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Abstract37

The genomic evolution inherent to cancer relates directly to a renewed focus on the vo-38

luminous next generation sequencing (NGS) data, and machine learning for the inference of39

explanatory models of how the (epi)genomic events are choreographed in cancer initiation and40

development. However, despite the increasing availability of multiple additional -omics data,41

this quest has been frustrated by various theoretical and technical hurdles, mostly stemming42

from the dramatic heterogeneity of the disease. In this paper, we build on our recent works43

on “selective advantage” relation among driver mutations in cancer progression and investi-44

gate its applicability to the modeling problem at the population level. Here, we introduce45

PiCnIc (Pipeline for Cancer Inference), a versatile, modular and customizable pipeline to ex-46

tract ensemble-level progression models from cross-sectional sequenced cancer genomes. The47

pipeline has many translational implications as it combines state-of-the-art techniques for sam-48

ple stratification, driver selection, identification of fitness-equivalent exclusive alterations and49

progression model inference. We demonstrate PiCnIc’s ability to reproduce much of the current50

knowledge on colorectal cancer progression, as well as to suggest novel experimentally verifiable51

hypotheses.52

Keywords: Cancer evolution; Selective advantage; Bayesian Structural Inference53

54

Statement of significance: A causality based new machine learning Pipeline for Cancer Infer-55

ence (PicNic) is introduced to infer the underlying somatic evolution of ensembles of tumors from56

next generation sequencing data. PicNic combines techniques for sample stratification, driver selec-57

tion and identification of fitness-equivalent exclusive alterations to exploit a novel algorithm based58

on Suppes’ probabilistic causation. The accuracy and translational significance of the results are59

studied in details, with an application to colorectal cancer. PicNic pipeline has been made publicly60

accessible for reproducibility, interoperability and for future enhancements.61

1 Introduction62

Since the late seventies evolutionary dynamics, with its interplay between variation and selection,63

has progressively provided the widely-accepted paradigm for the interpretation of cancer emergence64

and development [1–3]. Random alterations of an organism’s (epi)genome can sometimes confer65

a functional selective advantage1 to certain cells, in terms of adaptability and ability to survive66

and proliferate. Since the consequent clonal expansions are naturally constrained by the avail-67

ability of resources (metabolites, oxygen, etc.), further mutations in the emerging heterogeneous68

tumor populations are necessary to provide additional fitness of different kinds that allow survival69

and proliferation in the unstable micro environment. Such further advantageous mutations will70

eventually allow some of their sub-clones to outgrow the competing cells, thus enhancing tumor’s71

heterogeneity as well as its ability to overcome future limitations imposed by the rapidly exhaust-72

ing resources. Competition, predation, parasitism and cooperation have been in fact theorized as73

co-present among cancer clones [4].74

In the well-known vision of Hanahan and Weinberg [5, 6], the phenotypic stages that charac-75

terize this multistep evolutionary process are called hallmarks. These can be acquired by cancer76

cells in many possible alternative ways, as a result of a complex biological interplay at several77

spatio-temporal scales that is still only partially deciphered [7]. In this framework, we distinguish78

1For this and other technical terms commonly used in the statistics and cancer biology communities we provide
a Glossary in the Supplementary Material.
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“alterations” driving the hallmark acquisition process (i.e., drivers) by activating oncogenes or in-79

activating tumor suppressor genes, from those that are transferred to sub-clones without increasing80

their fitness (i.e., passengers) [8]. Driver identification is a modern challenge of cancer biology, as81

distinct cancer types exhibit very different combinations of drivers, some cancers display mutations82

in hundreds of genes [9], and the majority of drivers is mutated at low frequencies (“long tail”83

distribution), hindering their detection only from the statistics of the recurrence at the population-84

level [10].85

Cancer clones harbour distinct types of alterations. The somatic (or genetic) ones involve86

either few nucleotides or larger chromosomal regions. They are usually catalogued as mutations87

- i.e., single nucleotide or structural variants at multiple scales (insertions, deletions, inversions,88

translocations) – of which only some are detectable as Copy Number Alterations (CNAs), most89

prevalent in many tumor types [11]. Also epigenetic alterations, such as DNA methylation and90

chromatin reorganization, play a key role in the process [12]. The overall picture is confounded91

by factors such as genetic instability [13], tumor-microenvironment interplay [14, 15], and by the92

influence of spatial organization and tissue specificity on tumor development [16]2.93

Significantly, in many cases, distinct driver alterations can damage in a similar way the same94

functional pathway, leading to the acquisition of new hallmarks [17–21]. Such alterations individu-95

ally provide an equivalent fitness gain to cancer cells, as any additional alteration hitting the same96

pathway would provide no further selective advantage. This dynamic results in groups of driver97

alterations that form mutually exclusive patterns across tumor samples from different patients (i.e.,98

the sets of alterations that are involved in the same pathways tend not to occur mutated together).99

