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Abstract

Models of cancer progression provide insights on the order of accumulation of genetic alter-
ations during cancer development. Algorithms to infer such models from the currently available
mutational profiles collected from different cancer patiens (cross-sectional data) have been de-
fined in the literature since late 90s. These algorithms differ in the way they extract a graphical
model of the events modelling the progression, e.g., somatic mutations or copy-number alter-
ations.

tronco is an R package for TRanslational ONcology which provides a serie of functions to
assist the user in the analysis of cross-sectional genomic data and, in particular, it implements
algorithms that aim to model cancer progression by means of the notion of selective advantage.
These algorithms are proved to outperform the current state-of-the-art in the inference of cancer
progression models. tronco also provides functionalities to load input cross-sectional data, set
up the execution of the algorithms, assess the statistical confidence in the results and visualize
the models.

Availability. Freely available at http://www.bioconductor.org/ under GPL license; project
hosted at http://bimib.disco.unimib.it/ and https://github.com/BIMIB-DISCo/TRONCO.

Contact. tronco@disco.unimib.it

1 Introduction

In the last two decades many specific genes and genetic mechanisms involved in different types
of cancer have been identified. Yet our understanding of cancer and of its varied progressions
is still largely elusive as it still faces fundamental challenges.

Meanwhile, a growing number of cancer-related genomic data sets have lately become avail-
able (e.g., see [9]). Thus, there now exists an urgent need to leverage a number of sophisticated
computational methods in biomedical research to analyse such fast-growing biological datasets.
Motivated by this state of affairs, we focus on the problem of reconstructing progression models
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of cancer. In particular, we aim at inferring the plausible sequences of genomic alterations that,
by a process of accumulation, selectively make a tumor fitter to survive, expand and diffuse
(i.e., metastasize).

We developed a number of algorithms (see [10, 12]) which are implemented in the TRans-
lational ONCOlogy (tronco) package. Starting from cross-sectional genomic data, such algo-
rithms aim at reconstructing a probabilistic progression model by inferring “selectivity rela-
tions”, where a mutation in a gene A “selects” for a later mutation in a gene B. These relations
are depicted in a combinatorial graph and resemble the way a mutation exploits its “selective
advantage” to allow its host cells to expand clonally. Among other things, a selectivity relation
implies a putatively invariant temporal structure among the genomic alterations (i.e., events) in
a specific cancer type. In addition, a selectivity relation between a pair of events here signifies
that the presence of the earlier genomic alteration (i.e., the upstream event) is advantageous
in a Darwinian competition scenario raising the probability with which a subsequent advanta-
geous genomic alteration (i.e., the downstream event) “survives” in the clonal evolution of the
tumor (see [12]).

Notice that, in general, the inference of cancer progression models requires a complex data
processing pipeline (see [3]), as summarized in Figure 1. Initially, one collects experimental data
(which could be accessible through publicly available repositories such as TCGA) and performs
genomic analyses to derive profiles of, e.g., somatic mutations or Copy-Number Variations
for each patient. Then, statistical analysis and biological priors are used to select events
relevant to the progression - e.g., driver mutations. This complex pipeline can also include
further statistics and priors to determine cancer subtypes and to generate patterns of selective
advantage - , e.g, hypotheses of mutual exclusivity. Given these inputs, our algorithms (such
as caprese and capri) can extract a progression model and assess confidence measures using
various metrics based on non-parametric bootstrap and hypergeometric testing. Experimental
validation concludes the pipeline. tronco provides support to all the steps of the pipeline.

2 Inference Algorithms

tronco, provides a series of functions to support the user in each step of the pipeline, i.e.,
from data import, through data visualization and, finally to the inference of cancer progression
models. Specifically, in the current version, tronco implements caprese and capri algorithms
for cancer progression inference, which we briefly describe in the following.

Central to these algorithms, is Suppes’ notion of probabilistic causation, which can be stated
in the following terms: a selectivity relation between two observables i and j is said to hold if
(1) i occurs earlier than j – temporal priority (TP) – and (2) if the probability of observing i
raises the probability of observing j, i.e., P(j | i) > P(j | i) – probability raising (PR). For the
detailed description of the methods, we refer the reader to [10, 12].

2.1 CAncer PRogression Extraction with Single Edge

The CAncer PRogression Extraction with Single Edges algorithm, i.e., caprese, extracts tree-
based models of cancer progression with (i) multiple independent starting points and (ii)
branches. The former models the emergence of different progressions as a result of the natural
heterogeneity of cancer (cfr., [10]). The latter models the possibility of a clone to undergo
positive selection by acquiring different mutations.

The inference of caprese’s models is driven by a shrinkage estimator of the confidence in
the relation between pair of genes, which augments robustness to noise in the input data.

