rates of each gene, and 3) tree branch lengths within a single model. We 13	
  

obtained a probabilistic ancestral reconstruction based on stochastic mapping for each of 5801 14	
  

genes that were present in at least one species and absent in at least one species, and filtered out 15	
  

genes that were found to be gained less than twice throughout the tree, yielding 5031 genes 16	
  

which we further analyzed. We used the probabilities of presence and absence of each of these 17	
  

5031 genes at each node and tip on the tree to compute the probability of each branch 18	
  

experiencing 1) gain (absent in ancestor and present in descendant) and 2) presence (present in 19	
  

both ancestor and descendant; Supporting Text). For a gene X on a branch with ancestor A and 20	
  

descendant B, we assume:  21	
  

1. Pr(X present on branch) = Pr(X present in A ∩ X present in B) =  22	
  

Pr(X present in A) * Pr(X present in B) 23	
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2. Pr(X gained on branch) = Pr(X absent in A ∩ X present in B) =  1	
  

Pr(X absent in A) * Pr(X present in B) 2	
  

 3	
  

Note that these probability estimates are distinct from those obtained by using the gainLoss 4	
  

continuous-time Markov chain on the same ancestral reconstruction, which consider also 5	
  

hypothetical gains that are not retained and are thus not relevant to our analysis (Supporting 6	
  

Text).  7	
  

Robustness analysis of reconstruction method 8	
  

We used a maximum-parsimony reconstruction as inferred by gainLoss to benchmark the 9	
  

accuracy of the gainLoss reconstruction by stochastic mapping. In this analysis, only internal 10	
  

node reconstructions were considered, as tip reconstructions (for which the states are known) are 11	
  

not informative about algorithm performance. Since the maximum-parsimony reconstruction is 12	
  

binary (presence/absence) and the stochastic mapping reconstruction is probabilistic, for 13	
  

purposes of comparison we rounded the probabilities of the stochastic mapping reconstruction to 14	
  

obtain a presence/absence reconstruction (i.e., a probability >0.5 denotes presence and <=0.5 15	
  

denotes absence). We computed the agreement between the two reconstructions as the 16	
  

percentage of internal node reconstructions that agree on the state of the gene. 17	
  

 18	
  

Quantifying PGCEs 19	
  

We defined a “pair of genes with conjugated evolution” (PGCE) as a gene pair (i, j) for which 20	
  

the presence of one gene i encourages the gain of the other, j Considering these genes as 21	
  

phylogenetic characters, we therefore aim to detect pairs for which “gain” state transitions for 22	
  

character j are enriched on branches where character i remains in the “present” state. This 23	
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problem is related to previous methods for detecting coevolution or correlation between 1	
  

phylogenetic characters (Maddison 1990; Huelsenbeck et al. 2003; Cohen et al. 2012). Given N 2	
  

branches and k genes, there are 2 N X k matrices, P and G, describing the probabilities, 3	
  

respectively, of presence and gain of each gene along each branch. The test statistic for each 4	
  

gene pair (i, j) is the probabilistic count of branches where the gain of gene j occurs, while 5	
  

conditioning on the presence of gene i (cell Cij in a k x k matrix C). To compute C across N 6	
  

branches, we sum the conditional probabilities of the gain of gene j in the presence of gene i 7	
  

across the tree, i.e. the products of the two N x k matrices, P (presence) and G (gain), for each 8	
  

gene pair: 9	
  

𝐶!" =    𝐺!"𝑃!"

!

!!!

 

 10	
  
Entries in C which are significantly larger than a null expectation of gains represent PGCEs 11	
  

between the row and column genes of C.  12	
  

 13	
  

Null distribution for PGCEs 14	
  

For two independently evolving genes i and j, the counted gains of j in the presence of i, Cij, will 15	
  

be distributed under the null hypothesis (independent evolution) as some function of the 16	
  

prevalence of i (the sum of Pi, the vector of probabilities of presence of i across branches of the 17	
  

tree), the probabilistic count of gains experienced by j (the sum of Gj, the vector of probabilities 18	
  

of gains of j across nodes of the tree), and the topology and branch lengths of the tree (τ): 19	
  