This phenomenon has significant translational consequences.100

An immediate challenge posed by this state of affairs is the dramatic heterogeneity of cancer, both101

at the inter-tumor and at the intra-tumor levels [22]. The former manifests as different patients with102

the same cancer type can display few common alterations. This obsersvation led to the development103

of techniques to stratify tumors into subtypes with different genomic signatures, prognoses and104

response to therapy [23]. The latter form of heterogeneity refers to the observed genotypic and105

phenotypic variability among the cancer cells within a single neoplastic lesion, characterized by the106

coexistence of more than one cancer clones with distinct evolutionary histories [24].107

Cancer heterogeneity poses a serious problem from the diagnostic and therapeutic perspective108

as, for instance, it is now acknowledged that a single biopsy might not be representative of other109

parts of the tumor, hindering the problem of devising effective treatment strategies [4]. Therefore,110

presently the quest for an extensive etiology of cancer heterogeneity and for the identification of111

cancer evolutionary trajectories is central to cancer research, which attempts to exploit the massive112

amount of sequencing data available through public projects such as The Cancer Genome Atlas113

(TCGA) [25].114

Such projects involve an increasing number of cross-sectional (epi)genomic profiles collected via115

single biopsies of patients with various cancer types, which might be used to extract trends of cancer116

evolution across a population of samples3. Higher resolution data such as multiple samples collected117

from the same tumor [24], as well as single-cell sequencing data [26], might be complementarily118

used to face the same problem within a specific patient. However, the lack of public data coupled119

2We mention that much attention has been recently casted on newly discovered cancer genes affecting global
processes that are apparently not directly related to cancer development, such as cell signaling, chromatin and
epigenomic regulation, RNA splicing, protein homeostasis, metabolism and lineage maturation [10].

3At the time of this writing, in TCGA, sample sizes per cancer type are in the order of a few hundreds. Such
numbers are expected to increase in the near future, with a clear benefit for all the statistical approaches to analyze
cancer data which currently lack a proper background of data.
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to the problems of accuracy and reliability, currently prevents a straightforward application [27].120

These different perspectives lead to the different mathematical formulations of the problem of121

inferring a cancer progression model from genomic data, and a need for versatile computational tools122

to analyze data reproducibly – two intertwined issues examined at length in this paper [28]. Indeed,123

such models and tools can be focused either on characteristics of a population, i.e. ensemble-level,124

or on multiple clonality in a single-patient. In general, both problems deal with understanding the125

temporal ordering of somatic alterations accumulating during cancer evolution, but use orthogonal126

perspectives and different input data – see Figure 1 for a comparison. This paper proposes a127

new computational approach to efficiently deal with various aspects of the problem at a patient128

population level, relegating the other aspects to future publications.129

Ensemble-level cancer evolution. It is thus desirable to extract a probabilistic graphical model130

explaining the statistical trend of accumulation of somatic alterations in a population of n cross-131

sectional samples collected from patients diagnosed with a specific cancer. To normalize against132

the experimental conditions in which tumors are sampled, we only consider the list of alterations133

detected per sample – thus, as 0/1 Bernoulli random variables.134

Much of the difficulty lies in estimating the true and unknown trends of selective advantage135

among genomic alterations in the data, from such observations. This hurdle is not unsurmountable,136

if we constrain the scope to only those alterations that are persistent across tumor evolution in all137

sub-clonal populations, since it yields a consistent model of a temporal ordering of mutations.138

Therefore, epigenetic and trascriptomic states, such as hyper and hypo-methylations or over and139

under expression, could only be used, provided that they are persistent through tumor development140

[29].141

Historically, the linear model of colorectal tumor progression by Vogelstein is an instance of142

an early solution to the cancer progression problem [30]. That approach was later generalized to143

accommodate tree-models of branched evolution [31–34] and later, further generalized to the infer-144

ence of directed acyclic graph models, with several distinct strategies [35–38]. We contributed to145

this research program with the Cancer Progression Extraction with Single Edges (CAPRESE) and the146