As shown in [10], caprese is currently the state-of-the-art algorithm to infer tree cancer
progression models, although its expressivity is limited to this kind of selective advantage

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2015. ; https://doi.org/10.1101/027524doi: bioRxiv preprint 

https://doi.org/10.1101/027524


Figure 1: Data processing pipeline for the cancer progression inference. tronco imple-
ments a pipeline consisting in a series of functions and algorithms to extract cancer progression
models from cross-sectional inout data. The first step of such a pipeline consists in collecting ex-
perimental data (which could be accessible through publicly available repositories such as TCGA)
and performing genomic analyses to derive profiles of, e.g., somatic mutations or Copy-Number
Variations for each patient or single cells. Then, both statistical analysis and biological priors
are adopted to select the significant alterations for the progression; e.g., driver mutations. This
complex pipeline can also include further statistics and priors to determine cancer subtypes and to
generate patterns of selective advantage; e.g., hypotheses of mutual exclusivity. Given these inputs,
the implemented algorithms (i.e., caprese and capri) can extract a progression model and assess
various confidence measures on its constituting relations such as non-parametric bootstrap and
hypergeometric testing. Experimental validation concludes the pipeline, see [12] and [3].

models (cfr., [12]). Since this limitation is rather unappealing in analyzing cancer data, an
improved algorithm was sought in [12].

2.2 CAncer PRogression Inference

The CAncer PRogression Inference algorithm, i.e., capri, extends tree models by allowing
multiple predecessors of any common downstream event, thus allowing construction of directed
acyclic graph (DAGs) progression models.

capri performs maximum likelihood estimation for the progression model with constraints
grounded in Supped’ prima facile causality (cfr., [12]). In particular, the search space of the
possible valid solutions is limited to the selective advantage relations where both TP and PR
are verified and then, on this reduced search space, the likelihood fit is performed.

In [12], capri was shown to be effective and polynomial in the size of the inputs.
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2.3 Algorithms’ Structures

The core of the two algorithms is a simple quadratic loop1 that prunes arcs from an initially
totally connected graph. Each pruning decision is based on the application of Suppes’ proba-
bilistic causation criteria.
The pseudocode of the two implemented algorithms along with the procedure to evaluate the
confidence of the arcs by bootstrap is summarized in Algorithms 1, 2, 3 and 4, which depict the
data preparation step, the caprese and capri algorithms and finally the optional bootstrap
step.

Algorithm 1: tronco Data Import and Preprocessing

Input: a data set containing MAF or GISTIC scores, e.g., as obtained from cBio portal ([4, 2]).
Result: a data structure containing boolean flags for “events”, relative frequencies and

other metadata.

1 From the dataset (depending on the data format) derive a Boolean matrix M , where each
entry 〈i, j〉 is true if event i is “present” in sample/patient j.

2 forall the events e do
3 Compute the frequency of the event e in the dataset and save it in a map F .
4 Compute the joint probability of co-occurrence of pair of events in the dataset and save it

in a map C.

5 end

6 return A data structure comprising the Boolean matrix M , the maps F and C and other
metadata.

3 Package Design

In this section we will review the structure and implementation of the TRONCO package. For
the sake of clarity, we will structure the description through the following functionalities that
are implemented in the package.

• Data import. Functions for the importation of data both from flat files (e.g., MAF,
GISTIC) and from Web querying (e.g., cBioPortal [4]).

• Data export and correctness. Functions for the export and visualization of the im-
ported data.

• Data editing. Functions for the preprocessing of the data in order to tidy them.

• External utilities. Functions for the interaction with external tools for the analysis of
cancer subtypes or groups of mutually exclusive genes.

• Inference algorithms. In the current version of tronco, the caprese and capri
algorithms are provided in a polinomial implementation.

• Confidence estimation. Functions for the statistical estimation of the confidence of
the reconstructed models.

• Visualization. Functions for the visualization of both the input data and the results of
the inference and of the confidence estimation.

1For capri the n actually depends on the structural complexity of the input “patterns”, i.e., of the boolean
formulæ employed in the “lifting operation”; more information of this in [12].
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Algorithm 2: caprese algorithm

Input: a dataset of n events, i.e., genomic alterations, and m samples packed in a data
structure obtained from Algorithm 1.

Result: a tree model representing all the relations of selective advantage.

Pruning based on Suppes’ criteria.

1 Let G← a complete directed graph over the vertices n.
2 forall the arcs (a, b) in G do
3 Compute a score S(·) for the nodes a and b based on Suppes’ criteria.

Verify Suppes’ criteria, that is:
4 if S(a) ≥ S(b) and S(a) > 0 then
5 Keep (a, b) as edge. I.e., select ‘a’ as “candidate parent”.
6 else if S(b) > S(a) and S(b) > 0 then
7 Keep (b, a) as edge. I.e., select ‘b’ as “candidate parent”.

8 end

Fit of the Prima Facie directed acyclic graph to the best tree model.

9 Let T ← the best tree model obtained by Edmonds’ algorithm (see [5]).
10 Remove from T any connection where the candidate father does not have a minimum level of

correlation with the child.

11 return The resulting tree model T .

3.1 Data Import

The starting point of tronco analysis pipeline, is a dataset of genomics alterations (i.e.,
somatic mutations and copy number variations) which need to be imported as a tronco
compliant data structure, i.e., a R list structure containing the required data both for the
inference and the visualization. The data import functions take as input such genomic data
and from them create a tronco compliant data structure consisting in a list variable with the
different parameters needed by the algorithms.
The core of data import from text files, is the function

import.genotypes(geno, event.type = "variant", color = "Darkgreen").

