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1 ABSTRACT 6 

High-throughput sequencing (HTS) is increasingly being used for broad applications of microbial char-7 

acterization, such as microbial ecology, clinical diagnosis, and outbreak epidemiology. However, the 8 

analytical task of comparing short sequence reads against the known diversity of microbial life has 9 

proved to be computationally challenging. The One Codex data platform was created with the dual goals 10 

of analyzing microbial data against the largest possible collection of microbial reference genomes, as 11 

well as presenting those results in a format that is consumable by applied end-users. One Codex identi-12 

fies microbial sequences using a “k-mer based” taxonomic classification algorithm through a web-based 13 

data platform, using a reference database that currently includes approximately 40,000 bacterial, viral, 14 

fungal, and protozoan genomes. In order to evaluate whether this classification method and associated 15 

database provided quantitatively different performance for microbial identification, we created a large 16 

and diverse evaluation dataset containing 50 million reads from 10,639 genomes, as well as sequences 17 

from six organisms novel species not be included in the reference databases of any of the tested classifi-18 

ers. Quantitative evaluation of several published microbial detection methods shows that One Codex has 19 

the highest degree of sensitivity and specificity (AUC = 0.97, compared to 0.82-0.88 for other methods), 20 

both when detecting well-characterized species as well as newly sequenced, “taxonomically novel” or-21 

ganisms. 22 

 23 

2 INTRODUCTION 24 

As the efficiency, accuracy, and speed of high-throughput genomic sequencing (HTS) has continued to 25 

improve, a larger set of microbiologists working in clinical medicine, public health, and industry is 26 

adopting this powerful technology. Public health agencies are already beginning to use HTS to track the 27 

spread of outbreaks (Neimark 2015), and there is an increasing number of applications for which the ex-28 

quisite precision and accuracy of genome-level identification justifies the (presently) higher marginal 29 
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per-test cost. However, the broader adoption of HTS by scientists that may lack experience in bioinfor-30 

matic analysis has created a need for bioinformatic solutions that are accessible for non-experts and pro-31 

vide high-quality analytical results (Grad 2014; Caboche 2014). 32 

Taxonomic classification is the analytical basis of a wide range of applied microbiology supporting ap-33 

plications in public health, clinical diagnosis, and industrial production. Strain- and species-level taxo-34 

nomic classification allows a user to identify specific pathogens, perform genomic epidemiology, and 35 

characterize microbial communities that may be associated with a particular phenotype. A variety of al-36 

gorithms have been developed for such taxonomic classification, including the use of marker gene li-37 

braries (Segata 2012; Liu 2011), local alignment (Naccache 2014; Mitra 2011), and k-mer matching 38 

(Ames 2013; Wood 2014; Břinda 2015; Ounit 2015). K-mer-based analysis, the method used by Kraken, 39 

Seed-Kraken, CLARK, and One Codex, identifies short sequences (typically ranging from 17 - 31 bp) 40 

that are unique to specific taxa within a set of input reads. Based on the collection of k-mers that are 41 

found in a given read, it can be assigned to a particular taxon. By extension, a sample can be character-42 

ized according to the proportion of reads that are assigned to different taxa. Using this approach, micro-43 

bial samples either from isolates or mixed samples can be characterized to the level needed to perform a 44 

large number of tasks needed for public health, clinical diagnosis, and industrial microbiology. As a 45 

public resource for academic data analysis, we believe it is valuable to provide the research community 46 

with a description of the performance and operation of the One Codex platform, while providing the raw 47 

data and analytical details needed to replicate or update such an evaluation as metagenomic methods 48 

continue to improve. In this paper we describe the functioning of One Codex and a rigorous functional 49 

evaluation of the state-of-the-art metagenomic classification methods, including the effect of database 50 

size on classification accuracy.  51 

 52 

3 MATERIALS & METHODS 53 
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 54 

3.1 Taxonomic Classification Algorithm 55 

One Codex classifies individual sequence reads according to the set of k-mers in that read that are 56 

unique to specific taxonomic groups. This analytical approach has been described extensively (Ames 57 

