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37 Abstract

38 The genomic evolution inherent to cancer relates directly to a renewed focus on the vo-
30 luminous next generation sequencing (NGS) data, and machine learning for the inference of
0 explanatory models of how the (epi)genomic events are choreographed in cancer initiation and
a1 development. However, despite the increasing availability of multiple additional -omics data,
a2 this quest has been frustrated by various theoretical and technical hurdles, mostly stemming
a3 from the dramatic heterogeneity of the disease. In this paper, we build on our recent works
a2 on “selective advantage” relation among driver mutations in cancer progression and investi-
a5 gate its applicability to the modeling problem at the population level. Here, we introduce
6 PiCnlc (Pipeline for Cancer Inference), a versatile, modular and customizable pipeline to ex-
a7 tract ensemble-level progression models from cross-sectional sequenced cancer genomes. The
a8 pipeline has many translational implications as it combines state-of-the-art techniques for sam-
a0 ple stratification, driver selection, identification of fitness-equivalent exclusive alterations and
50 progression model inference. We demonstrate PiCnlc’s ability to reproduce much of the current
51 knowledge on colorectal cancer progression, as well as to suggest novel experimentally verifiable
52 hypotheses.

53 KEYWORDS: Cancer evolution; Selective advantage; Bayesian Structural Inference

54

55 STATEMENT OF SIGNIFICANCE: A causality based new machine learning Pipeline for Cancer Infer-
ss ence (PicNic) is introduced to infer the underlying somatic evolution of ensembles of tumors from
sz next generation sequencing data. PicNic combines techniques for sample stratification, driver selec-
ss  tion and identification of fitness-equivalent exclusive alterations to exploit a novel algorithm based
so on Suppes’ probabilistic causation. The accuracy and translational significance of the results are
s studied in details, with an application to colorectal cancer. PicNic pipeline has been made publicly
61 accessible for reproducibility, interoperability and for future enhancements.

- 1 Introduction

ez Since the late seventies evolutionary dynamics, with its interplay between variation and selection,
sa has progressively provided the widely-accepted paradigm for the interpretation of cancer emergence
es and development [1-3]. Random alterations of an organism’s (epi)genome can sometimes confer
es a functional selective advantage® to certain cells, in terms of adaptability and ability to survive
ez and proliferate. Since the consequent clonal expansions are naturally constrained by the avail-
es ability of resources (metabolites, oxygen, etc.), further mutations in the emerging heterogeneous
eo tumor populations are necessary to provide additional fitness of different kinds that allow survival
7o and proliferation in the unstable micro environment. Such further advantageous mutations will
7= eventually allow some of their sub-clones to outgrow the competing cells, thus enhancing tumor’s
72 heterogeneity as well as its ability to overcome future limitations imposed by the rapidly exhaust-
7z ing resources. Competition, predation, parasitism and cooperation have been in fact theorized as
7a co-present among cancer clones [4].

75 In the well-known vision of Hanahan and Weinberg [5, 6], the phenotypic stages that charac-
76 terize this multistep evolutionary process are called hallmarks. These can be acquired by cancer
7z cells in many possible alternative ways, as a result of a complex biological interplay at several
7s  spatio-temporal scales that is still only partially deciphered [7]. In this framework, we distinguish

LFor this and other technical terms commonly used in the statistics and cancer biology communities we provide
a Glossary in the Supplementary Material.
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7o “alterations” driving the hallmark acquisition process (i.e., drivers) by activating oncogenes or in-
so activating tumor suppressor genes, from those that are transferred to sub-clones without increasing
a1 their fitness (i.e., passengers) [8]. Driver identification is a modern challenge of cancer biology, as
sz distinct cancer types exhibit very different combinations of drivers, some cancers display mutations
s in hundreds of genes [9], and the majority of drivers is mutated at low frequencies (“long tail”
ss distribution), hindering their detection only from the statistics of the recurrence at the population-
es level [10].

86 Cancer clones harbour distinct types of alterations. The somatic (or genetic) ones involve
sz either few nucleotides or larger chromosomal regions. They are usually catalogued as mutations
ss - i.e., single nucleotide or structural variants at multiple scales (insertions, deletions, inversions,
s translocations) — of which only some are detectable as Copy Number Alterations (CNAs), most
o0 prevalent in many tumor types [11]. Also epigenetic alterations, such as DNA methylation and
o1 chromatin reorganization, play a key role in the process [12]. The overall picture is confounded
02 by factors such as genetic instability [13], tumor-microenvironment interplay [14,15], and by the
o3 influence of spatial organization and tissue specificity on tumor development [16]2.

04 Significantly, in many cases, distinct driver alterations can damage in a similar way the same
o5 functional pathway, leading to the acquisition of new hallmarks [17-21]. Such alterations individu-
o ally provide an equivalent fitness gain to cancer cells, as any additional alteration hitting the same
oz pathway would provide no further selective advantage. This dynamic results in groups of driver
os alterations that form mutually exclusive patterns across tumor samples from different patients (i.e.,
oo the sets of alterations that are involved in the same pathways tend not to occur mutated together).
100 This phenomenon has significant translational consequences.

101 An immediate challenge posed by this state of affairs is the dramatic heterogeneity of cancer, both
102 at the inter-tumor and at the intra-tumor levels [22]. The former manifests as different patients with
103 the same cancer type can display few common alterations. This obsersvation led to the development
10a  Of techniques to stratify tumors into subtypes with different genomic signatures, prognoses and
105 response to therapy [23]. The latter form of heterogeneity refers to the observed genotypic and
16 phenotypic variability among the cancer cells within a single neoplastic lesion, characterized by the
107 coexistence of more than one cancer clones with distinct evolutionary histories [24].

108 Cancer heterogeneity poses a serious problem from the diagnostic and therapeutic perspective
100 as, for instance, it is now acknowledged that a single biopsy might not be representative of other
110 parts of the tumor, hindering the problem of devising effective treatment strategies [4]. Therefore,
11 presently the quest for an extensive etiology of cancer heterogeneity and for the identification of
12 cancer evolutionary trajectories is central to cancer research, which attempts to exploit the massive
13 amount of sequencing data available through public projects such as The Cancer Genome Atlas
114 (TCGA) [25].