This function imports a matrix of 0/1 alterations as a tronco compliant dataset. The input
geno can be either a dataframe or a file name. In any case the dataframe or the table stored in
the file must have a column for each altered gene and a rows for each sample. Column names
will be used to determine gene names; if data are loaded from a file, the first column will be
assigned as row names.

tronco imports data from other file format such as MAF and GISTIC, by providing wrap-
pers of the function import.genotypes. Specifically, the function

import.MAF(file, sep = "\t", is.TCGA = TRUE)

imports mutation profiles from a Manual Annotation Format (MAF) file. All mutations are
aggregated as a unique event type labeled "Mutation" and are assigned a color according to
the default of function import.genotypes. If the input is in the TCGA MAF file format, the
function also checks for multiple samples per patient and a warning is raised if any are found.
The function
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Algorithm 3: capri

Input: a dataset of n variables, i.e., genomic alterations or patterns, and m samples.
Result: a graphical model representing all the relations of “selective advantage”.

Pruning based on the Suppes’ criteria

1 Let G← a directed graph over the vertices n
2 forall the arcs (a, b) ∈ G do
3 Compute a score S(·) for the nodes a and b in terms of Suppes’ criteria.
4 Remove the arc (a, b) if Suppes’ criteria are not met.

5 end

Likelihood fit on the Prima Facie directed acyclic graph

6 Let M← the subset of the remaining arcs ∈ G, that maximize the log-likelihood of the
model, computed as: LL(D | M)− ((logm)/2) dim(M), where D denotes the input data, m
denotes the number of samples, and dim(M) denotes the number of parameters in M (see
[8]).

7 return The resulting graphical model M.

import.GISTIC(x)

also transforms GISTIC scores for copy number alterations (CNAs) in a tronco compliant
object. The input can be a matrix, with columns for each altered gene and rows for each sample;
in this case colnames/rownames mut be provided. If the input is a character an attempt to
load a table from file is performed. In this case the input table format should be consistent
with TCGA data for focal CNA; i.e., there should hence be: one column for each sample, one
row for each gene, a column Hugo Symbol with every gene name and a column Entrez Gene Id

with every genes Entrez ID. A valid GISTIC score should be any value of: "Homozygous Loss"

(-2), "Heterozygous Loss" (-1), "Low-level Gain" (+1), and "High-level Gain" (+2).
Finally, tronco also provides utilities for the query of genomic data from cBioPortal [4].

This functionality is provided by the function

cbio.query(cbio.study = NA, cbio.dataset = NA, cbio.profile = NA, genes)

which is a wrapper for the CGDS package [7]. This can work either automatically, if one sets
cbio.study, cbio.dataset and cbio.profile, or interactively. A list of genes to query with
less than 900 entries should be provided. This function returns a list with two dataframes: the
required genetic profile along with clinical data for the cbio.study. The output is also saved
to disk as Rdata file. See also the cBioPortal page at http://www.cbioportal.org.
The function

show(x, view = 10)

prints (on the R console) a short report of a dataset x, which should be a tronco compliant
dataset.

All the functions described in the following sections will assume as input a tronco com-
pliant data structure.

3.2 Data Export and Correctness

tronco provides a series of function to explore the imported data and the inferred models.
All these functions are named with the “as.” prefix.
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Algorithm 4: Bootstrap Procedure

Input: a model T obtained from caprese or a model M obtained from capri, and the
initial dataset.

Result: the confidence in the inferred arcs.

1 Let counter ← 0
2 Let nboot← the number of bootstrap sampling to be performed.
3 while counter < nboot do
4 Create a new dataset for the inference by random sampling of the input data.
5 Perform the reconstruction on the sampled dataset and save the results.
6 counter = counter + 1

7 end

8 Evaluate the confidence in the reconstruction by counting the number of times any arc is
inferred in the sampled datasets.

9 return The inferred model T or M augmented with an estimated confidence for each arc.

Given a tronco compliant imported data set, the function

as.genotypes(x)

returns the 0/1 genotypes matrix. This function can be used in combination with the function

keysToNames(x, matrix)

to translate column names to event names, given the input matrix with colnames/rownames
which represent genotypes keys. Also, functions to get the list of genes, events (i.e., each
columns in the genotypes matrix, it differs from genes as the same genes of different types are
considered different events), alterations (i.e., genes of different types are merged as 1 unique
event), samples (i.e., patients or also single cells) and alteration types. See functions

as.genes(x, types = NA)

as.events(x, genes = NA, types = NA)

as.alterations(x, new.type = "Alteration", new.color = "khaki")

as.samples(x)

as.types(x, genes = NA).

Functions of this kind are also implemented to explore the results, most notably the models
that have been inferred

as.models(x, models = names(x$model)))

the reconstructions

as.adj.matrix(x, events = as.events(x), models = names(x$model), type = "fit")})

the patterns (i.e., the formulæ)

as.patterns(x)

and the confidence

as.confidence(x, conf).

Similarly, the library defines a set of functions that extract the cardinality of the compliant
tronco data structure
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nevents(x, genes = NA, types = NA)

ngenes(x, types = NA)

npatterns(x)

nsamples(x)

ntypes(x).