2014; Wood 2014) and is implemented by One Codex using a default value of k=31. Briefly, each read 58 

is broken into the complete set of overlapping sequences of length 31bp that comprise it. These k-mers 59 

are compared against an exhaustive database that contains every k-mer and the taxonomic grouping to 60 

which it is unique (e.g., a specific clade of bacteria, archaea, or viruses). A compressed data structure is 61 

used to index and rapidly search k-mer databases generated from approximately 40,000 microbial ge-62 

nomes. Each read can then be summarized as a “k-mer hit chain” that describes the complete set of taxo-63 

nomically-informative k-mers found in that read, as well as their positions. Individual reads are then as-64 

signed on the basis of the highest weighted taxonomic root-to-leaf path amongst these k-mer hits. For 65 

example, if a read has k-mers unique to Enterobacteriaceae, Escherichia, and Escherichia coli, it would 66 

be given the label E. coli. However, if it had k-mers unique to Enterobacteriaceae, Escherichia, and 67 

Klebsiella, it would be given the label Enterobacteriaceae – the most specific taxon that encompasses 68 

all detected k-mers, as Klebsiella and Escherichia are separate genera of Enterobacteriaceae. Finally, 69 

the distribution of reads from a single sample across different organisms and taxa is used to construct a 70 

comprehensive report that displays the organisms present in a sample.  71 

 72 

3.2 Classification Accuracy 73 

The goal of this evaluation effort was to assess the ability of a suite of bioinformatic methods to assign 74 

nucleotide sequences to the most accurate taxonomic group.  75 

 76 
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3.2.1. One Codex Classification 77 

Data were processed on the One Codex platform according to the instructions outlined in Section 2.3 – 78 

One Codex User Interface. One Codex uses two reference databases, the full One Codex database of ap-79 

proximately 40,000 bacteria, viruses, fungi, archaeal, and protists, and a smaller database containing the 80 

over 8,000 microbial genomes contained in the NCBI RefSeq database. Both the One Codex full data-81 

base (referred to here as “One Codex”) and the One Codex RefSeq Database represent sequences availa-82 

ble on July 8, 2015. 83 

 84 

3.2.2. Additional Classification Algorithms 85 

The following metagenomic classification algorithms were downloaded, compiled, and installed accord-86 

ing to the provided instructions in an Ubuntu environment on standard AWS EC2 instances (r3.8xlarge). 87 

In each case the indicated dependencies were installed as described and default run settings were used, 88 

except in the case of Clark in which the “RAM-light” flag was used in order not exceed system memory 89 

capacity.  90 

• Metaphlan (2.1.0) - https://bitbucket.org/biobakery/metaphlan2 91 

• GOTTCHA (1.0b) - https://github.com/poeli/GOTTCHA  (database 92 

GOTTCHA_BACTERIA_c3514_k24_u2) 93 

• Kraken (v0.10.5-beta) - http://ccb.jhu.edu/software/kraken/  94 

• Seed-Kraken (seedmod128b_from_0.10.6) - http://seed-kraken.readthedocs.org/  95 

• Clark (v1.1.3) – http://clark.cs.ucr.edu/ 96 

 97 
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3.2.3. Additional Classification Databases 98 

Metaphlan is distributed with a complete standalone database. Kraken is distributed with a reduced ref-99 

erence database (“Minikraken” - Dec. 8, 2014). In addition, we constructed the full Kraken database on 100 

July 5, 2015 according to the instructions provided at 101 

http://ccb.jhu.edu/software/kraken/MANUAL.html. Given the contemporaneous snapshot of NCBI, the 102 

genomic content of the full Kraken database is roughly equivalent to that of the One Codex RefSeq Da-103 

tabase, albeit with some differences in the exact repositories used. The Seed-Kraken database was con-104 

structed using the same complement of reference genomes as the Kraken database. The Clark bacterial 105 

reference database was constructed on Aug. 21, 2015 using the provided default instructions.  106 

 107 

3.2.4. Test Datasets 108 

Two complementary approaches were employed to test the accuracy of these microbial detection meth-109 

ods. In the first, 500 sets of simulated reads (100,000 reads each) were generated from complete micro-110 

bial genomes at a wide range of abundance levels in order to simulate a variety of biological assemblag-111 

es (Mavromatis 2007). Each read set contained reads from 214 random genomes with roughly 100,000 112 

reads simulated each, and additional reads from 10,425 genomes simulated at much lower abundance (1 113 