115 Such projects involve an increasing number of cross-sectional (epi)genomic profiles collected via
16 single biopsies of patients with various cancer types, which might be used to extract trends of cancer
17 evolution across a population of samples®. Higher resolution data such as multiple samples collected
1s  from the same tumor [24], as well as single-cell sequencing data [26], might be complementarily
110 used to face the same problem within a specific patient. However, the lack of public data coupled

2We mention that much attention has been recently casted on newly discovered cancer genes affecting global
processes that are apparently not directly related to cancer development, such as cell signaling, chromatin and
epigenomic regulation, RNA splicing, protein homeostasis, metabolism and lineage maturation [10].

3At the time of this writing, in TCGA, sample sizes per cancer type are in the order of a few hundreds. Such
numbers are expected to increase in the near future, with a clear benefit for all the statistical approaches to analyze
cancer data which currently lack a proper background of data.
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120 t0 the problems of accuracy and reliability, currently prevents a straightforward application [27].
121 These different perspectives lead to the different mathematical formulations of the problem of
122 inferring a cancer progression model from genomic data, and a need for versatile computational tools
123 to analyze data reproducibly — two intertwined issues examined at length in this paper [28]. Indeed,
122 such models and tools can be focused either on characteristics of a population, i.e. ensemble-level,
125 or on multiple clonality in a single-patient. In general, both problems deal with understanding the
126 temporal ordering of somatic alterations accumulating during cancer evolution, but use orthogonal
127 perspectives and different input data — see Figure 1 for a comparison. This paper proposes a
12 new computational approach to efficiently deal with various aspects of the problem at a patient
120 population level, relegating the other aspects to future publications.

130  Ensemble-level cancer evolution. It is thus desirable to extract a probabilistic graphical model
131 explaining the statistical trend of accumulation of somatic alterations in a population of n cross-
132 sectional samples collected from patients diagnosed with a specific cancer. To normalize against
133 the experimental conditions in which tumors are sampled, we only consider the list of alterations
13a  detected per sample — thus, as 0/1 Bernoulli random variables.

135 Much of the difficulty lies in estimating the true and unknown trends of selective advantage
13s among genomic alterations in the data, from such observations. This hurdle is not unsurmountable,
137 if we constrain the scope to only those alterations that are persistent across tumor evolution in all
138 sub-clonal populations, since it yields a consistent model of a temporal ordering of mutations.
130 Therefore, epigenetic and trascriptomic states, such as hyper and hypo-methylations or over and
10 under expression, could only be used, provided that they are persistent through tumor development
141 [29].

142 Historically, the linear model of colorectal tumor progression by Vogelstein is an instance of
13 an early solution to the cancer progression problem [30]. That approach was later generalized to
1aa  accommodate tree-models of branched evolution [31-34] and later, further generalized to the infer-
s ence of directed acyclic graph models, with several distinct strategies [35-38]. We contributed to
1es  this research program with the Cancer Progression Extraction with Single Edges (CAPRESE) and the
1z Cancer Progression Inference (CAPRI) algorithms, which are currently implemented in TRONCO, an
18 open source R package for Translational Oncology available in standard repositories [39-41]. Both
14 techniques rely on Suppes’ theory of probabilistic causation to define estimators of selective advan-
150 tage [42], are robust to the presence of noise in the data and perform well even with limited sample
11 sizes. The former algorithm exploits shrinkage-like statistics to extract a tree model of progression,
152 the latter combines bootstrap and maximum likelihood estimation with regularization to extract
153 general directed acyclic graphs that capture branched, independent and confluent evolution. Both
1sa  algorithms represent the current state-of-the-art approach to this problem, as they outperform
155 others in speed, scale and predictive accuracy.

1se Clonal architecture in individual patients. A closely related problem addresses the detection
157 of clonal signatures and their prevalence in individual tumors, a problem complicated by intra-tumor
1ss heterogeneity.

150 Even though this phylogenetic version of the progression inference problem naturally relies on
1e0 data produced from single-cell sequencing assays [43,44], the majority of approaches still make use
161 of bulk sequencing data, usually from multiple biopsies of the same tumors [24,45]. Indeed, several
12 approaches try to extract the clonal signature of single tumors from allelic imbalance proportions,
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13 a problem made difficult as sequenced samples usually contain a large number of cells belonging to
1« a collection of sub-clones resulting from the complex evolutionary history of the tumor [46-55].

165 We keep the current work focused on the inference of progression models at the ensemble level,
16 and plan to return to this variant to the problem in another publication.

w 2 The PicNic pipeline

1es  We report on the design, development and evaluation of the Pipeline for Cancer Inference (PicNic)
1e0  to extract ensemble-level cancer progression models from cross-sectional data (Figure 1). PicNic
170 i versatile, modular and customizable; it exploits state-of-the-art data processing and machine
izn learning tools to:

172 1. identify tumor subtypes and then in each subtype;

173 2. select (epi)genomic events relevant to the progression;

178 3. identify groups of events that are likely to be observed as mutually exclusive;

175 4. infer progression models from groups and related data, and annotate them with associated
176 statistical confidence.

17z All these steps are necessary to minimize the confounding effects of inter-tumor heterogeneity, which
s are likely to lead to wrong results when data is not appropriately pre-processed?.

170 In each stage of PicNic different techniques can be employed, alternatively or jointly, according
10 to specific research goals, input data, and cancer type. Prior knowledge can be easily accommo-
11 dated into our pipeline, as well as the computational tools discussed in the next subsections and
12 summarized in Figure 2. The rationale is similar in spirit to workflows implemented by consortia
1e3 such as TCGA to analyze huge populations of cancer samples [56,57]. One of the main novelties
1sa  Of our approach, is the exploitation of groups of exclusive alterations as a proxy to detect fitness-
185 equivalent trajectories of cancer progression. This strategy is only feasible by the hypothesis-testing
1ss  features of the recently developed CAPRI algorithm, an algorithm uniquely addressing this crucial
1s7  aspect of the ensemble-level progression inference problem [40].