Furthermore, functions to asses the correctness of the inputs are also provided. The function

is.compliant(x,

err.fun = "[ERR]",

stage = !(all(is.null(x$stages)) || all(is.na(x$stages))))

verifies that the parameter x is a compliant data structure. The function

consolidate.data(x, print = FALSE)

verifies if the input data are consolidated, i.e., if there are events with 0 or 1 probability or
indistinguishable in terms of observations. Any indistinguishable event is returned by the
function duplicates(x).

Finally, tronco provides functions to access TCGA data.

TCGA.multiple.samples(x)

checks if whether are multiple sample in the input, while

TCGA.remove.multiple.samples(x)

removes them accordingly to TCGA barcodes naming rules.

3.3 Data Editing

tronco provides a wide range of editing functions. We will describe some of them in the
following; for a technical description we refer to the manual.

3.3.1 Removing and Merging

A set of functions to remove items from the data is provided; such functions are characterized
by the delete. prefix. The main functions are

delete.gene(x, gene)

delete.samples(x, samples)

delete.type(x, type)

delete.pattern(x, type)

that respectively remove genes, samples (i.e., tumors profiles), types (i.e., type of alteration
such as somatic mutation, copy number alteratio, etc.), and patterns from a tronco data
structure x. Conversely it is possible to merge events and types:

merge.events(x, ..., new.event, new.type, event.color)

merge.types(x, ..., new.type = "new.type", new.color = "khaki")}).

3.3.2 Binding

The purpose of the binding functions is to combine different datasets. The function

ebind(...)

combines events from one or more datasets, whose events need be defined over the same set of
samples. The function

sbind(...)
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combines samples from one or more datasets, whose samples need to be defined over the same
set of events. Samples and events of two dataset can also be intersected via the function

intersect.datasets(x, y, intersect.genomes = TRUE).

3.3.3 Changing and Renaming

The functions

rename.gene(x, old.name, new.name)

rename.type(x, old.name, new.name)

can be used respectively to rename genes or alterations types.
The function

change.color(x, type, new.color)

can be used to change the color associated to the specified alteration type in x.

3.3.4 Selecting and Splitting

Genomics data usually involve a large number of genes, most of which are not relevant for cancer
development (e.g., the may be passenger mutations). For this reason, tronco implements the
function

events.selection(x, filter.freq = NA, filter.in.names = NA,filter.out.names = NA)

which allows the user to select a subset of genes to be analyzed. The selection can be performed
by frequency and gene symbols. The 0 probability events can are removed by the function
trim(x). Moreover, the functions

samples.selection(x, samples)

ssplit(x, clusters, idx = NA)

respectively filter a dataset x based on selected samples id and split the dataset into clusters
(i.e., groups). The last function can be used to analyze specific subtypes within a tumor.

3.4 External Utilities

tronco permits the interaction with external tools to (i) reduce inter-tumor heterogeneity by
cohort subtyping and (ii) detect fitness equivalent exclusive alterations. The first issue can be
attacked by adopting clustering techniques to split the dataset in order to analyze each cluster
subtype separately. Currently, TRONCO can export and inport data from [6] via the function

export.nbs.input(x, map\_hugo\_entrez, file = "tronco\_to\_nbs.mat")

and the previously described splitting functions.
In order to handle alterations with equivalent fitness, TRONCO interacts with the tool

MUTEX proposed in [1]. The interaction is ensured by the functions

export.mutex(x,

filename = "to_mutex",

filepath = "./",

label.mutation = "SNV",

label.amplification = list("High-level Gain"),

label.deletion = list("Homozygous Loss"))

import.mutex.groups(file, fdr = 0.2, display = TRUE)

. Such exclusivity groups can then be further added as patterns (see the next section).
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3.5 Inference Algorithms

The current version of TRONCO implements the progression reconstruction algorithms algo-
rithms caprese [10] and capri [12].

caprese. The caprese algorithm [10] can be executed by the function

tronco.caprese(data, lambda = 0.5, do.estimation = FALSE, silent = FALSE)

with data being a tronco data structure. The parameter lambda can be used to tune the
shrinkage-like estimator adopted by CAPRESE, with the default being 0.5 as suggested in [10].

capri. The capri algorithm [12] is executed by the function

tronco.capri(data,

command = "hc",

regularization = c("bic", "aic"),

do.boot = TRUE,

nboot = 100,

pvalue = 0.05,

min.boot = 3,

min.stat = TRUE,

boot.seed = NULL,

do.estimation = FALSE,

silent = FALSE)

with data being a tronco data structure. The parameters command and regularization

allow respectively to choose the heuristic search to be performed to fit the network and the
regularizer to be used in the likelihood fit (see [12]). capri can be also executed with or
without the bootstrap preprocessing step depending on the value of the parameter do.boot;
this is discouraged, but can speed up the execution with large input datasets.