Cancer Progression Inference (CAPRI) algorithms, which are currently implemented in TRONCO, an147

open source R package for Translational Oncology available in standard repositories [39–41]. Both148

techniques rely on Suppes’ theory of probabilistic causation to define estimators of selective advan-149

tage [42], are robust to the presence of noise in the data and perform well even with limited sample150

sizes. The former algorithm exploits shrinkage-like statistics to extract a tree model of progression,151

the latter combines bootstrap and maximum likelihood estimation with regularization to extract152

general directed acyclic graphs that capture branched, independent and confluent evolution. Both153

algorithms represent the current state-of-the-art approach to this problem, as they outperform154

others in speed, scale and predictive accuracy.155

Clonal architecture in individual patients. A closely related problem addresses the detection156

of clonal signatures and their prevalence in individual tumors, a problem complicated by intra-tumor157

heterogeneity.158

Even though this phylogenetic version of the progression inference problem naturally relies on159

data produced from single-cell sequencing assays [43,44], the majority of approaches still make use160

of bulk sequencing data, usually from multiple biopsies of the same tumors [24,45]. Indeed, several161

approaches try to extract the clonal signature of single tumors from allelic imbalance proportions,162
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a problem made difficult as sequenced samples usually contain a large number of cells belonging to163

a collection of sub-clones resulting from the complex evolutionary history of the tumor [46–55].164

We keep the current work focused on the inference of progression models at the ensemble level,165

and plan to return to this variant to the problem in another publication.166

2 The PicNic pipeline167

We report on the design, development and evaluation of the Pipeline for Cancer Inference (PicNic)168

to extract ensemble-level cancer progression models from cross-sectional data (Figure 1). PicNic169

is versatile, modular and customizable; it exploits state-of-the-art data processing and machine170

learning tools to:171

1. identify tumor subtypes and then in each subtype;172

2. select (epi)genomic events relevant to the progression;173

3. identify groups of events that are likely to be observed as mutually exclusive;174

4. infer progression models from groups and related data, and annotate them with associated175

statistical confidence.176

All these steps are necessary to minimize the confounding effects of inter-tumor heterogeneity, which177

are likely to lead to wrong results when data is not appropriately pre-processed4.178

In each stage of PicNic different techniques can be employed, alternatively or jointly, according179

to specific research goals, input data, and cancer type. Prior knowledge can be easily accommo-180

dated into our pipeline, as well as the computational tools discussed in the next subsections and181

summarized in Figure 2. The rationale is similar in spirit to workflows implemented by consortia182

such as TCGA to analyze huge populations of cancer samples [56, 57]. One of the main novelties183

of our approach, is the exploitation of groups of exclusive alterations as a proxy to detect fitness-184

equivalent trajectories of cancer progression. This strategy is only feasible by the hypothesis-testing185

features of the recently developed CAPRI algorithm, an algorithm uniquely addressing this crucial186

aspect of the ensemble-level progression inference problem [40].187

In the Results section, we study in details a specific use-case for the pipeline, processing colorectal188

cancer data from TCGA, where it is able to re-discover much of the existing body of knowledge189

about colorectal cancer progression. Based on the output of this pipeline, we also propose novel190

experimentally-verifiable hypotheses.191

2.1 Reducing inter-tumor heterogeneity by cohort subtyping192

In general, for each of n tumors (patients) we assume relevant (epi)genetic data to be available. We193

do not put constraints on data gathering and selection, leaving the user to decide the appropriate194

“resolution” of the input data. For instance, one might decide whether somatic mutations should195

be classified by type or by location, or aggregated. Or, one might decide to lift focal CNAs to196

4The genuine selectivity relationship sought to be inferred are subject to the vagaries of Simpson’s paradox; it
can change, or worst reverse, when we try to infer them from data not suitably pre-processed. This effect (due to
such paradox) manifests as data are sampled from a highly heterogenous mixture of populations of cells [40]. PiCnIc
uses various mechanisms to avoid these pitfalls. In this context, it should be pointed out that input bulk sequencing
data suffers also from intra-tumor heterogeneity issues, which are unfortunately intrinsic to the technology.
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the lower resolution of cytobands or full arms (e.g., in a kidney cancer cohort where very long197

CNAs are more common than focal events [58]). These choices depend on data and on the overall198

understanding of such alterations and their functional effects for the cancer under study, and no199

single all-encompassing rationale may be provided.200

With these data at hand, we might wish to identify cancer subtypes in the heterogeneous mixture201

of input samples. In some cases the classification can benefit from clinical biomarkers, such as202

evidences of certain cell types [59], but in most cases we will have to rely on multiple clustering203

techniques at once, see, e.g., [56,57]. Many common approaches cluster expression profiles [60], often204

relying on non-negative matrix factorization techniques [61] or earlier approaches such as k-means,205

