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Abstract

Motivation: We introduce TRONCO (TRanslational ONCOlogy), an open-source R package
that implements the state-of-the-art algorithms for the inference of cancer progression models
from (epi)genomic mutational profiles. TRONCO can be used to extract population-level models
describing the trends of accumulation of alterations in a cohort of cross-sectional samples,
e.g., retrieved from publicly available databases, and individual-level models that reveal the
clonal evolutionary history in single cancer patients, when multiple samples, e.g., multiple
biopsies or single-cell sequencing data, are available. The resulting models can provide key
hints in uncovering the evolutionary trajectories of cancer, especially for precision medicine or
personalized therapy.

Availability: TRONCO is released under the GPL license, it is hosted in the Software section
at http://bimib.disco.unimib.it /| and archived also at |bioconductor.org.

Contact: tronco@disco.unimib.it

1 Introduction

Cancer develops through the successive expansions of clones, in which certain (epi)genomic al-
terations, called drivers, confer a fitness advantage and progressively accumulate, in a context of
overall scarcity of resources [6]. Specifically, in Nowell’s seminal work, tumor evolution is described
in terms of stepwise genetic variation such that growth advantage is the key for the survival and pro-
rogation of the clones. Therefore, one can define cancer progression models, in terms of probabilistic
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Figure 1: (A) TRONCO can process either alterations (e.g., somatic mutations or wider chromosomal
lesions) in a cohort of independent samples (top lolliplot diagram), or a set of multiple snapshots
from a unique patient (e.g., multi-region or single-cell, bottom panel). (B) Oncoprints allow the
user to visualize the data that the tool is processing. Regardless of the source, each row represents
a certain alteration - at a custom resolution depending on the cancer under study - and each
column a sample. (C) A model inferred with the tool might outline cancer evolution occurring
in a population ensemble or in an individual patient. Graphically, alterations are represented as
nodes with different colors (e.g., green mutations and blue homozygous deletions). Algorithms
such as CAPRI allow describing alterations with logical formulas, in an attempt to find their role
as a “group” (see [8] for details); we picture such groups with dashed lines. In the panel, we
show a hypothetical ensemble-level model predicting a selection pressure on two genes mapped to
17p13, TP53 and HICI, as it may be inferred by analyzing samples harbouring either TP53/HIC1
mutations or homozygous deletions in the cytoband where any of these two genes map, i.e., here
for purely explanatory cases we suppose just TP53, which maps to 17p13.1. The model suggests a
trend of selection towards mutations in gene Y, which shall be interpreted as a set of preferential
clonal expansions characteristic of the population of analyzed samples, involving alterations of the
functions mapped to 17p13 and v. (D) TRONCO supports three data types. Custom data, which
is supposed to be provided as a binary input matriz storing the presence (1) or absence (0) of a
certain alteration in a sample. Or, standard data formats such as the Mutation Annotation Format
(MAF) for somatic mutations, as well as the Genomic Identification of Significant Targets in Cancer
(GISTIC) format for focal Copy Number Variations. Data can be generated by custom experiments,
or collected - along with other “omics” - from public databases such as TCGA and cBio portal. For
the latter, cBio portal, TRONCO implements a query system to fetch data with minimal effort. The
tool engine can then be used to manipulate genomic profiles — regardless of their source — and run
progression inference algorithms.
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causal graphical models, where the conditional dependencies and the temporal ordering among these
alterations are described, revealing the evolutionary trajectories of cancer at the (epi)genome level.

We further distinguish [3]. (i) ensemble-level progression models, describing the statistical
trends of accumulation of genomic alterations in a cohort of distinct cancer patients. Such models
describe the temporal partial orders of fixation and accumulation of such alterations and represent
population-level trends; and (i7) individual-level models, thus accounting for the specific evolution-
ary history of cancer clones in individual tumors. Such models thus impute the ancestry relations
of the observed clones.

Even if the inference of such models is further complicated by a series of theoretical and technical
hurdles, such as, e.g., intra- and inter-tumor heterogeneity and the effective detection of drivers,
it can benefit from the increasing amount of next-generation sequencing (NGS) data, currently
available through public projects such as The Cancer Genome Atlas (TCGA, https://tcga-data.
nci.nih.gov). Usually, such databases provide cross-sectional (epi)genomic profiles retrieved from
single biopsies of cancer patients, which can be used to extract ensemble-level models; but higher
resolution data such as multiple-biopsies, or even single-cell sequencing data are becoming more
accessible and reliable, which can be used to infer individual-level models.

Here we introduce TRONCO (TRanslational ONCOlogy), an R package built to infer cancer pro-
gression models from heterogeneous genomic data (in the form of alterations persistently present
along tumor evolution.) Currently, TRONCO provides the implementation of two algorithms: (7)
CAPRESE (CAncer PRogression Extraction with Single Edges [7]), and (i) CAPRI (CAncer PRogres-
sion Inference [§]), both based on Suppes’ theory of probabilistic causation [9], but with distinct
goals and properties (see Software Implementation).