As discussed in [12], capri constrains the search space using Suppes’ prima facie conditions
which lead to a subset of possible valid selective advantage relations. The members of this subset
are then evaluated by the likelihood fit. Although uncommon, it may so happen (especially
when patterns are given as input) that such a resulting prima facie graphical structure may
still contain cycles. When this happens, the cycles are removed through the heuristic algorithm
implemented in

remove.cycles(adj.matrix,

weights.temporal.priority,

weights.matrix,

not.ordered,

hypotheses = NA,

silent).

The function takes as input a set of weights in term of confidence for any selective advantage
valid edge, ranks all the valid edges in increasing confidence levels and, starting from the less
confident, goes through each edge removing the ones that can break the cycles.

3.5.1 Patterns

capri allows for the input of patterns, i.e., group of events which express possible selective
advantage relations. Such patterns are given as input using the function
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hypothesis.add(data,

pattern.label,

lifted.pattern,

pattern.effect = "*",

pattern.cause = "*").

This function is wrapped within the functions

hypothesis.add.homologous(x,

pattern.cause = "*",

pattern.effect = "*",

genes = as.genes(x),

FUN = OR)

hypothesis.add.group(x,

FUN,

group,

pattern.cause = "*",

pattern.effect = "*",

dim.min = 2,

dim.max = length(group),

min.prob = 0)

which, respectively, allow the addition of analogous patterns (i.e., patterns involving the same
gene of different types) and patterns involving a specified group of genes. In the current
version of tronco, the implemented patterns are Boolean, i.e., those expressible by the boolean
operators AND, OR and XOR (functions AND(...), OR(...) and XOR(...)).

3.6 Confidence Estimation

To asses the confidence of the selectivity relations found, tronco uses non-parametric and
statistical bootstraps. For the non-parametric bootstrap, each event row is uniformly sampled
with repetitions from the input genotype and then, on such an input, the inference algorithms
are performed. The assessment concludes after K repetitions (e.g., K = 100). Similarly, for
capri, a statistical bootstrap is provided: in this case the input dataset is kept fixed, but
different seeds for the statistical procedures are sampled (see, e.g., [13] for an overview of these
methods). The bootstrap is implemented in the function

tronco.bootstrap(reconstruction,

type = "non-parametric",

nboot = 100,

verbose = FALSE)

where reconstruction is a tronco compliant object obtained by the inference by one of the
implemented algorithms.

3.7 Visualization and Reporting

During the development of the tronco package, a lot of attention was paid to the visualization
features which are crucial for the understanding of biological results. Listed below is a summary
of the main features; for a detailed description of each function, please refer to the manual.
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OncoPrint. OncoPrints are compact means of visualizing distinct genomic alterations,
including somatic mutations, copy number alterations, and mRNA expression changes across a
set of cases. They are extremely useful for visualizing gene set and pathway alterations across
a set of cases, and for visually identifying trends, such as trends in mutual exclusivity or co-
occurence between gene pairs within a gene set. Individual genes are represented as rows, and
individual cases or patients are represented as columns. See http://www.cbioportal.org/.
The function

oncoprint(x)

provides such visualizations with a TRONCO compliant data structure as input. The function

oncoprint.cbio(x)

exports the input for the cBioPortal visualization, see http://www.cbioportal.org/public-portal/
oncoprinter.jsp.

It is also possible to annotate a description and tumor stages to any oncoprint by means of
the functions

annotate.description(x, label)

annotate.stages(x, stages, match.TCGA.patients = FALSE).

Reconstruction. The inferred models can be displayed by the function tronco.plot. The
features included in the plots are multiple, such as the choice of the regularizer(s), editing font
of nodes and edges, scaling nodes’ size in terms of estimated marginal probabilities, annotating
the pathway of each gene and displaying the estimated confidence of each edge. We refer to
the manual for a detailed description.

Reports. Finally, tronco provides a number of reporting utilities. The function

genes.table.report(x,

name,

dir = getwd(),

maxrow = 33,

font = 10,

height = 11,

width = 8.5,

fill = "lightblue")

can be used to generate LATEX code to be used as report, while the function

genes.table.plot(x, name, dir = getwd())

generates histograms reports.

4 tronco Use Cases

In this Section, we will present a case study for the usage of the tronco package based on
the work presented in [12]. Specifically, the example is from [11] where Piazza et al. used
high-throughput exome sequencing technology to identity somatically acquired mutations in 64
aCML patients, and found a previously unidentified recurring missense point mutation hitting
Setbp1.

The example illustrates the typical steps that are necessary to perform a progression recon-
struction with tronco. The steps are the following:

1. Selecting “Events”.
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2. Adding “Hypotheses”.

3. Reconstructing the “Progression Model”.

4. Bootstrapping the Data.

(In the following, user input at the console is shown in boldface.

Selecting Events. We will start by loading the tronco package in R along with an ex-
ample dataset that is part of the package distribution.

> library(TRONCO)

> data(aCML)

> hide.progress.bar <<- TRUE

We then use the function show to get a short summary of the aCML dataset that has just been
loaded.

> show(aCML)

Description: CAPRI - Bionformatics aCML data.

Dataset: n=64, m=31, |G|=23.

Events (types): Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point.

Colors (plot): darkgoldenrod1, forestgreen, cornflowerblue, coral.