Gaussians mixtures or hierarchical/spectral clustering - see the review in [62]. For glioblastoma206

and breast cancer, for instance, mRNA expression subtypes provides good correlation with clinical207

phenotypes [63–65]. However, this is not always the case as, e.g., in colorectal cancer such clusters208

mismatch with survival and chemotherapy response [63]. Clustering of full exome mutation profiles209

or smaller panels of genes might be an alternative as it was shown for ovarian, uterine and lung210

cancers [66,67].211

Using pipelines such as PicNic, we expect that the resulting subtypes will be routinely in-212

vestigated, eventually leading to distinct progression models, which shall be characteristic of the213

population-level trends of cancer initiation and progression.214

2.2 Selection of driver events215

In subtypes detection, it becomes easier to find similarities across input samples when more al-216

terations are available, as features selection gains precision. In progression inference, instead, one217

wishes to focus on m ⌧ n driver alterations, which ensure also an appropriate statistical ratio218

between sample size (n, here the subtype size) and problem dimension (m).219

Multiple tools filter out driver from passenger mutations. MutSigCV identifies drivers mutated220

more frequently than background mutation rate [68]. OncodriveFM avoids such estimation but221

looks for functional mutations [69]. OncodriveCLUST scans mutations clustering in small regions222

of the protein sequence [70]. MuSiC uses multiple types of clinical data to establish correlations223

among mutation sites, genes and pathways [71]. Some other tools search for driver CNAs that affect224

protein expression [72]. All these approaches use different statistical measures to estimate signs of225

positive selection, and we suggest using them in an orchestrated way, as done by platforms such as226

Intogen [73].227

We anticipate that such tools will run independently on each subtype, as driver genes will likely228

differ across them, mimicking the different molecular properties of each group of samples; also, lists229

of genes produced by these tools might be augmented with prior knowledge about tumor suppressors230

or oncogenes.231

2.3 Fitness equivalence of exclusive alterations232

When working at the ensemble-level, identification of “groups of mutually exclusive” alterations is233

crucial to derive a correct inference. This step of PicNic is another attempt to resolve part of the234

inter-tumor heterogeneity, as such alterations could lead to the same phenotype (i.e., hence resulting235

“equivalent” in terms of progression), despite being genotypically “alternative”, i.e., exclusive, across236

the input cohort. This information shall be used to detect alternative routes to cancer progression237

which capture the specificities of individual patients.238
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A plethora of recent tools can be used to detect groups of fitness equivalent alterations, according239

to the data available for each subtype; greedy approaches [74, 75] or their optimizations, such as240

MEMO, which constrain search-space with network priors [76]. This strategy is further improved241

in MUTEX, which scans mutations and focal CNAs for genes with a common downstream effect242

in a curated signalling network, and selects only those genes that significantly contributes to the243

exclusivity pattern [77]. Other tools such as Dendrix, MDPFinder, Multi-Dendrix, CoMEt, MEGSA244

or ME, employ advanced statistics or generative approaches without priors [78–83].245

In such groups, we distinguish between hard and soft forms of exclusivity, the former assuming246

strict exclusivity among alterations, with random errors accounting for possible overlaps (i.e., the247

majority of samples do not share alterations from such groups), the latter admitting co-occurrences248

(i.e., some samples might have common alterations, within a group) [77].249

CAPRI is currently the only algorithm which incorporates this type of information, in inferring250

a model. Each of these groups are in fact associated with a “testable hypothesis” written in the well-251

known language of propositional Boolean formulas5. Consider the following example: we might be252

informed that apc and ctnnb1 mutations show a trend of soft-exclusivity in our cohort – i.e., some253

samples harbor both mutations, but the majority just one of the two mutated genes. Since such254

mutations lead to �-catenin deregulation (the phenotype), we might wonder whether such state of255

affairs could be responsible for progression initiation in the tumors under study. An affermative256

response would equate, in terms of progression, the two mutations. To test this hypothesis, one may257

spell out formula apc _ ctnnb1 to CAPRI, which means that we are suggesting to the inference258

engine that, besides the possible evolutionary trajectories that might be inferred by looking at the259

two mutations as independent, trajectories involving such a “composite” event, shall be considered260

as well. It is then up to CAPRI to decide which, of all such trajectories, is significant, in a statistical261

sense.262

In general, formulas allow users to test general hypotheses about complex model structures263

involving multiple genes and alterations. These are useful in many cases: for instance, where264

we are processing samples which harbour homozygous losses or inactivating mutations in certain265

genes (i.e., equally disruptive genomic events), or when we know in advance that certain genes are266

controlling the same pathway, and we might speculate that a single hit in one of those decreases the267

selection pressure on the others. We note that, with no hypothesis, a model with such alternative268

trajectories cannot be analyzed, due to various computational limitations inherent to the inferential269

algorithms (see [40]).270

From a practical point of view, CAPRI’s formulas/hypotheses-testing features “help” the inference271

process, but do not “force” it to select a specific model, i.e., the inference is not biased. In this272

sense, the trajectories inferred by examining these composite model structures (i.e., the formulas)273

are not given any statistical advantage for inclusion in the final model. However, in spite of a natural274

temptation to generate as many hypotheses as possible, it is prudent to always limit the number275

of hypotheses according to the number of samples and alterations. Note that this approach can276

also be extended to accommodate, for instance, co-occurrent alterations in significantly mutated277

subnetworks [84,85].278

5There, logical connectives such as � (the logical “xor”) act as a proxy for hard-exclusivity, and _ (the logical
“disjunction”) for soft one. Besides from exclusivity groups, other connectives such as logical conjunction can be
used.
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2.4 Progression inference and confidence estimation279