TRONCO, in its current form and perspective, should be thought of as a tool that provides the
implementation of up-to-date solutions to the progression inference problem. At the time of the
writing it can be effectively used as the final stage of a modular pipeline for the extraction of
ensemble-level cancer progression models from cross-sectional data [3]. In such a pipeline input data
are pre-processed to (i) stratify samples in tumor subtypes, (i¢) select driver alterations and (i77)
identify groups of fitness-equivalent (i.e., mutually exclusive) alterations, prior to the application
of the CAPRI algorithm. The resulting ensemble-level progression models depict the evolutionary
dynamics of cancer, with translational impacts on diagnostic and therapeutic processes, especially
in regard to precision medicine and personalized drug development.

From the complementary perspective, TRONCO can also exploit the CAPRESE algorithm to infer
the clonal evolutionary history in single patients when multiple samples are available, as in the case
of multiple biopsies and/or single-cell sequencing data, as long as the set of driver events is selected;
see [3].

2 Software Implementation

TRONCO implements a set of R functions to aid the user to extract a cancer progression model
from genomic data. At a high-level, these function shall help to import, visualize and manipulate
genomic profiles — regardless of their source — eventually allowing the implemented algorithms to
run and assess the confidence in a model.

The basics steps of TRONCO’s usage are shown in Figure|l] In panel (a) we show multiple input
alterations (e.g., somatic mutations or copy number alterations) either from a cohort of patients,
or a unique patient (e.g., multi-region or single-cell sequencing); in panel (b) we show an oncoprint
visualization from the tool, i.e., a matrix whose columns represent samples and rows the alterations
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and their presence per sample; panel (c¢) shows an inferred graphical Bayesian progression model
obtained with one of the available algorithms; finally, in panel (d) we show data supported for
processing in the tool. For a more detailed explanation of the implementation of the package see

.

Data loading and manipulation. Common formats to store data used to extract progression
models can be natively imported. These include, for instance, the Mutation Annotation Format
(MAF) for somatic mutations, as well as the Genomic Identification of Significant Targets in Cancer
(GISTIC) format to store focal Copy Number Variations. The tool can exploit the ¢Bio portal for
Cancer Genomics, which collects among others TCGA projects, to access freely available instances
of such data [4].

TRONCO provides functions for data preprocessing to, e.g., select a certain subset of alterations,
or samples or any abstraction which might be appropriate according to the cancer being studied.

Visualization and interaction with other tools. TRONCO implements an oncoprint system
to visualize the processed data. Datasets can be exported for processing by other tools used to,
e.g., stratify input samples and detect groups of mutually exclusive alterations, which include the
Network Based Stratification [5] and MUTEX [2] tools. TRONCO allows the visualization of the
inferred models.

Model inference and confidence. TRONCO provides two algorithms: (i) CAPRESE, which uses
a shrinkage-like estimator to infer ¢ree-models of progression, and (i7) CAPRI, which extracts more
general direct acyclic graphs (DAG) - thus allowing for confluent evolution and complex hypothesis
testing — by combining bootstrap and mazimum likelihood estimation. CAPRESE and CAPRI both
rely on the same theory of probabilistic causation, but with distinct goals and properties. The
former reconstructs tree models of progressions, while the latter general directed acyclic graphs.
Both methods are agnostic to the type of input data (i.e., whether its an ensemble or an individual
tumor), but shall be used in different contexts as they produce different types of models. Indeed,
CAPRESE is better at extracting cancer evolution in a single individual as in that case trees capture
branched evolution and trunk events, which shall suffice to describe clonal evolution. Instead, when
heterogeneity might result in multiple evolutionary routes with common downstream alterations,
the underlying true model is a graph, and CAPRI should be the tool of choice.

Whatever a model is, TRONCO implements a set of functions to assess its confidence via (%)
non-parametric, (i¢) parametric and (i) statistical bootstrap.

3 Discussion

TRONCO provides up-to-date, theoretically well-founded, statistical methods to understand the evo-
lution of a cancer (ensamble-level) or a single tumor (individual-level). The implemented algorithms
are demonstrably the state-of-the-art for the progression inference problem, in terms of computa-
tional cost, scalability with respect to sample size, accuracy and robustness against noise in the
data. The implementation makes straightforward the interaction of TRONCO with other common
bioinformatics tools, possibly allowing the creation of a common suite of tools for cancer progression
inference.
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Finally, we refer to [3] for a demonstration of the usage of TRONCO on real genomics data both
at the ensemble-level and individual-level progression models. In particular, this paper outlines the
capability of the methods to reproduce much of the current knowledge on the progression for a
set of cancer types, as well as to suggest clinically relevant insights. Furthermore, we also provide
users with detailed manuals, vignettes, and source code to replicate all the analysis presented in the
paper plus others (case studies: colorectal cancer, clear cell renal cell carcinoma and acute chronic
myeloid leukaemia) in the Supplementary Materials and at the TRONCO official webpage (Software
section at [http://bimib.disco.unimib.it /).
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