188 In the Results section, we study in details a specific use-case for the pipeline, processing colorectal
1so cancer data from TCGA, where it is able to re-discover much of the existing body of knowledge
100 about colorectal cancer progression. Based on the output of this pipeline, we also propose novel
101 experimentally-verifiable hypotheses.

w2 2.1 Reducing inter-tumor heterogeneity by cohort subtyping

103 In general, for each of n tumors (patients) we assume relevant (epi)genetic data to be available. We
10« do not put constraints on data gathering and selection, leaving the user to decide the appropriate
15 “resolution” of the input data. For instance, one might decide whether somatic mutations should
106 be classified by type or by location, or aggregated. Or, one might decide to lift focal CNAs to

4The genuine selectivity relationship sought to be inferred are subject to the vagaries of Simpson’s paradox; it
can change, or worst reverse, when we try to infer them from data not suitably pre-processed. This effect (due to
such paradox) manifests as data are sampled from a highly heterogenous mixture of populations of cells [40]. PiCnlc
uses various mechanisms to avoid these pitfalls. In this context, it should be pointed out that input bulk sequencing
data suffers also from intra-tumor heterogeneity issues, which are unfortunately intrinsic to the technology.
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107 the lower resolution of cytobands or full arms (e.g., in a kidney cancer cohort where very long
108 CNAs are more common than focal events [58]). These choices depend on data and on the overall
100 understanding of such alterations and their functional effects for the cancer under study, and no
200 single all-encompassing rationale may be provided.

201 With these data at hand, we might wish to identify cancer subtypes in the heterogeneous mizture
202 of input samples. In some cases the classification can benefit from clinical biomarkers, such as
203 evidences of certain cell types [59], but in most cases we will have to rely on multiple clustering
20 techniques at once, see, e.g., [56,57]. Many common approaches cluster expression profiles [60], often
205 relying on non-negative matrix factorization techniques [61] or earlier approaches such as k-means,
20s Gaussians mixtures or hierarchical/spectral clustering - see the review in [62]. For glioblastoma
20 and breast cancer, for instance, mRNA expression subtypes provides good correlation with clinical
208 phenotypes [63—-65]. However, this is not always the case as, e.g., in colorectal cancer such clusters
200 mismatch with survival and chemotherapy response [63|. Clustering of full exome mutation profiles
210 or smaller panels of genes might be an alternative as it was shown for ovarian, uterine and lung
211 cancers [66,67).

212 Using pipelines such as PicNic, we expect that the resulting subtypes will be routinely in-
213 vestigated, eventually leading to distinct progression models, which shall be characteristic of the
212 population-level trends of cancer initiation and progression.

a5 2.2 Selection of driver events

216 In subtypes detection, it becomes easier to find similarities across input samples when more al-
217 terations are available, as features selection gains precision. In progression inference, instead, one
218 wishes to focus on m < n driver alterations, which ensure also an appropriate statistical ratio
210 between sample size (n, here the subtype size) and problem dimension (m).

220 Multiple tools filter out driver from passenger mutations. MutSigCV identifies drivers mutated
221 more frequently than background mutation rate [68]. OncodriveFM avoids such estimation but
222 looks for functional mutations [69]. OncodriveCLUST scans mutations clustering in small regions
223 of the protein sequence [70]. MuSiC uses multiple types of clinical data to establish correlations
224 among mutation sites, genes and pathways [71]. Some other tools search for driver CNAs that affect
225 protein expression [72]. All these approaches use different statistical measures to estimate signs of
226 positive selection, and we suggest using them in an orchestrated way, as done by platforms such as
227 Intogen [73]

228 We anticipate that such tools will run independently on each subtype, as driver genes will likely
220 differ across them, mimicking the different molecular properties of each group of samples; also, lists
230 of genes produced by these tools might be augmented with prior knowledge about tumor suppressors
231 O ONcogenes.

22 2.3 Fitness equivalence of exclusive alterations

233 When working at the ensemble-level, identification of “groups of mutually exclusive” alterations is
234 crucial to derive a correct inference. This step of PicNic is another attempt to resolve part of the
235 inter-tumor heterogeneity, as such alterations could lead to the same phenotype (i.e., hence resulting
236 “equivalent” in terms of progression), despite being genotypically “alternative”, i.e., exclusive, across
237 the input cohort. This information shall be used to detect alternative routes to cancer progression
238 which capture the specificities of individual patients.
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230 A plethora of recent tools can be used to detect groups of fitness equivalent alterations, according
220 to the data available for each subtype; greedy approaches [74, 75| or their optimizations, such as
221 MEMO, which constrain search-space with network priors [76]. This strategy is further improved
222 in MUTEX, which scans mutations and focal CNAs for genes with a common downstream effect
2a3 in a curated signalling network, and selects only those genes that significantly contributes to the
2as  exclusivity pattern [77]. Other tools such as Dendrix, MDPFinder, Multi-Dendrix, CoMEt, MEGSA
25 or ME, employ advanced statistics or generative approaches without priors [78-83].

246 In such groups, we distinguish between hard and soft forms of exclusivity, the former assuming
2a7  strict exclusivity among alterations, with random errors accounting for possible overlaps (i.e., the
24 majority of samples do not share alterations from such groups), the latter admitting co-occurrences
2e0  (i.e., some samples might have common alterations, within a group) [77].

250 CAPRI is currently the only algorithm which incorporates this type of information, in inferring
251 a model. Each of these groups are in fact associated with a “testable hypothesis” written in the well-
22 known language of propositional Boolean formulas®. Consider the following example: we might be
253 informed that APC and CTNNB1 mutations show a trend of soft-exclusivity in our cohort —i.e., some
2sa  samples harbor both mutations, but the majority just one of the two mutated genes. Since such
255 mutations lead to S-catenin deregulation (the phenotype), we might wonder whether such state of
256 affairs could be responsible for progression initiation in the tumors under study. An affermative
257 response would equate, in terms of progression, the two mutations. To test this hypothesis, one may
2ss  spell out formula APC V ¢TNNB1 to CAPRI, which means that we are suggesting to the inference
250 engine that, besides the possible evolutionary trajectories that might be inferred by looking at the
260 two mutations as independent, trajectories involving such a “composite” event, shall be considered
261 as well. It is then up to CAPRI to decide which, of all such trajectories, is significant, in a statistical
262 SENSE.