We use CAPRI to reconstruct cancer progression models of each identified molecular subtype, pro-280

vided that there exist a reasonable list of driver events and the groups of fitness-equivalent exclusive281

alterations. Since currently CAPRI represents the state of the art, and supports complex formulas282

for groups of alterations detected in the earlier PicNic step, it was well-suited for the task.283

CAPRI’s input is a binary n ⇥ (m + k) matrix M with n samples (a subtype size), m driver284

alteration events (0/1 Bernoulli random variables) and k testable formulas. Each sample in M is285

described by a binary sequence: the 1’s denote the presence of alterations. CAPRI first performs a286

computationally fast scan of M to identify a set S of plausible selective advantage relations among287

the driver alterations and the formulas; then, it reduces S to the most relevant ones, Ŝ ⇢ S Each288

relation is represented as an edge connecting drivers/formulas in a Graphical Model – which shall be289

termed Suppes-Bayes Causal Network. This network represents the joint probability distribution6 of290

observing a set of driver alterations in a cancer genome, subject to constraints imposed by Suppes’291

probabilistic causation formalism [42].292

Set S is built by a statistical procedure. Among any pair of input drivers/formulas x and y,293

CAPRI postulates that x ! y 2 S could be a selective advantage relation with “x selecting for y” if294

it estimates that two conditions hold295

1. “x is earlier than y”;296

2. “x’s presence increases the probability of observing y”.297

Such claims, grounded in Suppes’ theory of probabilistic causation, are expressed as inequalities298

over marginal and conditional distributions of x and y. These are assessed via a standard Mann-299

Withney U test after the distributions are estimated from a reasonable number (e.g., 100) of non-300

parametric bootstrap resamples of M (see Supplementary Material). CAPRI’s increased performance301

over existing methods can be motivated by the reduction of the state space within which models302

are searched, via S.303

Optimization of S is central to our tolerance to false positives and negatives in Ŝ. We would like304

to select only the minimum number of relations which are true and statistically supported, and build305

our model from those. CAPRI’s implementation in TRONCO [41] selects a subset by optimizing a306

score function which assigns to a model a real number equal to its log-likelihood (probability of307

generating data for the model) minus a penalty term for model complexity – a regularization term308

increasing with Ŝ’s size, and hence penalizing overly complex models. It is a standard approach to309

avoid overfitting, and usually relies on the Akaike or the Bayesian Information Criterion (AIC or BIC)310

as regularizers. Both scores are approximately correct; AIC is more prone to overfitting but likely311

to provide also good predictions from data and is better when false negatives are more misleading312

than positive ones. BIC is more prone to underfitting errors, thus more parsimonious and better313

6Technically, for a set of m alterations modeled by variables x1, . . . ,xm, such a network is a Graphical Model
representing the factorization of the joint distribution – P(x1, . . . ,xm) – of observing any of the alterations in a
genome (i.e., xi = 1). This factorization is made compact as the model encodes the statistical dependencies in its
structure via

P(x1, . . . ,xm) =

mY

i=1

P(xi | ⇡i)

where ⇡i = {xj | xj ! xi 2 Ŝ} are the “parents” of the i-th node. These are those from which the presence of the
i-th alteration is predicted. In our approach these edges are the pictorial representation of the selective advantage
relations where the alterations in ⇡i select for xi.
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in opposite direction. As often done, we suggest approaches that to combine but distinguish which314

relations are selected by BIC versus AIC. Details on the algorithm are provided as see Supplementary315

Material.316

Statistical confidence of a model. In-vitro and in-vivo experiments provide the most convinc-317

ing validation for the newly suggested selective advantage relations and hypotheses, yet this is out318

of reach in some cases.319

Nonetheless, statistical validation approaches can be used almost universally to assess the con-320

fidence of edges, parent sets and whole models, either via hypothesis-testing or bootstrap and cross-321

validation scores for Graphical Models. We briefly discuss approaches that are implemented in322

TRONCO, and refer to the Supplementary Materials for additional details.323

First, CAPRI builds S by computing two p-values per edge, for the confidence in condition (1)324

and (2). In addition, for each edge x ! y, it computes a third p-value via hypergeometric testing325

against the hypothesis that the co-occurrence of x and y is due to chance. These p-values measure326

confidence in the direction of each edge and the amount of statistical dependence among x and y.327