𝐶!"   ~  𝑓(𝑃! ,𝐺! , τ) 

As this distribution may be difficult to formalize for a specific dataset, we followed previous 20	
  

studies (Cohen et al. 2012; Huelsenbeck et al. 2003; Maddison 1990) and approximated this null 21	
  

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2015. ; https://doi.org/10.1101/027649doi: bioRxiv preprint 

https://doi.org/10.1101/027649
http://creativecommons.org/licenses/by-nc/4.0/


	
   16	
  

distribution via parametric bootstrapping. Specifically, we simulated the evolution of 105 genes 1	
  

along the tree using the APE library function rTraitDisc() (Paradis et al. 2004). For the gain and 2	
  

loss rates used in these simulations, we used gainLoss gain and loss rates estimated for the 5801 3	
  

empirical genes. We fit gamma distributions to these values by maximum likelihood using the 4	
  

function fitdistr() from the MASS library (Venables and Ripley 2002). For both gains and losses, 5	
  

we increased the shape parameter of the gamma distribution (by a factor of 3 for gains, 1.5 for 6	
  

losses), to ensure that simulated genes showed sufficiently large numbers of gains. This was 7	
  

necessary because parametric bootstrapping with the rates inferred by gainLoss resulted in left 8	
  

skewed distributions of gene gains (compare Figures S1A, S1C, and S1E), which were likely to 9	
  

confound null models, whereas for our null models to be applicable for this analysis, the 10	
  

distribution of simulated gene gains should be roughly similar to the distribution of gains of 11	
  

empirical genes (see Figure S1, Supplementary Text).  12	
  

These simulated genes should evolve independently and thus represent a null model for 13	
  

PGCEs. As above, we constructed matrices representing the probabilities of presence and gain of 14	
  

these 105 genes across all of the branches of the phylogeny (Pnull and Gnull). We then multiplied 15	
  

these matrices of simulated genes to compute a 105 x 105 matrix Cnull of probabilistic counts. As 16	
  

a null distribution for each pair of genes i and j with Cij > 1 (those with Cij ≤ 1 are not 17	
  

informative), we used the 1000 simulated genes with prevalence closest to gene i (rows of Cnull), 18	
  

and the 1000 simulated genes with a number of gains closest to gene j (columns of Cnull). We 19	
  

used the 106 simulated observations in the resulting submatrix of Cnull as a null distribution for 20	
  

Cij. Notably, Cij represents probabilistic counts, whereas Cnull represents integer counts (the true 21	
  

reconstruction is known). Consequently, we floored values in Cij, such that all counts were 22	
  

truncated at the decimal point. The comparison of Cij to this null distribution yields an empirical 23	
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p-value; we rejected the null hypothesis of independence between genes i and j for the Cij 1	
  

observation at a 1% false discovery rate (Benjamini and Hochberg 1995) (P < 7 x 10-6).  2	
  

 3	
  

Constructing a PGCE network. 4	
  

For each entry in Cij for which we observed a significant association, we recorded an edge from 5	
  

gene i to gene j in a network of PGCEs. To focus purely on direct interactions, we subjected this 6	
  

network to a transitive reduction (Hsu 1975). This reduction requires a directed acyclic graph 7	
  

(DAG). To identify the largest possible DAG in our PGCE network, we identified and removed 8	
  

the minimal set of edges inducing cycles (Supplementary Text). We performed a transitive 9	
  

reduction of the resulting DAG using Hsu’s algorithm (Hsu 1975) (Supplementary Text).  10	
  

 11	
  

Mapping biological information to the network. 12	
  

We used network rewiring (as implemented in the rewire() function of the igraph library (Csardi 13	
  

and Nepusz 2006)) to generate null distributions of the PGCE network by randomly exchanging 14	
  

edges between pairs of connected nodes, while excluding self-edges. In each permutation, we 15	
  

performed 5N rewiring operations, where there are N edges in the network, to ensure sufficient 16	
  

randomization. To estimate the relationship between the PGCE network and biological 17	
  

information we calculated the number of edges shared between the PGCE network and a 18	
  

metabolic network of all bacterial metabolism obtained from KEGG (Kanehisa et al. 2012; Levy 19	
  