263 In general, formulas allow users to test general hypotheses about complex model structures
26a involving multiple genes and alterations. These are useful in many cases: for instance, where
265 we are processing samples which harbour homozygous losses or inactivating mutations in certain
266 genes (i.e., equally disruptive genomic events), or when we know in advance that certain genes are
267 controlling the same pathway, and we might speculate that a single hit in one of those decreases the
268 selection pressure on the others. We note that, with no hypothesis, a model with such alternative
260 trajectories cannot be analyzed, due to various computational limitations inherent to the inferential
270 algorithms (see [40]).

271 From a practical point of view, CAPRI’s formulas/hypotheses-testing features “help” the inference
272 process, but do not “force” it to select a specific model, i.e., the inference is not biased. In this
273 sense, the trajectories inferred by examining these composite model structures (i.e., the formulas)
274 are not given any statistical advantage for inclusion in the final model. However, in spite of a natural
275 temptation to generate as many hypotheses as possible, it is prudent to always limit the number
276 of hypotheses according to the number of samples and alterations. Note that this approach can
277 also be extended to accommodate, for instance, co-occurrent alterations in significantly mutated
a7s  subnetworks [84, 85].

5There, logical connectives such as @ (the logical “xor”) act as a proxy for hard-exclusivity, and V (the logical
“disjunction”) for soft one. Besides from exclusivity groups, other connectives such as logical conjunction can be
used.
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2.4 Progression inference and confidence estimation

280  We use CAPRI to reconstruct cancer progression models of each identified molecular subtype, pro-
21 vided that there exist a reasonable list of driver events and the groups of fitness-equivalent exclusive
2s2  alterations. Since currently CAPRI represents the state of the art, and supports complex formulas
2es for groups of alterations detected in the earlier PicNic step, it was well-suited for the task.

284 CAPRI’s input is a binary n X (m + k) matrix M with n samples (a subtype size), m driver
2es  alteration events (0/1 Bernoulli random variables) and k testable formulas. Each sample in M is
286 described by a binary sequence: the 1’s denote the presence of alterations. CAPRI first performs a
27 computationally fast scan of M to identify a set S of plausible selective advantage relations among
288 the driver alterations and the formulas; then, it reduces S to the most relevant ones, S c S Each
28 relation is represented as an edge connecting drivers/formulas in a Graphical Model — which shall be
200 termed Suppes-Bayes Causal Network. This network represents the joint probability distribution® of
201 Observing a set of driver alterations in a cancer genome, subject to constraints imposed by Suppes’
202 probabilistic causation formalism [42].

203 Set S is built by a statistical procedure. Among any pair of input drivers/formulas x and y,
20a  CAPRI postulates that x — y € S could be a selective advantage relation with “z selecting for y” if
205 it estimates that two conditions hold

206 1. “x is earlier than y”;
207 2. “z’s presence increases the probability of observing 3.

20s  Such claims, grounded in Suppes’ theory of probabilistic causation, are expressed as inequalities
200 over marginal and conditional distributions of x and y. These are assessed via a standard Mann-
300 Withney U test after the distributions are estimated from a reasonable number (e.g., 100) of non-
301 parametric bootstrap resamples of M (see Supplementary Material). CAPRI’s increased performance
302 over existing methods can be motivated by the reduction of the state space within which models
303  are searched, via S.

308 Optimization of & is central to our tolerance to false positives and negatives in S. We would like
305 to select only the minimum number of relations which are true and statistically supported, and build
s0s our model from those. CAPRI’s implementation in TRONCO [41] selects a subset by optimizing a
307 score function which assigns to a model a real number equal to its log-likelihood (probability of
308 generating data for the model) minus a penalty term for model complexity — a regularization term
300 increasing with S’s size, and hence penalizing overly complex models. It is a standard approach to
a0 avoid overfitting, and usually relies on the Akaike or the Bayesian Information Criterion (AIC or BIC)
su1 as regularizers. Both scores are approximately correct; AIC is more prone to overfitting but likely
;12 to provide also good predictions from data and is better when false negatives are more misleading
;13 than positive ones. BIC is more prone to underfitting errors, thus more parsimonious and better

6Technically, for a set of m alterations modeled by variables X1, ...,Xm, such a network is a Graphical Model
representing the factorization of the joint distribution — P(x1,...,%m) — of observing any of the alterations in a
genome (i.e., x; = 1). This factorization is made compact as the model encodes the statistical dependencies in its
structure via

m
P(X1y-..yXm) = H P(x; | m)
i=1

where m; = {x; | x; = x; € S‘} are the “parents” of the i-th node. These are those from which the presence of the
i-th alteration is predicted. In our approach these edges are the pictorial representation of the selective advantage
relations where the alterations in m; select for x;.
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s1a  in opposite direction. As often done, we suggest approaches that to combine but distinguish which
s1s  relations are selected by BIC versus AlIC. Details on the algorithm are provided as see Supplementary
316 Material.

;17 Statistical confidence of a model. In-vitro and in-vivo experiments provide the most convinc-
s1e  ing validation for the newly suggested selective advantage relations and hypotheses, yet this is out
310 of reach in some cases.

320 Nonetheless, statistical validation approaches can be used almost universally to assess the con-
s21 fidence of edges, parent sets and whole models, either via hypothesis-testing or bootstrap and cross-
322 validation scores for Graphical Models. We briefly discuss approaches that are implemented in
23 TRONCO, and refer to the Supplementary Materials for additional details.

324 First, CAPRI builds § by computing two p-values per edge, for the confidence in condition (1)
s2s  and (2). In addition, for each edge x — y, it computes a third p-value via hypergeometric testing
326 against the hypothesis that the co-occurrence of x and y is due to chance. These p-values measure
327 confidence in the direction of each edge and the amount of statistical dependence among = and y.
328 Second, for each model inferred with CAPRI we can estimate (a posteriori) how frequently our
320 edges would be retrieved if we resample from our data (non-parametric bootstrap), or from the
;.0 model itself, assuming its correctness (parametric bootstrap) [86]. Also, we can measure the bias
331 in CAPRI’s construction of & due to the random procedure which estimates the distributions in
sz condition (1) and (2) (statistical bootstrap).