Second, for each model inferred with CAPRI we can estimate (a posteriori) how frequently our328

edges would be retrieved if we resample from our data (non-parametric bootstrap), or from the329

model itself, assuming its correctness (parametric bootstrap) [86]. Also, we can measure the bias330

in CAPRI’s construction of S due to the random procedure which estimates the distributions in331

condition (1) and (2) (statistical bootstrap).332

Third, scores can be computed to quantify the consistency for the model against bias in the333

data and models. For instance, non-exhaustive k-fold cross-validation can be used to compute the334

entropy loss for the whole model, and the prediction and posterior classification errors for each edge335

or parent set [87].336

3 Results337

3.1 Evolution in a population of MSI/MSS colorectal tumors.338

It is common knowledge that colorectal cancer (CRC) is a heterogeneous disease comprising different339

molecular entities. Indeed, it is currently accepted that colon tumors can be classified according340

to their global genomic status into two main types: microsatellite unstable tumors (MSI), fur-341

ther classified as high or low, and microsatellite stable (MSS) tumors (also known as tumors with342

chromosomal instability). This taxonomy plays a significant role in determining pathologic, clinical343

and biological characteristics of CRC tumors [88]. Regarding molecular progression, it is also well344

established that each subtype arises from a distinctive molecular mechanism. While MSS tumors345

generally follow the classical adenoma-to-carcinoma progression described in the seminal work by346

Vogelstein and Fearon [89], MSI tumors result from the inactivation of DNA mismatch repair genes347

like mlh-1 [90].348

With the aid of the TRONCO package, we instantiated PicNic to process colorectal tumors349

freely available through TCGA project COADREAD [56] (see Supplementary Figure S1), and in-350

ferred models for the MSS and MSI-HIGH tumor subtypes (shortly denoted MSI) annotated by the351

consortium. In doing so, we used a combination of background knowledge produced by TCGA and352

new computational predictions; to a different degree, some knowledge comes from manual curation353

of data and other from tools mentioned in PicNic’s description (see Figure 2). Data and exclusiv-354
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ity groups for MSI tumors are shown in Figure 3, the analogous for MSS tumors is provided as355

Supplementary Material.356

For the models inferred, which are shown in Figures 4 and 5, we evaluated various forms of357

statistical confidence measured as p-values, bootstrap scores (in what follows, npb denotes non-358

parametric bootstrap and the closer to 100 the better), and cross-validation statistics reported359

in the Supplementary Material. Many of the postulated selective advantage relations (i.e., model360

edges) have very strong statistical support for COADREAD samples, although events with similar361

marginal frequency may lead to ambiguous imputed temporal ordering (i.e., the edge direction). In362

general, we observed that overall the estimates are slightly better in the MSS cohort (entropy loss363

< 1% versus 3.8%), which is expected given the difference in sample size of the two datasets (152364

versus 27 samples), see Material and Methods for details.365

Interpretation of the models. Our models capture the well-known features distinguishing MSS366

and MSI tumors: for the former apc, kras and tp53 mutations as primary events together with367

chromosomal aberrations, for the latter braf mutations and lack of chromosomal alterations. Of all368

33 driver genes, 15 are common to both models - e.g., apc, braf, kras, nras, tp53 and fam123b369

among others (mapped to pathways like wnt, mapk, apoptosis or activation of T-cell lymphocites),370

although in different relationships (position in the model), whereas new (previously un-implicated)371

genes stood out from our analysis and deserve further research.372

MSS (Microsatellite Stable). In agreement with the known literature, in addition to kras, tp53373

and apc as primary events, we identify pten as a late event in the carcinogenesis, as well as374

nras and kras converging in igf2 amplification, the former being “selected by” tp53 muta-375

tions (npb 49%), the latter “selecting for” pik3ca mutations (npb 81%). The leftmost portion376

of the model links many wnt genes, in agreement with the observation that multiple con-377

current lesions affecting such pathway confer selective advantage. In this respect, our model378

predicts multiple routes for the selection of alterations in sox9 gene, a transcription factor379

known to be active in colon mucosa [91]. Its mutations are directly selected by apc/ctnnb1380

alterations (though with low npb score), by arid1a (npb 34%) or by fbxw7 mutations (npb381

49%), an early mutated gene that both directly, and in a redundant way via ctnnb1, relates382

to sox9. The sox family of transcription factors have emerged as modulators of canoni-383

cal wnt/�-catenin signaling in many disease contexts [92]. Also interestingly, fbxw7 has384

been previously reported to be involved in the malignant transformation from adenoma to385

carcinoma [93]. The rightmost part of the model involves genes from various pathways, and386

outlines the relation between kras and the pi3k pathway. We indeed find selection of pik3ca387

mutations by kras ones, as well as selection of the whole MEMO module (npb 64%), which is388

responsible for the activation of the pi3k pathway [56]. smad4 proteins relate either to kras389