and Borenstein 2013), and the number of edges shared between members of the same functional 20	
  

pathway as defined by KEGG, in both the original and randomized networks.  21	
  

To determine whether genes with certain functional annotations were more likely to associate 22	
  

with one another in the PGCE network, we examined the KEGG Pathway annotations of each 23	
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pair of genes in the network. We counted the number of edges leading from each pathway to 1	
  

each other pathway, and obtained an empirical p-value for this count by comparing it to a null 2	
  

distribution of the expected counts obtained by random rewiring as above.  3	
  

 4	
  

Topological sorting of PGCE networks 5	
  

To identify global patterns in our PGCE network, we performed topological sorting (Kahn 1962) 6	
  

with grouping. Topological sorting finds an absolute ordering of nodes in a directed acyclic 7	
  

graph (DAG), such that no node later in the ordering has an edge directed towards a node earlier 8	
  

in the ordering. Grouping the sort allows nodes to have the same rank in the ordering if 9	
  

precedence cannot be established between them, giving a unique solution. For a description of 10	
  

the algorithm used, see Supplementary Text. 11	
  

 12	
  

Prediction of HGT events on branches. 13	
  

We used the PGCE network to predict the occurrence of specific HGT events (gene acquisitions) 14	
  

on the tree in the following fashion. We used two test/training set partitions, with the clades of 15	
  

Firmicutes and the Alpha/Betaproteobacteria as independent test sets, and the training sets as the 16	
  

rest of the tree without these clades. To “train” PGCE networks, we performed ancestral 17	
  

reconstruction of gene presence, PGCE inference, and network processing just as for the entire 18	
  

tree. We only attempted to predict genes with at least one PGCE dependency (“predictable” 19	
  

genes). We then considered each branch in the test set independently, attempting to predict 20	
  

whether each predictable gene was gained on that branch based on the reconstructed genome at 21	
  

the ancestor node. For each predictable gene-branch combination, our prediction score was the 22	
  

proportion of the predictable gene’s PGCE dependencies that are present in the ancestor. This is 23	
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the dot product of the gene presence/absence pattern of the ancestor node (Ai across i potentially 1	
  

present genes) and a binary vector denoting which genes in the PGCE network the predictable 2	
  

gene depends on (Pi across i genes in potential PGCEs), scaled by Pi: 3	
  

𝑠𝑐𝑜𝑟𝑒 =   
𝐴!𝑃!
𝑃!

 

Note that this value ranges between 0 and 1 for each predicted gene. As true gains, we used our 4	
  

reconstructed gene acquisition events for each branch in the test set. We arbitrarily called any 5	
  

predictable gene-branch pair with a Pr(gain) > 0.5 as a gain, and any predictable gene-branch 6	
  

pair with Pr(gain) <= 0.5 as no gain. We filtered out any gene-branch pair where the gene was 7	
  

known to be present with Pr > 0.4, as in these cases the gene is probably already present. We 8	
  

analyzed the accuracy of our prediction scores using receiver operating characteristic (ROC) 9	
  

analysis and by comparing scores of the gain branches to those of the no-gain branches. 10	
  

 11	
  

Data Access 12	
  

Data are available at http://figshare.com/s/1f341994624c11e5b23706ec4bbcf141, along with 13	
  

code for performing analyses.  14	
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FIGURE LEGENDS 1	
  

Figure 1. Workflow for deriving the PGCE network. (A): a model phylogeny and a set of 2	
  

gene presence/absence patterns at the tips are used to generate an ancestral reconstruction, from 3	
  

which gains are inferred. Filled circles represent the presence of a gene (distinguished by color), 4	
  

empty circles represent absence of that gene. Inverted triangles represent points on the phylogeny 5	
  

where the gene of the indicated color is inferred to be gained. (B): Based on inferred gain and 6	
  

loss rates, many evolutionary scenarios are independently simulated and used as a null 7	
  

expectation for evolutionary independence. Filled circles indicate presence of the simulated gene 8	
  

and empty circles indicate absence, inverted triangles represent gains of the simulated gene on 9	
  

the phylogeny. (C): A null distribution derived from simulated gene evolution is used to identify 10	
  

dependencies between real genes. (D): These dependencies are modeled as a network. Filled 11	
  

circles indicate genes (nodes), arrows indicate dependencies (edges).  12	
  

 13	
  

Figure 2. PGCEs are enriched for biologically meaningful interactions. (A): The observed 14	
  

number of PGCE edges connecting genes in the same pathway (dotted line), compared to the 15	
  

expected distribution obtained from 1000 rewired networks with identical degree distributions. 16	
  