333 Third, scores can be computed to quantify the consistency for the model against bias in the
33« data and models. For instance, non-exhaustive k-fold cross-validation can be used to compute the
335 entropy loss for the whole model, and the prediction and posterior classification errors for each edge
s or parent set [87).

s 3  Results

s 3.1 Evolution in a population of MSI/MSS colorectal tumors.

s3It is common knowledge that colorectal cancer (CRC) is a heterogeneous disease comprising different
ss0  molecular entities. Indeed, it is currently accepted that colon tumors can be classified according
31 to their global genomic status into two main types: microsatellite unstable tumors (MSI), fur-
a2 ther classified as high or low, and microsatellite stable (MSS) tumors (also known as tumors with
sa3  chromosomal instability). This taxonomy plays a significant role in determining pathologic, clinical
sas  and biological characteristics of CRC tumors [88]. Regarding molecular progression, it is also well
sas  established that each subtype arises from a distinctive molecular mechanism. While MSS tumors
sas  generally follow the classical adenoma-to-carcinoma progression described in the seminal work by
sz Vogelstein and Fearon [89], MSI tumors result from the inactivation of DNA mismatch repair genes
sas  like MLH-1 [90]

340 With the aid of the TRONCO package, we instantiated PicNic to process colorectal tumors
sso  freely available through TCGA project COADREAD [56] (see Supplementary Figure S1), and in-
31 ferred models for the MSS and MSI-HIGH tumor subtypes (shortly denoted MSI) annotated by the
32 consortium. In doing so, we used a combination of background knowledge produced by TCGA and
53 new computational predictions; to a different degree, some knowledge comes from manual curation
ssa  Of data and other from tools mentioned in PicNic’s description (see Figure 2). Data and exclusiv-
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sss ity groups for MSI tumors are shown in Figure 3, the analogous for MSS tumors is provided as
56 Supplementary Material.

357 For the models inferred, which are shown in Figures 4 and 5, we evaluated various forms of
sss  statistical confidence measured as p-values, bootstrap scores (in what follows, npb denotes non-
3o parametric bootstrap and the closer to 100 the better), and cross-validation statistics reported
se0 in the Supplementary Material. Many of the postulated selective advantage relations (i.e., model
se1  edges) have very strong statistical support for COADREAD samples, although events with similar
sz marginal frequency may lead to ambiguous imputed temporal ordering (i.e., the edge direction). In
se3  general, we observed that overall the estimates are slightly better in the MSS cohort (entropy loss
sea < 1% versus 3.8%), which is expected given the difference in sample size of the two datasets (152
ses  versus 27 samples), see Material and Methods for details.

ses Interpretation of the models. Our models capture the well-known features distinguishing MSS
se7 and MSI tumors: for the former APC, KRAS and TP53 mutations as primary events together with
ses chromosomal aberrations, for the latter BRAF mutations and lack of chromosomal alterations. Of all
se0 33 driver genes, 15 are common to both models - e.g., APC, BRAF, KRAS, NRAS, TP53 and FAM123B
s7o  among others (mapped to pathways like WNT, MAPK, apoptosis or activation of T-cell lymphocites),
snn although in different relationships (position in the model), whereas new (previously un-implicated)
a7z genes stood out from our analysis and deserve further research.

a3 MSS (Microsatellite Stable). In agreement with the known literature, in addition to KRAS, TP53

374 and APC as primary events, we identify PTEN as a late event in the carcinogenesis, as well as
375 NRAS and KRAS converging in IGF2 amplification, the former being “selected by” TP53 muta-
376 tions (npb 49%), the latter “selecting for” PIK3CA mutations (npb 81%). The leftmost portion
377 of the model links many WNT genes, in agreement with the observation that multiple con-
378 current lesions affecting such pathway confer selective advantage. In this respect, our model
370 predicts multiple routes for the selection of alterations in SOX9 gene, a transcription factor
380 known to be active in colon mucosa [91]. Its mutations are directly selected by APC/CTNNB1
381 alterations (though with low npb score), by ARID1A (npb 34%) or by FBXW7 mutations (npb
382 49%), an early mutated gene that both directly, and in a redundant way via CTNNB1, relates
383 to s0X9. The sox family of transcription factors have emerged as modulators of canoni-
384 cal WNT/[3-catenin signaling in many disease contexts [92]. Also interestingly, FBXW7 has
385 been previously reported to be involved in the malignant transformation from adenoma to
386 carcinoma [93]. The rightmost part of the model involves genes from various pathways, and
387 outlines the relation between KRAS and the PI3K pathway. We indeed find selection of PIK3CA
388 mutations by KRAS ones, as well as selection of the whole MEMO module (npb 64%), which is
389 respousible for the activation of the PI3K pathway [56]. SMAD4 proteins relate either to KRAS
300 (npb 34%), and FAM123B (through ATM) and TCF7L2 converge in DKK2 or DKK4 (npb 81, 17
301 and 34%)

2 MSI-HIGH (Microsatellite Unstable). In agreement with the current literature, BRAF is the most
303 commonly mutated gene in MSI tumors [94]. CAPRI predicted convergent evolution of tu-
308 mors harbouring FBXW7 or APC mutations towards deletions/mutations of NRAS gene (npb
305 21, 28 and 54%), as well as selection of SMAD2 or SMAD4 mutations by FAM123B mutations
396 (npb 23 and 46%), for these tumors. Relevant to all MSI tumors seems again the role of
307 the PI3K pathway. Indeed, a relation among APC and PIK3CA mutations was inferred (npb
308 66%), consistent with recent experimental evidences pointing at a synergistic role of these
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300 mutations, which co-occurr in the majority of human colorectal cancers [95]. Similarly, we
a00 find consistently a selection trend among ApC and the whole MEMO module (npb 48%). In-
a01 terestingly, both mutations in APC and ERBB3 select for KRAS mutations (npb 51 and 27%),
402 which might point to interesting therapeutic implications. In contrast, mutations in BRAF
403 mostly select for mutations in ACVR1B (npb 36%), a receptor that once activated phospho-
404 rylates SMAD proteins. It forms receptor complex with ACVR2A, a gene mutated in these
a05 tumors that selects for TCF7L2 mutations (npb 34%). Tumors harbouring TP53 mutations
a06 are those selected by mutations in AXIN2 (npb 32%), a gene implicated in WNT signalling
407 pathway, and related to unstable gastric cancer development [96]. Inactivating mutations in
408 this gene are important, as it provides serrated adenomas with a mutator phenotype in the
409 MSI tumorigenic pathway [97]. Thus, our results reinforce its putative role as driver gene in
a10 these tumors.