– 30,000 reads each) (Figure 1). In total, 50 million reads were simulated from 10,639 genomes to pro-114 

vide a robust resource for the evaluation of metagenomic analysis methods. In every case, the genome 115 

was selected randomly from the set of complete genomes available in public sequence repositories, re-116 

gardless of whether they were included in the One Codex database. Approximately 78% of the simulated 117 

genomes were also indexed in the One Codex Database, while 8.8% were indexed in the One Codex 118 

RefSeq Database. Importantly, the taxonomic ID for each read was encoded in the FASTQ header, al-119 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2015. ; https://doi.org/10.1101/027607doi: bioRxiv preprint 

https://doi.org/10.1101/027607
http://creativecommons.org/licenses/by-nc-nd/4.0/


Minot, et al.         One Codex: Genomic Microbial Identification 

7 

lowing the direct comparison of the known source of each sequence against the taxonomic prediction 120 

made by each method.  121 

 122 

Figure 1. A frequency histogram of the number of reads simulated for the set of low-abundance ge-123 

nomes (10,425 genomes, 1 – 30,000 reads each). The horizontal axis shows the number of reads simu-124 

lated per genome, and the vertical axis indicates the number of genomes simulated at that depth (log10). 125 

An additional set of 214 genomes were used to simulate at least 100,000 reads each.  126 

 127 

In the second testing approach, a set of six organisms identified in the public repositories that were se-128 

quenced recently enough as to not be included in any of the reference databases. These “taxonomically 129 

novel” genomes did not have any other members of their species present in the reference database. Three 130 

of the six “taxonomically novel” test datasets were simulated from complete genome assemblies at 5X, 131 

two were raw Illumina reads, and one was an unassembled PacBio dataset (Table 1). While these da-132 
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tasets may contain contaminating or misidentified organisms, each analytical method will be challenged 133 

equally by those potentially confounding factors.  134 

 135 

For both the single-isolate samples and the 500 sets of simulated reads (100,000 reads each), simulated 136 

150bp single-ended reads were generated using the ART next-generation sequencing read simulator 137 

(v3.19.15) (Huang 2012) using the Illumina quality profile. For the single-isolate “taxonomically novel” 138 

test datasets, reads were generated at 5-fold coverage depth. 139 

 140 

NCBI Accession Organism Source Type Number of 
Simulated 
Reads 

GCA_001045455 Chryseobacterium sp. FH2 Assembly Illumina 132,905 
GCA_001050135 Cyclobacterium amurskyense 

KCTC-12363 
Assembly Illumina 205,290 

SRR2106399 Leptolyngbya sp. Y-WT-2000 Unassembled 
reads 

Illumina 11,060,814 

GCA_001258055 Nautella italica CECT7645 Assembly Illumina 134,905 
SRR2106282 Thermincola ferriacetica Z-

0001 
Unassembled 
reads 

Illumina 2,053,515 

SRR2080278 Wenzhouxiangella marina 
KCTC42284 

Unassembled 
reads 

PacBio 163,476 

 141 

Table 1. Datasets used to assess the performance of each method in identifying organisms not contained 142 

in the reference database.  143 

 144 

3.2.5. Statistical Summary 145 

Kraken, Seed-Kraken, Clark, and One Codex provide taxonomic assignments for every read in a dataset, 146 

while Metaphlan and GOTTCHA provide an overall summary of dataset composition.  Kraken, Seed-147 
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Kraken, Clark, and One Codex were evaluated with the complete set of 50 million simulated reads, 148 

while all methods were evaluated on the six single-organism “taxonomically novel” datasets. Each 149 

method was executed on an equivalent AWS EC2 instance (r3.8xlarge) with 12 processors available for 150 

parallelized steps.  151 

 152 

For the set of 50 million simulated reads, the accuracy of classification by One Codex, Seed-Kraken and 153 

Kraken was evaluated on a read-by-read basis. One Codex was run with both the One Codex Database 154 

(~40,000 genomes) and the One Codex RefSeq Database (~8,000 genomes). Kraken was run with both 155 

the full database and the “Minikraken” database. Those methods assign an NCBI taxonomic identifier 156 

(‘taxid’) to each read. Given the known source of each read, the accuracy of the classification can be as-157 

sessed across all levels of the taxonomy. For example, a read simulated from E. coli O157:H7 str. Sakai 158 

may be assigned to Escherichia fergusonii, in which case the species-level assignment is incorrect, while 159 

the genus-level assignment is correct (as is the family-, order-, class-, and phylum-). Similarly, a read 160 

simulated from E. coli O157:H7 str. Sakai may be assigned to Enterobacteriaceae, in which case the 161 

family-level assignment is correct and there is no assignment at the rank of genus, species, or strain.  162 