Events (10 shown):

gene 4 : Ins/Del TET2

gene 5 : Ins/Del EZH2

gene 6 : Ins/Del CBL

gene 7 : Ins/Del ASXL1

gene 29 : Missense point SETBP1

gene 30 : Missense point NRAS

gene 31 : Missense point KRAS

gene 32 : Missense point TET2

gene 33 : Missense point EZH2

gene 34 : Missense point CBL

Genotypes (10 shown):

gene 4 gene 5 gene 6 gene 7 gene 29 gene 30 gene 31 gene 32 gene 33 gene 34

patient 1 0 0 0 0 1 0 0 0 0 0

patient 2 0 0 0 0 1 0 0 0 0 1

patient 3 0 0 0 0 1 1 0 0 0 0

patient 4 0 0 0 0 1 0 0 0 0 1

patient 5 0 0 0 0 1 0 0 0 0 0

patient 6 0 0 0 0 1 0 0 0 0 0

Using the function as.events, we can have a look at the genes flagged as “mutated” in the
dataset (i.e., the events that tronco deals with).

> as.events(aCML)

type event

gene 4 "Ins/Del" "TET2"

gene 5 "Ins/Del" "EZH2"

gene 6 "Ins/Del" "CBL"

gene 7 "Ins/Del" "ASXL1"

gene 29 "Missense point" "SETBP1"

gene 30 "Missense point" "NRAS"

gene 31 "Missense point" "KRAS"
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gene 32 "Missense point" "TET2"

gene 33 "Missense point" "EZH2"

...

gene 88 "Nonsense point" "TET2"

gene 89 "Nonsense point" "EZH2"

gene 91 "Nonsense point" "ASXL1"

gene 111 "Nonsense point" "CSF3R"

These events account for alterations in the following genes.

> as.genes(aCML)

[1] "TET2" "EZH2" "CBL" "ASXL1" "SETBP1" "NRAS" "KRAS" "IDH2" "SUZ12"

[10] "SF3B1" "JARID2" "EED" "DNMT3A" "CEBPA" "EPHB3" "ETNK1" "GATA2" "IRAK4"

[19] "MTA2" "CSF3R" "KIT" "WT1" "RUNX1"

Now we can take a look at the alterations of only the gene SETBP1 across the samples.

> as.gene(aCML, genes = ’SETBP1’)

Missense point SETBP1

patient 1 1

patient 2 1

patient 3 1

...

patient 12 1

patient 13 1

patient 14 1

patient 15 0

patient 16 0

patient 17 0

...

patient 62 0

patient 63 0

patient 64 0

We consider a subset of all the genes in the dataset to be involved in patterns based on the
support we found in the literature. See [12] as a reference.

> gene.hypotheses = c(’KRAS’, ’NRAS’, ’IDH1’, ’IDH2’, ’TET2’, ’SF3B1’, ’ASXL1’)

Regardless from which types of mutations we include, we select only the genes which appear
alterated in at least 5% of the patients. Thus, we first transform the dataset into “alterations”
(i.e., collapsing all the event types for the same gene), and then we consider only these events
from the original dataset.

> alterations = events.selection(as.alterations(aCML), filter.freq = .05)

*** Aggregating events of type(s) Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point

in a unique event with label "Alteration".

Dropping event types Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point for 23 genes.

*** Binding events for 2 datasets.

*** Events selection: #events=23, #types=1 Filters freq|in|out = {TRUE, FALSE, FALSE}
Minimum event frequency: 0.05 (3 alterations out of 64 samples).

Selected 7 events.

Selected 7 events, returning.
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We now show a plot of the selected genes. Note that this plot has no title as by default the
function events.selection does not add any. The resulting figure is shown in 2.

> oncoprint(alterations,font.row = 12, cellheight = 20, cellwidth = 4)

*** Oncoprint for ""

with attributes: stage=FALSE, hits=TRUE

Sorting samples ordering to enhance exclusivity patterns.

Figure 2: Oncoprint function in tronco. Result of the oncoprint function in tronco on the
aCML dataset.

Adding Hypotheses. We now create the dataset to be used for the inference of the pro-
gression model. We consider the original dataset and from it we select all the genes whose
mutations are occurring at least 5% of the times together with any gene involved in any hy-
pothesis. To do so, we use the parameter filter.in.names as shown below.

> hypo = events.selection(aCML,

filter.in.names = c(as.genes(alterations),

gene.hypotheses))

*** Events selection: #events=31, #types=4 Filters freq|in|out = {FALSE, TRUE, FALSE}
[filter.in] Genes hold: TET2, EZH2, CBL, ASXL1, SETBP1 ... [10/14 found].

Selected 17 events, returning.

> hypo = annotate.description(hypo, ’CAPRI - Bionformatics aCML data (selected events)’)

We show a new oncoprint of this latest dataset where we annotate the genes in gene.hypotheses

in order to identify them 3. The sample names are also shown.

> oncoprint(hypo,

gene.annot = list(priors = gene.hypotheses),

sample.id = T,

font.row = 12,

font.column = 5,

cellheight = 20,

cellwidth = 4)
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*** Oncoprint for "CAPRI - Bionformatics aCML data (selected events)"

with attributes: stage=FALSE, hits=TRUE

Sorting samples ordering to enhance exclusivity patterns.