a1 By comparing these models we can find similarity in the prediction of a potential new early event

a2 for CRC formation, FBXW7, as other authors have recently described [93]. This tumor suppressor
a3 is frequently inactivated in human cancers, yet the molecular mechanism by which it exerts its
as  anti-tumor activity remains unexplained [98], and our models provide a new hypothesis in this
a5 respect.

as 4 Discussion

a1z This paper represents our continued exploration of the nature of somatic evolution in cancer, and
as  its translational exploitation through models of cancer progression, models of drug resistance (and
ae  efficacy), left- and right-censoring, sample stratification, and therapy design. Thus this paper em-
a20 phasizes the engineering and dissemination of production-quality computational tools as well as
a1 validation of its applicability via use-cases carried out in collaboration with translational collabo-
a2 rators: e.g., colorectal cancer, analyzed jointly with epidemiologists currently studying the disease
a2 actively. As anticipated, we reasserted that the proposed model of somatic evolution in cancer not
222 only supports the heterogeneity seen in tumor population, but also suggests a selectivity /causality
a2s  relation that can be used in analyzing (epi)genomic data and exploited in therapy design — which we
a6 introduced in our earlier works [39,40]. In this paper, we have introduced an open-source pipeline,
a2z PicNic, which minimizes the confounding effects arising from inter-tumor heterogeneity, and we have
a2 shown that PicNic can be effective in extracting ensemble-level evolutionary trajectories of cancer
420 progression.

430 When applied to a highly-heterogeneous cancer such as colorectal, PicNic was able to infer
a1 the role of many known events in colorectal cancer progression (e.g., APC, KRAS or TP53 in MSS
sz tumors, and BRAF in MSI ones), confirming the validity of our approach”. Interestingly, new players
a3z in CRC progression stand out from this analysis such as FBXW7 or AXIN2, which deserve further
a2 investigation. In colon carcinogenesis, although each model identifies characteristic early mutations
a5 suggesting different initiation events, both models appear to converge in common pathways and
436 functions such as WNT or MAPK.

7As a further investigation for CRC, we leave as future work to check whether the inferred progression are also
representative of other subtyping strategies for colorectal cancer, with particular reference to recent works which
show marked interconnectivity between different independent classification systems coalescing into four consensus
molecular subtypes [99].
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437 However, both models have some clear distinctive features. = Specific events in MSS include
a3 mutations in intracellular genes like CTNNB1 or in PTEN, a well-known tumor suppressor gene. On
430 the contrary, specific mutations in MSI tumors appear in membrane receptors such as ACVR1B,
a0 ACVR2A, ERBB3, LRP5, TGFBR1 and TGFBR2, as well as in secreted proteins like 1GF2, possibly
a1 suggesting that such tumors need to disturb cell-cell and/or cell-microenvironment communication
a2 to grow. At the pathway level, genes exclusively appearing in the MSI progression model accumulate
sz in specific pathways such as cytokine-cytokine receptor, endocytosis and TGF- signaling pathway.
a2 On the other hand, genes in MSS progression model are implicated in P53, MTOR, sodium transport
aas  OT inositol phosphate metabolism.

a6 Our study also highlighted the translational relevance of the models that we can produce with
aa7  PicNic (see Supplementary Figure S12). The evolutionary trajectories depicted by our models can,
aas  for instance, suggest previously-uncharacterized phenotypes, help in finding biomarker molecules
a0 predicting cancer progression and therapy response, explain drug resistant phenotypes and predict
a0 metastatic outcomes. The logical structure of the formulas describing alterations with equivalent
as1 fitness (i.e., the exclusivity group) can also point to novel targets of therapeutic interventions.
sz In fact, exclusivity groups that are found to have a role in the progression can be screened for
a3 synthetic lethality among such genes — thus explaining why we do not observe phenotypes where
asa  such alterations co-occur. In this sense, our models describe also such clonal signatures which,
a5 though theoretically possible, are not selected. We call such conspicuously absent phenotypes anti-
ase  hallmarks [100].

457 Our models have other applications to both computational and cancer research. Our models,
sss  as encoded by Suppes-Bayes Causal Networks could be used as informative generative models for
a0 the genomic profiles for the cancer patients. In fact, as known in machine learning, such generative
a0 models are extremely useful in creating better representation of data in terms of, e.g., discriminative
a1 kernels, such as Fisher [101]. In practice, this change of representations would allow framing common
a2 classification problems in the domain of our generative structures, i.e., the models, rather than the
w3 data. As a consequence, it is possible to create a new class of more robust classification and
sa prediction systems.

465 One may think of these representations as those bringing us closer to phenotypic (and causal)
sss representation of the patient’s tumor, replacing its genotypic (and mutational) representation. We
a7 suspect that such representations will improve the accuracy of measurement of the biological clocks,
a8 dysregulated in cancer and critically needed to be measured in order to predict survival time, time
a0 tO metastasis, time to evolution of drug resistance, etc. We believe that these “phenotypic clocks”
470 can be used immediately to direct the therapeutic intervention.

an1 Clearly, applicability and reliability of techniques such as PicNic is very much dependent on
a2 the background of data available. At the time of this writing, the quality, quantity and reliability
a3 of (epi)genomic data available, e.g., in public databases, is related to the ever increasing com-
472 putational and technological improvements characterizing the wide area of cancer genomics. Of
a7s  similar importance is the availability of wet-lab technologies for models validation. Our recent work
a7 on SubOptical Mapping technology, for instance, points to the ability to cheaply and accurately
a7z characterize translocation, indels and epigenomic modifications at the single molecule and single
ars cell level [102,103]. This technology also provides the ability to directly validate (or refute) the
4o hypotheses generated by PicNic via gene-correction and single cell perturbation approaches.