 163 

Accuracy metrics were calculated as follows: Let A be the number of reads assigned correctly at a given 164 

taxonomic rank, B be the number of reads with any assignment at the given rank, C be the number of 165 

reads classified incorrectly at a less-specific rank, and D be the total number of reads. Sensitivity is de-166 

fined as A / D, or the proportion of all reads assigned correctly at the given rank. Specificity is defined 167 

as A / (B + C), following Wood et al. (2015). For a set of reads simulated from E. coli, the classification 168 

of a read as E. coli would increase both species-level sensitivity and species-level specificity, classifica-169 

tion as Escherichia would not increase species-level sensitivity, but it would increase species-level spec-170 
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ificity, and classification as E. fergusonii would decrease both species-level sensitivity and species-level 171 

specificity.  172 

 173 

Metaphlan and GOTTCHA do not assign taxa to individual reads, but rather predict the proportion of the 174 

dataset composed of different taxa. Therefore the specificity presented for those methods is the propor-175 

tion assigned to the correct taxon at a given rank and no sensitivity metrics are reported.  176 

 177 

3.3 One Codex User Interface 178 

Samples are uploaded in FASTA or FASTQ format to the One Codex platform through a graphical up-179 

load tool with both drag-and-drop and folder navigation options. A command-line tool and API are also 180 

available for large-volume data upload (https://docs.onecodex.com). Once uploaded, reads are taxonom-181 

ically classified and the interactive report is populated and linked to the user’s account (Supplemental 182 

Figures 1 and 2). The One Codex platform can be accessed at https://www.onecodex.com, and can be 183 

used freely to analyze public data.  184 

 185 

3.4 Availability 186 

Simulated datasets are available in a compressed FASTQ file containing 50M simulated reads at 187 

www.onecodex.com/data/papers/minot-krumm-greenfield-2015/simulated.reads.fastq.gz. The true taxo-188 

nomic origin of each read is encoded in the FASTQ header as an NCBI taxid, allowing other researchers 189 

to replicate this analytical framework. One Codex is freely available for public use by academic re-190 

searchers at https://www.onecodex.com. Supplemental Figures 1 and 2 show example screenshots of the 191 

One Codex platform. 192 

 193 

4 RESULTS 194 
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 195 

4.1 Read-level Accuracy 196 

We first summarized the accuracy of each tool on a per-read basis. One Codex showed the highest de-197 

gree of sensitivity and specificity at each rank and the performance of the other methods varied with the 198 

database and assignment method used. It is notable that although the content of the Kraken and Seed-199 

Kraken databases was identical, Seed-Kraken was more sensitive and less specific than Kraken at all 200 

taxonomic levels (Table 2 and Figure 2). While the reduced Minikraken database resulted in lower sen-201 

sitivity and higher specificity than the full Kraken database, the reduced One Codex RefSeq Database 202 

was less accurate using both metrics. As noted above, ~78% of the simulated genomes were indexed in 203 

the One Codex Database, while 8.8% were indexed in the One Codex RefSeq Database. Accuracy met-204 

rics were also calculated for One Codex and One Codex RefSeq using only the subset of reads simulated 205 

from genomes not indexed in those databases. Species-level sensitivity and specificity for One Codex 206 

was 0.532 and 0.875, respectively, while One Codex RefSeq was 0.511 and 0.835. Similar comparisons 207 

could not be made for other methods without better characterization of the genome accessions used to 208 

create those reference indices.  209 

 210 

Sensitivity       

Rank Kraken Minikraken Seed-
Kraken 

Clark One Codex One Codex - 
RefSeq 

superking-
dom 0.743 0.714 0.758 0.682 0.951 0.748 
phylum 0.742 0.713 0.755 0.681 0.943 0.745 
class 0.740 0.711 0.752 0.679 0.906 0.743 
order 0.737 0.709 0.748 0.678 0.903 0.740 
family 0.734 0.706 0.743 0.675 0.897 0.737 
genus 0.694 0.662 0.711 0.668 0.852 0.704 
species 0.546 0.516 0.574 0.605 0.621 0.563 
strain 0.030 0.027 0.031 0.000 0.118 0.080 
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  Specificity 

  
  