(npb 34%), and fam123b (through atm) and tcf7l2 converge in dkk2 or dkk4 (npb 81, 17390

and 34%).391

MSI-HIGH (Microsatellite Unstable). In agreement with the current literature, braf is the most392

commonly mutated gene in MSI tumors [94]. CAPRI predicted convergent evolution of tu-393

mors harbouring fbxw7 or apc mutations towards deletions/mutations of nras gene (npb394

21, 28 and 54%), as well as selection of smad2 or smad4 mutations by fam123b mutations395

(npb 23 and 46%), for these tumors. Relevant to all MSI tumors seems again the role of396

the pi3k pathway. Indeed, a relation among apc and pik3ca mutations was inferred (npb397

66%), consistent with recent experimental evidences pointing at a synergistic role of these398
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mutations, which co-occurr in the majority of human colorectal cancers [95]. Similarly, we399

find consistently a selection trend among apc and the whole MEMO module (npb 48%). In-400

terestingly, both mutations in apc and erbb3 select for kras mutations (npb 51 and 27%),401

which might point to interesting therapeutic implications. In contrast, mutations in braf402

mostly select for mutations in acvr1b (npb 36%), a receptor that once activated phospho-403

rylates smad proteins. It forms receptor complex with acvr2a, a gene mutated in these404

tumors that selects for tcf7l2 mutations (npb 34%). Tumors harbouring tp53 mutations405

are those selected by mutations in axin2 (npb 32%), a gene implicated in wnt signalling406

pathway, and related to unstable gastric cancer development [96]. Inactivating mutations in407

this gene are important, as it provides serrated adenomas with a mutator phenotype in the408

MSI tumorigenic pathway [97]. Thus, our results reinforce its putative role as driver gene in409

these tumors.410

By comparing these models we can find similarity in the prediction of a potential new early event411

for CRC formation, fbxw7, as other authors have recently described [93]. This tumor suppressor412

is frequently inactivated in human cancers, yet the molecular mechanism by which it exerts its413

anti-tumor activity remains unexplained [98], and our models provide a new hypothesis in this414

respect.415

4 Discussion416

This paper represents our continued exploration of the nature of somatic evolution in cancer, and417

its translational exploitation through models of cancer progression, models of drug resistance (and418

efficacy), left- and right-censoring, sample stratification, and therapy design. Thus this paper em-419

phasizes the engineering and dissemination of production-quality computational tools as well as420

validation of its applicability via use-cases carried out in collaboration with translational collabo-421

rators: e.g., colorectal cancer, analyzed jointly with epidemiologists currently studying the disease422

actively. As anticipated, we reasserted that the proposed model of somatic evolution in cancer not423

only supports the heterogeneity seen in tumor population, but also suggests a selectivity/causality424

relation that can be used in analyzing (epi)genomic data and exploited in therapy design – which we425

introduced in our earlier works [39,40]. In this paper, we have introduced an open-source pipeline,426

PicNic, which minimizes the confounding effects arising from inter-tumor heterogeneity, and we have427

shown that PicNic can be effective in extracting ensemble-level evolutionary trajectories of cancer428

progression.429

When applied to a highly-heterogeneous cancer such as colorectal, PicNic was able to infer430

the role of many known events in colorectal cancer progression (e.g., apc, kras or tp53 in MSS431

tumors, and braf in MSI ones), confirming the validity of our approach7. Interestingly, new players432

in CRC progression stand out from this analysis such as fbxw7 or axin2, which deserve further433

investigation. In colon carcinogenesis, although each model identifies characteristic early mutations434

suggesting different initiation events, both models appear to converge in common pathways and435

functions such as wnt or mapk.436

7As a further investigation for CRC, we leave as future work to check whether the inferred progression are also
representative of other subtyping strategies for colorectal cancer, with particular reference to recent works which
show marked interconnectivity between different independent classification systems coalescing into four consensus
molecular subtypes [99].

11

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 16, 2016. ; https://doi.org/10.1101/027359doi: bioRxiv preprint 

https://doi.org/10.1101/027359


However, both models have some clear distinctive features. Specific events in MSS include437

mutations in intracellular genes like ctnnb1 or in pten, a well-known tumor suppressor gene. On438

the contrary, specific mutations in MSI tumors appear in membrane receptors such as acvr1b,439

acvr2a, erbb3, lrp5, tgfbr1 and tgfbr2, as well as in secreted proteins like igf2, possibly440

suggesting that such tumors need to disturb cell-cell and/or cell-microenvironment communication441

to grow. At the pathway level, genes exclusively appearing in the MSI progression model accumulate442

in specific pathways such as cytokine-cytokine receptor, endocytosis and tgf-� signaling pathway.443

On the other hand, genes in MSS progression model are implicated in p53, mTOR, sodium transport444

or inositol phosphate metabolism.445

Our study also highlighted the translational relevance of the models that we can produce with446