480 To conclude, the precision of any statistical inference technique, including PicNic, is influenced
a1 by the quality, availability and idiosyncrasies of the input data — the goodness of the outcomes
sz improving along with the expected advancement in the field. Nevertheless, the strength of the
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a3 proposed approach lies in the efficacy in managing possibly noisy,/ biased or insufficient data, and
«sa in proposing refutable hypotheses for experimental validation.

« o Materials and methods

s  Processing COADREAD samples with PiCnIc. We instantiated PicNic to process clinically
ss7  annotated high MSI-HIGH and MSS colorectal tumors collected from The Cancer Genome Atlas
ass  project “Human Colon and Rectal Cancer” (COADREAD) [56] — see Supplementary Figure S1.
aso  Details on the implementation and the source code to replicate this study are available as Supple-
wo mentary Material. COADREAD has enough samples, especially for MSS tumors, to implement a
a1 consistent and significant statistical validation of our findings — see Supplementary Table S1.

402 In brief, we split subtypes by the microsatellite status of each tumor as annotated by the con-
03 sortium (so, step I of PicNic is done by exploiting background knowledge rather than computational
a0s  predictors). It should be expected that if this step is skipped or this classification is incorrect, the
aes  resulting models would noticeably differ. Once split into groups, the input COADREAD data is
a06 processed to maintain only samples for which both high-quality curated mutation and CNA data
a7 are available; for CNAs we use focal high-level amplifications and homozygous deletions.

a08 Then, for each sample we select only alterations (mutations/CNAs) from a list of 33 driver genes
a0 manually annotated to 5 pathways in [56] - wNT, RAF, TGF-8, P13K and P53 (Supplementary Figures
soo 52 and S3). This list of drivers, step II of PicNic, is produced by TCGA, as a result of manual
so1 curation and running MutSigCV.

502 In the next module of the pipeline, we fetch groups of exclusive alterations. We scanned these
so3  groups by using the MUTEX tool (Supplementary Table S2), and merged its results with the
soa  group that TCGA detected by using the MEMO tool, which involves mainly genes from the PI3K
sos  pathway. Knowledge on the potential exclusivity among genes in the wNT (aPc,cTNNB1) and RAF
sos  (KRAS,NRAS,BRAF) pathways was exploited as well. Groups were then used to create CAPRI’s
soz formulas; we also included hypotheses for genes which harbour mutations and homozygous deletions
sos  across different samples, see Supplementary Table S3. Data and exclusivity groups for MSS tumors
soo are shown in Supplementary Figure S4 and S5.

510 CAPRI was run, as the last step of PicNic, on each subtype, by selecting recurrent alterations
s11 from the pool of 33 pathway genes and using both AIC/BIC regularizer. Timings to run the relevant
s12 steps of the pipeline are reported in the Supplementary Material. In the models of Figures 4 and
s13 Figure 5 each edge mirrors selective advantage among the upstream and downstream nodes, as
s1a  estimated by CAPRI; Mann-Withney U test is carried out with statistical significance 0.05, after
s1s 100 non-parametric bootstrap iterations.

516 The significance of the reconstructed models and the input data is assessed by computing all the
s17 statistics/tests discussed in the Main text (temporal priority, probability raising and hypergeometric
s18 testing p-values, bootstrap and cross-validation scores). Motivation and background on each of
510 these measures is available in the Supplementary Materials. A table with their values for edges
s20  with highest non-parametric bootstrap scores is in Supplementary Figure S8.

521 For the MSS cohort all the p-values are strongly significant (p<0.01) except for the temporal
s22  priority of the edges connecting mutations in FaAM1238 and arm, and ErRBB2 alterations (mutations
s2s  and amplifications), which leads us to conclude that, even if these pairs of genes seem to undergo
s24  selective advantage, the temporal ordering of their occurrence is ambiguous and failed to be imputed
s2s  correctly from the datasets, analyzed here. The same situation occurs in MSI-HIGH tumors, for the
s2¢ relation between kras and ErRBB3. Non-parametric and statistical bootstrap estimations are used

13


https://doi.org/10.1101/027359

bioRxiv preprint doi: https://doi.org/10.1101/027359; this version posted May 16, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

527 to assess the strength of all the findings (Supplementary Figures S6 and S7). Moreover, any bias
s2s  in the data is finally evaluated by cross-validation (Supplementary Figures S8-S11) and common
s20  statistics such as entropy loss, posterior classification and prediction errors. In general, most of the
s30  selective advantage relations depicted by the inferred models present a strong statistical support,
s3n with the MSS cohort presenting the most reliable results.

532 Summary implementation for COADREAD (PicNic steps, Figure 2): (1) TCGA clinical classi-
s33 fication, (2) MutSigCV and TCGA manual curation, (3) MEMO, MUTEX and knowledge of wNT
s« and raF pathways and (4) CAPRL

533 Implement your own case study with PiCnlc/TRONCO. TRONCO started as a project
s3s  before PicNic, and is our effort at collecting, in a free R package, algorithms to infer progression
s37 models from genomic data. In its current version it offers the implementation of the CAPRI
s3s and CAPRESE algorithms, as well as a set of routines to pre-process genomic data. With the
s3o invention of PicNic, it started accommodating software routines to easily interface CAPRI and
sa20o CAPRESE to some of the tools that we mention in Figure 2. In particular, in its current 2.0
sa1  version it supports input/output for the Matlab Network Based Stratification tool (NBS) and
sa2  the Java MUTEX tool, as well as the possibility to fetch data available from the cBioPortal for
sz Cancer Genomics (http://cbioportal.orghttp://cbioportal.org), which provides a Web resource
saa  for exploring, visualizing, and analyzing multidimensional cancer genomics data.