  Rank Kraken Minikraken Seed-
Kraken 

Clark One Codex One Codex - 
RefSeq 

superking-
dom 0.999 0.999 0.996 0.996 0.999 0.994 
phylum 0.997 0.998 0.994 0.994 0.998 0.992 
class 0.995 0.997 0.991 0.992 0.997 0.990 
order 0.993 0.996 0.987 0.989 0.996 0.988 
family 0.989 0.994 0.982 0.986 0.996 0.984 
genus 0.980 0.991 0.970 0.975 0.995 0.974 
species 0.893 0.936 0.869 0.883 0.979 0.864 
strain 0.157 0.203 0.114 0.000 0.824 0.181 
 211 

Table 2. Summary of accuracy for six methods identifying the taxonomic origin of 50 million short se-212 

quence reads simulated from 10,639 microbial genomes. The maximum value at each rank is bolded.  213 

 214 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2015. ; https://doi.org/10.1101/027607doi: bioRxiv preprint 

https://doi.org/10.1101/027607
http://creativecommons.org/licenses/by-nc-nd/4.0/


Minot, et al.         One Codex: Genomic Microbial Identification 

13 

Figure 2. Summary of accuracy for six methods identifying the taxonomic origin of 50 million short se-215 

quence reads simulated from 10,639 microbial genomes. 216 

 217 

4.2 Species-level presence/absence accuracy 218 

We characterized the species-level accuracy of each classifier using a receiver operating characteristic 219 

(ROC) curve (Fig. 3). The ROC curve displays the true positive rate (TPR) and false positive rate (FPR) 220 

of species presence/absence across a range of read thresholds. Each dataset can be summarized as a set 221 

of species, each detected with a certain number of reads, and each marked as truly present, or truly ab-222 

sent. For any given number of reads, the species detected with at least that number of reads is marked as 223 

present, and any species with fewer than that number of reads is marked as absent. The TPR is calculat-224 

ed for a given read threshold as the number of true positive detections divided by the total number of 225 

total positives, and the FPR is calculated as the number of true negatives divided by the number of total 226 

negatives. The ROC curve for each method is shown in Figure 3. 227 
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 228 

Figure 3. ROC curve displaying the performance of six taxonomic classification methods as species-229 

level binary classifiers. Horizontal axis shows the False Positive Rate, and the vertical axis shows the 230 

True Positive Rate. Area Under Curve (AUC) is inset. The FPR and TPR are shown for a read cutoff 231 

value of 100 detected reads (150bp), which corresponds to roughly 0.003X coverage of a typical bacteri-232 

al genome.  233 

 234 

4.3 “Taxonomically Novel” Accuracy 235 

Each of the “taxonomically novel” test datasets was selected because that species was not present in the 236 

reference database for any method. Due to the relative taxonomic novelty of these organisms, the closest 237 
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match found by any method for these datasets was either at the genus-, family-, or order-level. For ex-238 

ample, the most taxonomically similar reference organisms to Wenzhouxiangella marina KCTC 42284 239 

(SRR2080278) share the order Chromatiales, as the family Wenzhouxiangellaceae was only proposed 240 

very recently (Wang 2015). Sensitivity and specificity metrics are shown in Table 3 alongside the rank 241 

at which the closest correct match was found by any method. GOTTCHA did not report any taxa above 242 

its threshold of detection for the three datasets showing ‘0’ in Table 3, and we provided the authors of 243 

that method with those datasets in order to confirm those results. Using the GOTTCHA ‘v20150825’ 244 

database they reported that dataset GCA_001045455 was assigned correctly at the family level and 245 

above, dataset SRR2106399 was assigned correctly at the order level, and dataset SRR2080278 did not 246 

have any assignments above the threshold of reporting (personal communication). Across all six da-247 

tasets, One Codex displayed the highest sensitivity (0.391) while One Codex - RefSeq had the highest 248 

specificity (0.696).   249 
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Dataset GCA_001045455 GCA_001050135 SRR2106399 GCA_001258055 SRR2106282 SRR2080278 
 Assignment Chryseobacterium Cyclobacterium Leptolyngbya Rhodobacteraceae Thermincola Chromatiales 
 Rank Genus Genus Genus Family Genus Order  

        