Annotating genes with RColorBrewer color palette Set1 .

Figure 3: Annotated oncoprint. Result of the oncoprint function on the selected dataset in
tronco with annotations.

We now also add the hypotheses that are described in CAPRI’s manuscript. Hypothesis of
hard exclusivity (XOR) for NRAS/KRAS events (Mutation). This hypothesis is tested against
all the events in the dataset.

> hypo = hypothesis.add(hypo, ’NRAS xor KRAS’, XOR(’NRAS’, ’KRAS’))

We then try to include also a soft exclusivity (OR) pattern but, since its “signature” is the
same of the hard one just included, it will not be included. The code below is expected to
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result in an error.

> hypo = hypothesis.add(hypo, ’NRAS or KRAS’, OR(’NRAS’, ’KRAS’))

Error in hypothesis.add(hypo, "NRAS or KRAS", OR("NRAS", "KRAS")) :

[ERR] Pattern duplicates Pattern NRAS xor KRAS.

To better highlight the perfect (hard) exclusivity among NRAS/KRAS mutations, one can
examine further their alterations. See Figure 4.

> oncoprint(events.selection(hypo,

filter.in.names = c(’KRAS’, ’NRAS’)),

font.row = 12,

cellheight = 20,

cellwidth = 4)

*** Events selection: #events=18, #types=4 Filters freq|in|out = {FALSE, TRUE, FALSE}
[filter.in] Genes hold: KRAS, NRAS ... [2/2 found].

Selected 2 events, returning.

*** Oncoprint for ""

with attributes: stage=FALSE, hits=TRUE

Sorting samples ordering to enhance exclusivity patterns.

Figure 4: RAS oncoprint. Result of the oncoprint function in tronco for only the RAS genes
to better show their hard exclusivity pattern.

We repeated the same analysis as before for other hypotheses and for the same reasons, we will
include only the hard exclusivity pattern.

> hypo = hypothesis.add(hypo, ’SF3B1 xor ASXL1’, XOR(’SF3B1’, OR(’ASXL1’)), ’*’)

> hypo = hypothesis.add(hypo, ’SF3B1 or ASXL1’, OR(’SF3B1’, OR(’ASXL1’)), ’*’)

Error in hypothesis.add(hypo, "SF3B1 or ASXL1", OR("SF3B1", OR("ASXL1")), :

[ERR] Pattern duplicates Pattern SF3B1 xor ASXL1.

Finally, we now repeat the same for genes TET2 and IDH2. In this case 3 events for the gene
TET2 are present: "Ins/Del", "Missense point" and "Nonsense point". For this reason,
since we are not specifying any subset of such events to be considered, all TET2 alterations
are used. Since the events present a perfect hard exclusivity, their patterns will be included as
a XOR. See Figure 5.

> as.events(hypo, genes = ’TET2’)

type event
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gene 4 "Ins/Del" "TET2"

gene 32 "Missense point" "TET2"

gene 88 "Nonsense point" "TET2"

> hypo = hypothesis.add(hypo, ’TET2 xor IDH2’, XOR(’TET2’, ’IDH2’), ’*’)

> hypo = hypothesis.add(hypo, ’TET2 or IDH2’, OR(’TET2’, ’IDH2’), ’*’)

> oncoprint(events.selection(hypo, filter.in.names = c(’TET2’, ’IDH2’)),font.row=12,

cellheight=20,cellwidth=4)

*** Events selection: #events=21, #types=4 Filters freq|in|out = {FALSE, TRUE, FALSE}
[filter.in] Genes hold: TET2, IDH2 ... [2/2 found].

Selected 4 events, returning.

*** Oncoprint for ""

with attributes: stage=FALSE, hits=TRUE

Sorting samples ordering to enhance exclusivity patterns.

Figure 5: TET/IDH2 oncoprint. Result of the oncoprint function in tronco for only the
TET/IDH2 genes.

We now finally add any possible group of homologous events. For any gene having more than
one event associated we also add a soft exclusivity pattern among them.

> hypo = hypothesis.add.homologous(hypo)

*** Adding hypotheses for Homologous Patterns

Genes: TET2, EZH2, CBL, ASXL1, CSF3R

Function: OR

Cause: *

Effect: *

Hypothesis created for all possible gene patterns.

The final dataset that will be given as input to CAPRI is now finally shown. See Figure 6.

> oncoprint(hypo,

gene.annot = list(priors = gene.hypotheses),

sample.id = T,

font.row = 10,

font.column = 5,

cellheight = 15,

cellwidth = 4)
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*** Oncoprint for "CAPRI - Bionformatics aCML data (selected events)"

with attributes: stage=FALSE, hits=TRUE

Sorting samples ordering to enhance exclusivity patterns.

Annotating genes with RColorBrewer color palette Set1 .

Figure 6: Final dataset for capri. Result of the oncoprint function in tronco on the dataset
used in [12].

Reconstructing Progression Models. We next infer the model by running CAPRI
algorithm with its default parameters: we use both AIC and BIC as regularizers, Hill-climbing
as heuristic search of the solutions and exhaustive bootstrap (nboot replicates or more for
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Wilcoxon testing, i.e., more iterations can be performed if samples are rejected), p-value set at
0.05. We set the seed for the sake of reproducibility.