545 We plan to extend TRONCO in the future to support other similar tools and become an integral
sas  part of daily laboratory routines, thus facilitating application of PiCnlc to additional use cases.
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Figure 1: A. Problem statement. (left) Inference of ensemble-level cancer progression models from
a cohort of n independent patients (cross-sectional). By examining a list of somatic mutations or
CNAs per patient (0/1 variables) we infer a probabilistic graphical model of the temporal ordering
of fixation and accumulation of such alterations in the input cohort. Sample size and tumor het-
erogeneity complicate the problem of extracting population-level trends, as this requires accounting
for patients’ specificities such as multiple starting events. (right) For an individual tumor, its clonal
phylogeny and prevalence is usually inferred from multiple biopsies or single-cell sequencing data.
Phylogeny-tree reconstruction from an underlying statistical model of reads coverage or depths es-
timates alterations’ prevalence in each clone, as well as ancestry relations. This problem is mostly
worsened by the high intra-tumor heterogeneity and sequencing issues. B. The PiCnlc pipeline for
ensemble-level inference includes several sequential steps to reduce tumor heterogeneity, before ap-
plying the CAPRI [40] algorithm. Available mutation, expression or methylation data are first used
to stratify patients into distinct tumor molecular subtypes, usually by exploiting clustering tools.
Then, subtype-specific alterations driving cancer initiation and progression are identified with sta-
tistical tools and on the basis of prior knowledge. Next is the identification of the fitness-equivalent
groups of mutually exclusive alterations across the input population, again done with computa-
tional tools or biological priors. Finally, CAPRI processes a set of relevant alterations within such
groups. Via bootstrap and hypothesis-testing, CAPRI extracts a set of “selective advantage rela-
tions” among them, which is eventually narrowed down via maximum likelihood estimation with
regularization (with various scores). The ensemble-level progression model is obtained by combining
such relations in a graph, and its confidence is assessed via various bootstrap and cross-validation
techniques.
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Figure 2: The PiCnlc pipeline. We do not provide a unique all-encompassing rationale to instantiate
PiCnlc as all steps refer to research area currently development, where the optimal approach is
often dependent on the type of data available and prior knowledge about the cancer under study.
References are provided for each tool that can be used to instantiate PiCnlc: NMF [61], k-Means,
Gaussian Mixtures, Hierarchical /Spectral Clustering [62], NBS [66], MutSigCV [68], OncodriveFM
[69], OncodriveCLUST [70], MuSiC [71] Oncodrive-CIS [72] Intogen [73], Ratio [74], RME [75],
MEMO [76], MUTEX [77], Dendrix [78], MDPFinder [79], Multi-Dendrix [80], CoMEt [81], MEGSA
[82], ME [83], CAPRI [40], CAPRESE [39], Oncotrees [31, 33|, Distance-based [32]|, Mixtures [34],
CBN [35,36], Resic [37] and BML [38].
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Figure 3: A. MSI-HIGH colorectal tumors from the TCGA COADREAD project [56], restricted
to 27 samples with both somatic mutations and high-resolution CNA data available and a selection
out of 33 driver genes annotated to WNT, RAS, PI3K, TGF- and P53 pathways. This dataset
is used to infer the model in Figure 5. B. Mutations and CNAs in MSI-HIGH tumors mapped
to pathways confirm heterogeneity even at the pathway-level. C. Groups of mutually exclusive
alterations were obtained from [56] - which run the MEMO [76] tool - and by MUTEX [77] tool. In
addition, previous knowledge about exclusivity among genes in the RAS pathway was exploited. D.
A Boolean formula input to CAPRI tests the hypothesis that alterations in the RAS genes KRAS,
NRAS and BRAF confer equivalent selective advantage. The formula accounts for hard exclusivity
of alterations in NRAS mutations and deletions, jointly with soft exclusivity with KRAS and NRAS
alterations.
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Figure 4: Selective advantage relations inferred by CAPRI constitute MSS progression; input
dataset in Supplementary Figure S3 and S4. Formulas written on groups of exclusive alterations,
e.g., SOX9 amplifications and mutations, are displayed in expanded form; their events are connected
by dashed lines with colors representing the type of exclusivity (red for hard, orange for soft), logical
connectives are squared when the formula is selected, and circular when the formula selects for a
downstream node. For this model of MSS tumors in COADREAD, we find strong statistical support
for many edges (p-values, bootstrap scores and cross-validation statistics shown as Supplementary
Material), as well as the overall model. This model captures both current knowledge about CRC
progression — e.g, selection of alterations in PI3K genes by the KRAS mutations (directed or via the
MEMO group, with BIC) — as well as novel interesting testable hypotheses — e.g., selection of SOX9
alterations by FBXW7 mutations (with BIC).
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Figure 5: A. Selective advantage relations inferred by CAPRI constitute MSI-HIGH progression;
input dataset in Figure 3. Formulas written on groups of exclusive alterations are expanded as
in Figure 4. For each relation, confidence is estimated as for MSS tumors and reported as Sup-
plementary Material. In general, this model is supported by weaker statistics than MSS tumors —
possibly because of this small sample size (n=27). Still, we can find interesting relations involving
APC mutations which select for PIK3CA ones (via BIC) as well as selection of the MEMO group
(ERBB2/PIK3CA mutations or IGF2 deletions) predicted by AIC. Similarly, we find a strong selection
trend among mutations in ERBB2 and KRAS, despite in this case the temporal precedence among
those mutations is not disentangled as the two events have the same marginal frequencies (26%). B.
Evolutionary trajectories of clonal expansion predicted from two selective advantage relations in the
model. ApC-mutated clones shall enjoy expansion, up to acquisition of further selective advantage
via mutations or homozygous deletions in NRAS. These cases should be representative of different
individuals in the population, and the ensemble-level interpretation should be that “APC mutations
select for NRAS alterations, in hard exclusivity” as no sample harbour both alterations. A similar
argument can show that the clones of patients harbouring distinct alterations in ACVRIB — and
different upstream events — will enjoy further selective advantage from mutation in the TGFBR2
gene.

25


https://doi.org/10.1101/027359