Sensitivity 
      

Mean 

Kraken 0 0.149 0 0.203 0.831 0.005 0.198 

Minikraken 0 0.096 0 0.093 0.787 0.001 0.163 

Seed-Kraken 0 0.211 0.001 0.352 0.836 0.004 0.234 

Clark 0 0.065 0.001 0.072 0.595 0.002 0.122 

One Codex 0.313 0.225 0.01 0.965 0.827 0.005 0.391 
One Codex - 
RefSeq 0.191 0.142 0.002 0.244 0.83 0.005 0.236 

Metaphlan - - - - - - - 

GOTTCHA - - - - - - - 

        Specificity 
      

Mean 

Kraken 0 0.961 0.013 0.920 0.995 0.102 0.499 

Minikraken 0 0.985 0.04 0.943 0.998 0.266 0.539 

Seed-Kraken 0 0.932 0.207 0.947 0.993 0.156 0.539 

Clark 0 0.939 0.002 0.823 0.991 0.011 0.461 

One Codex 0.920 0.927 0.109 0.999 0.988 0.082 0.671 
One Codex - 
RefSeq 0.928 0.919 0.186 0.942 0.995 0.208 0.696 

Metaphlan 0.935 1.000 0 1.000 0 0 0.489 

GOTTCHA 0 1.000 0 1.000 0.971 0 0.495 
 251 

Table 3. Accuracy of prediction for six organisms not found in any of the reference databases used by 252 

these methods. Note that Metaphlan and GOTTCHA results are presented as specificity metrics, as the 253 

abundance metrics reported by those methods are relative to the total classified composition of each 254 

sample (rather than the number of input reads).  255 

 256 

4.4 Analysis Time 257 

The time required for completing analysis of the 50M simulated reads for each method is presented in 258 

Table 4 (GOTTCHA and Metaphlan are not shown because they were not run on the read-level evalua-259 

tion datasets). Although the complete set of 50M simulated reads were run in parallel batches of 10M 260 
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reads, the time presented here is the cumulative processing time, rather than the shorter start-to-finish 261 

period of parallelized execution across multiple computational nodes. All methods were run with 12 262 

processors on equivalent computational resources. Of these read-classification methods, Minikraken and 263 

Clark were the most rapid, and Seed-Kraken was the slowest.   264 

 265 

 
Analysis Time (min:sec) 

Clark 04:50 
Minikraken 05:15 
Kraken 06:26 
One Codex 22:13 
One Codex  - RefSeq 21:49 
Seed-Kraken 45:58 
 266 

Table 4. Computational time required for each method to classify the 50M simulated reads. 267 

 268 

5 DISCUSSION 269 

 270 

The widespread adoption of high-throughput sequencing for the detailed characterization of mixed mi-271 

crobial samples presents an immense opportunity and challenge to the field of microbial genomics. Alt-272 

hough genomic sequences can be used pinpoint the organisms in a sample down to the level of a single 273 

strain, accurate detection of each strain completely depends on the ability of a computational method to 274 

search for genomic sequences across the extent of known life. Not only does the volume of microbial 275 

reference genomes exceed that of the human genome by many-fold (181 billion bases of prokaryotic ge-276 

nome sequence can be found in NCBI as of Aug. 25, 2015), but the sequences found in wild-caught mi-277 

crobes may differ significantly from those of their domesticated relatives (Rinke, et al. 2013). In the face 278 

of these serious computational challenges, a large panel of computational methods have been proposed 279 

recently to perform the task of microbial detection (Oulas, 2015). However, it can be prohibitively diffi-280 
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cult for a microbial researcher to rigorously evaluate all of the possible options in order to select the 281 

most appropriate method. To address that challenge, we have provided a comprehensive analysis of the 282 

performance of a wide range of the most widely adopted analytical methods. Moreover, we have made 283 

the test data and analytical framework available for others to evaluate future methods against a common 284 

reference. We believe that the large volume (over 50M simulated reads), phylogenetically complexity 285 

(10,639 randomly selected source organisms), and analytical portability (NCBI taxonomic identifiers 286 

recorded within read headers), makes this dataset a valuable resource for the research community.  287 

 288 

One Codex provides the highest degree of accuracy, both sensitivity and specificity, across all taxonom-289 

ic ranks, with 62.1% per-read sensitivity and 98.7% per-read specificity at the species-level (Table 2). 290 