> model = tronco.capri(hypo, boot.seed = 12345, nboot = 10)

*** Checking input events.

*** Inferring a progression model with the following settings.

Dataset size: n = 64, m = 26.

Algorithm: CAPRI with "bic, aic" regularization and "hc" likelihood-fit strategy.

Random seed: 12345.

Bootstrap iterations (Wilcoxon): 10.

exhaustive bootstrap: TRUE.

p-value: 0.05.

minimum bootstrapped scores: 3.

*** Bootstraping selective advantage scores (prima facie).

Evaluating "temporal priority" (Wilcoxon, p-value 0.05)

Evaluating "probability raising" (Wilcoxon, p-value 0.05)

*** Loop detection found loops to break.

Removed 26 edges out of 68 (38%)

*** Performing likelihood-fit with regularization bic.

*** Performing likelihood-fit with regularization aic.

The reconstruction has been successfully completed in 00h:00m:02s

We then plot the model inferred by capri with BIC as a regularizer and we set some parameters
to get a good plot; the confidence of each edge is shown both in terms of temporal priority and
probability raising (selective advantage scores) and hypergeometric testing (statistical relevance
of the dataset of input). See Figure 7.

> tronco.plot(model,

fontsize = 13,

scale.nodes = .6,

regularization = "bic",

confidence = c(’tp’, ’pr’, ’hg’),

height.logic = 0.25,

legend.cex = .5,

pathways = list(priors = gene.hypotheses),

label.edge.size = 5)

*** Expanding hypotheses syntax as graph nodes:

*** Rendering graphics

Nodes with no incoming/outgoing edges will not be displayed.

Annotating nodes with pathway information.

Annotating pathways with RColorBrewer color palette Set1 .

Adding confidence information: tp, pr, hg

RGraphviz object prepared.

Plotting graph and adding legends.

Bootstrapping the Data. Finally, we perform non-parametric bootstrap as a further
estimation of the confidence in the inferred results. See Figure 8.

> model.boot = tronco.bootstrap(model, nboot = 10)

Executing now the bootstrap procedure, this may take a long time...

Expected completion in approx. 00h:00m:03s

*** Using 7 cores via "parallel"
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Figure 7: Reconstruction by capri. Result of the reconstruction by CAPRI on the input dataset.

*** Reducing results

Performed non-parametric bootstrap with 10 resampling and 0.05 as pvalue

for the statistical tests.

> tronco.plot(model.boot,
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fontsize = 13,

scale.nodes = 0.6,

regularization = "bic",

confidence = c(’npb’),

height.logic = 0.25,

legend.cex = 0.5,

pathways = list(priors = gene.hypotheses),

label.edge.size = 10)

*** Expanding hypotheses syntax as graph nodes:

*** Rendering graphics

Nodes with no incoming/outgoing edges will not be displayed.

Annotating nodes with pathway information.

Annotating pathways with RColorBrewer color palette Set1 .

Adding confidence information: npb

RGraphviz object prepared.

Plotting graph and adding legends.

We now conclude this analysis with an example of inference with the caprese algorithm. As
caprese does not consider any pattern as input, we use the dataset shown in Figure 3. These
results are shown in Figure 9.

> model.boot.caprese = tronco.bootstrap(tronco.caprese(hypo))

*** Checking input events.

*** Inferring a progression model with the following settings.

Dataset size: n = 64, m = 17.

Algorithm: CAPRESE with shrinkage coefficient: 0.5.

The reconstruction has been successfully completed in 00h:00m:00s

Executing now the bootstrap procedure, this may take a long time...

Expected completion in approx. 00h:00m:00s

Performed non-parametric bootstrap with 100 resampling and 0.5

as shrinkage parameter.

> tronco.plot(model.boot.caprese,

fontsize = 13,

scale.nodes = 0.6,

confidence = c(’npb’),

height.logic = 0.25,

legend.cex = 0.5,

pathways = list(priors = gene.hypotheses),

label.edge.size = 10,

legend.pos = "top")

*** Expanding hypotheses syntax as graph nodes:

*** Rendering graphics

Nodes with no incoming/outgoing edges will not be displayed.

Annotating nodes with pathway information.

Annotating pathways with RColorBrewer color palette Set1 .

Adding confidence information: npb

RGraphviz object prepared.

Plotting graph and adding legends.
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Figure 8: Reconstruction by capri and Bootstrap. Result of the reconstruction by capri on
the input dataset with the assessment by non-parametric bootstrap.

5 Conclusions

We have described tronco, an R package that provides sequels of state-of-the-art techniques
to support the user during the analysis of cross-sectional genomic data with the aim of un-
derstanding cancer evolution. In the current version, tronco implements caprese and capri
algorithms for cancer progression inference together with functionalities to load input cross-
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Figure 9: Reconstruction by caprese and Bootstrap. Result of the reconstruction by caprese
on the input dataset with the assessment by non-parametric bootstrap.

sectional data, set up the execution of the algorithms, assess the statistical confidence in the
results and visualize the inferred models.
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