(B): The observed number of PGCE edges that also appear in a bacteria-wide metabolic network, 17	
  

compared to the expected distribution. 18	
  

 19	
  

Figure 3. The phylogenetic history of rbsL, urtA and rbsS. The presence of each gene in each 20	
  

branch in the phylogenetic tree is illustrated with a colored circle, with the circle’s diameter 21	
  

scaled to denote the probability of presence. (A): rbsL and rbsS evolutionary histories; (B): urtA 22	
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and rbsS evolutionary histories. The long branch leading to Archaea (bottom-most clade) was 1	
  

reduced in size for graphical purposes. 2	
  

 3	
  

Figure 4. Topological sorting of the PGCE dependency network reveals assembly patterns 4	
  

that govern the evolutionary process. (A): Binned dependencies among the six ranks of genes 5	
  

in the topological sort (left to right). Node size represents the number of genes in each rank 6	
  

(using natural logarithm-scale). Edge width represents the number of PGCEs between genes in 7	
  

different rank (natural logarithm-scale), all edges are directed to the right. (B) The gain of genes 8	
  

from each rank in each branch of the phylogenetic tree is illustrated (circles). The different colors 9	
  

represent different ranks. Circle sizes correspond to the proportion of gains on a branch 10	
  

attributed to genes of that rank (e.g. a large red circle indicates that most gains on a branch 11	
  

correspond to rank 1). The branch to Archaea (lower clade) has been reduced in size for 12	
  

graphical purposes. See also Figure S7.  13	
  

 14	
  

Figure 5. PGCE dependencies lead to taxonomically robust predictability of gene 15	
  

acquisition. (A): Workflow for predicting gene acquisition between clades of the tree. A training 16	
  

set is used to build a PGCE dependency model, which is then used to predict on which specific 17	
  

branches genes are likely to be gained (green circles), based on dependencies inferred from the 18	
  

training set (red and blue circles). (B): performance of PGCEs in predicting gene acquisitions in 19	
  

two test sets (indicated clades of the prokaryotic tree). Areas under each curve: Firmicutes, 0.73; 20	
  

Alpha/Beta-proteobacteria, 0.68. The diagonal dotted line represents the performance of a purely 21	
  

random prediction. See also Figure S8. 22	
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TABLES 1	
  
Table 1. Functional groups are enriched in different ranks of the topological sort. 2	
  
Annotation label P-value1 Enrichment Ratio2 

Rank 1 Enrichments   
Cell motility 1.94E-07 1.40 
Bacterial motility proteins  1.85E-11 1.41 
Type II secretion system 2.61E-05 1.33 
Two-component system  3.65E-04 1.25 
Flagellar system 1.01E-09 1.43 
Pilus system 2.11E-04 1.38 
Metabolism3 3.37E-05 0.91 
Xenobiotics biodegradation and metabolism3 1.07E-06 0.69 
Carbohydrate metabolism3 0.00012 0.84 
Type IV secretion system3 1.26E-09 0.20 
Rank 2 Enrichments   
Metabolism 1.47E-04 1.23 
Carbohydrate metabolism 3.08E-06 1.58 
Rank 4 Enrichments   
Pathogenicity 1.88E-06 21.6 
Conjugal transfer pilus assembly protein 1.08E-04 15.0 
Type III protein secretion pathway protein 1.88E-06 21.6 
ABC-2 type and other transporters 2.31E-04 12.5 
Type IV secretion system 1.30E-03 8.04 
1: from a hypergeometric test. All annotations displayed are significant at a 1% false discovery rate. 3	
  
2: The ratio of the observed proportion of genes with this label in the indicated rank to the expected proportion 4	
  
based on all genes in the network. 5	
  
3: These annotations are depleted (i.e. enrichment ratio significantly less than one) in the first rank. 6	
  
  7	
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