The absolute performance of any detection method as a binary classifier was summarized by ROC anal-291 

ysis, showing that One Codex had the best performance (AUC: 0.97), with other methods performing 292 

roughly equally (AUC: 0.82 – 0.88). For purposes of illustration, the accuracy of each method was 293 

shown at an absolute abundance cutoff of 100 reads (Fig. 3). At that threshold for calling a species as 294 

present in a sample, One Codex showed a much lower FPR than other methods, suggesting that the larg-295 

er set of reference organisms in the One Codex database serves to significantly reduce the number of 296 

species-level false positive detections with that method.  297 

 298 

The array of methods evaluated here allows for an intriguing comparison of the effect of reference data-299 

base and classification algorithm on overall performance. Kraken and Seed-Kraken use differing as-300 

signment algorithms and a common reference database, with Seed-Kraken providing higher sensitivity 301 

and Kraken providing higher specificity. This finding replicates similar precision/sensitivity trade-off 302 

that was observed previously for Seed-Kraken at the species-level (Břinda, 2015). While the perfor-303 

mance of both Kraken and One Codex is presented with two alternate databases, the smaller Minikraken 304 
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database was constructed by selecting a smaller number of kmers per organism, and the smaller One 305 

Codex RefSeq database was constructed by selecting a restricted number of reference organisms, so the 306 

resulting differences in sensitivity and specificity are not directly comparable. As the genomes encoun-307 

tered in real-world metagenomic samples rarely exactly match those found in reference databases, it is 308 

important to quantify the accuracy of detection for ‘out-of-reference’ genomes. Considering only the 309 

reads simulated from reads not found in those reference databases, the sensitivity and specificity of de-310 

tection for One Codex was 0.532 and 0.875, respectively, while One Codex RefSeq was 0.511 and 311 

0.835, reflecting only a modest decline in performance for that large group of ‘out-of-reference’ ge-312 

nomes. Further research into the effect of reference database composition on predictive accuracy could 313 

conceivably enable the creation of classification methods with smaller computational footprints and im-314 

proved performance.  315 

 316 

The largest difference in performance between classification methods can be seen in the “taxonomically 317 

novel” test datasets. Each method detects a different subset of organisms, indicating that the composition 318 

of each reference database highly determines the ability of a method to detect a given organism. Overall, 319 

One Codex had the highest average sensitivity (39.1%), which was far higher than the next-most sensi-320 

tive methods One Codex RefSeq (23.6%) and Seed-Kraken (23.4%). This set of six datasets is a useful 321 

demonstration of the fundamental challenge of accurately classifying sequences from organisms not 322 

found in any reference database. Even when the closest possible rank is at the genus or above, each 323 

method varies widely in its ability to assign sequences correctly to that rank. The highly sensitive per-324 

formance of One Codex against these samples suggests that a large and comprehensive reference data-325 

base not only enables more accurate detection of well-characterized taxa, but also enables more accurate 326 

detection of taxonomically-novel and phylogenetically divergent organisms.  327 

 328 
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By evaluating a wide range of taxonomic classification algorithms against a large and complex set of 329 

10,639 simulated genomes, as well as a set of six recently sequenced and phylogenetically-distinct or-330 

ganisms, we have generated important insight into the ability of microbial researchers to accurately 331 

characterize unknown metagenomic samples. Most notably, because Kraken, Minikraken, One Codex, 332 

and One Codex RefSeq all classify reads using taxonomically-unique 31mers, the differing performance 333 

of these methods is undoubtedly due to the much different composition of those databases, with larger 334 

reference databases leading to greater analytical accuracy. These results show the value of continually 335 

expanding reference database collections in order to more accurately classify the vast pool of unknown, 336 

unsequenced microbial ‘dark’ matter (Rinke 2013), as well as the specific strains of well-known patho-337 

gens that cause human disease.  338 

  339 
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8 SUPPLEMENTAL FIGURES 383 

 384 

Supplemental Figure 1. Example of dataset browser page on the One Codex platform. Datasets are orga-385 

nized by metadata (e.g. name, date, size, environment, platform, etc.) and user-defined tags. Figure dis-386 

plays an example of the user searching for datasets containing Salmonella enterica above a specified 387 

abundance threshold.  388 
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 389 

Supplemental Figure 2. Example of metagenomic analysis display for a single sample. Users have the 390 

option of downloading read-level assignments or dataset summaries, comparing the abundance profile 391 

against that of other samples, and navigating to additional analyses for each dataset.  392 
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