PicNic (see Supplementary Figure S12). The evolutionary trajectories depicted by our models can,447

for instance, suggest previously-uncharacterized phenotypes, help in finding biomarker molecules448

predicting cancer progression and therapy response, explain drug resistant phenotypes and predict449

metastatic outcomes. The logical structure of the formulas describing alterations with equivalent450

fitness (i.e., the exclusivity group) can also point to novel targets of therapeutic interventions.451

In fact, exclusivity groups that are found to have a role in the progression can be screened for452

synthetic lethality among such genes – thus explaining why we do not observe phenotypes where453

such alterations co-occur. In this sense, our models describe also such clonal signatures which,454

though theoretically possible, are not selected. We call such conspicuously absent phenotypes anti-455

hallmarks [100].456

Our models have other applications to both computational and cancer research. Our models,457

as encoded by Suppes-Bayes Causal Networks could be used as informative generative models for458

the genomic profiles for the cancer patients. In fact, as known in machine learning, such generative459

models are extremely useful in creating better representation of data in terms of, e.g., discriminative460

kernels, such as Fisher [101]. In practice, this change of representations would allow framing common461

classification problems in the domain of our generative structures, i.e., the models, rather than the462

data. As a consequence, it is possible to create a new class of more robust classification and463

prediction systems.464

One may think of these representations as those bringing us closer to phenotypic (and causal)465

representation of the patient’s tumor, replacing its genotypic (and mutational) representation. We466

suspect that such representations will improve the accuracy of measurement of the biological clocks,467

dysregulated in cancer and critically needed to be measured in order to predict survival time, time468

to metastasis, time to evolution of drug resistance, etc. We believe that these “phenotypic clocks”469

can be used immediately to direct the therapeutic intervention.470

Clearly, applicability and reliability of techniques such as PicNic is very much dependent on471

the background of data available. At the time of this writing, the quality, quantity and reliability472

of (epi)genomic data available, e.g., in public databases, is related to the ever increasing com-473

putational and technological improvements characterizing the wide area of cancer genomics. Of474

similar importance is the availability of wet-lab technologies for models validation. Our recent work475

on SubOptical Mapping technology, for instance, points to the ability to cheaply and accurately476

characterize translocation, indels and epigenomic modifications at the single molecule and single477

cell level [102, 103]. This technology also provides the ability to directly validate (or refute) the478

hypotheses generated by PicNic via gene-correction and single cell perturbation approaches.479

To conclude, the precision of any statistical inference technique, including PicNic, is influenced480

by the quality, availability and idiosyncrasies of the input data – the goodness of the outcomes481

improving along with the expected advancement in the field. Nevertheless, the strength of the482
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proposed approach lies in the efficacy in managing possibly noisy/ biased or insufficient data, and483

in proposing refutable hypotheses for experimental validation.484

5 Materials and methods485

Processing COADREAD samples with PiCnIc. We instantiated PicNic to process clinically486

annotated high MSI-HIGH and MSS colorectal tumors collected from The Cancer Genome Atlas487

project “Human Colon and Rectal Cancer” (COADREAD) [56] – see Supplementary Figure S1.488

Details on the implementation and the source code to replicate this study are available as Supple-489

mentary Material. COADREAD has enough samples, especially for MSS tumors, to implement a490

consistent and significant statistical validation of our findings – see Supplementary Table S1.491

In brief, we split subtypes by the microsatellite status of each tumor as annotated by the con-492

sortium (so, step I of PicNic is done by exploiting background knowledge rather than computational493

predictors). It should be expected that if this step is skipped or this classification is incorrect, the494

resulting models would noticeably differ. Once split into groups, the input COADREAD data is495

processed to maintain only samples for which both high-quality curated mutation and CNA data496

are available; for CNAs we use focal high-level amplifications and homozygous deletions.497

Then, for each sample we select only alterations (mutations/CNAs) from a list of 33 driver genes498

manually annotated to 5 pathways in [56] - wnt, raf, tgf-�, pi3k and p53 (Supplementary Figures499

S2 and S3). This list of drivers, step II of PicNic, is produced by TCGA, as a result of manual500

curation and running MutSigCV.501

In the next module of the pipeline, we fetch groups of exclusive alterations. We scanned these502

groups by using the MUTEX tool (Supplementary Table S2), and merged its results with the503

group that TCGA detected by using the MEMO tool, which involves mainly genes from the pi3k504

pathway. Knowledge on the potential exclusivity among genes in the wnt (apc,ctnnb1) and raf505

(kras,nras,braf) pathways was exploited as well. Groups were then used to create CAPRI’s506

formulas; we also included hypotheses for genes which harbour mutations and homozygous deletions507

across different samples, see Supplementary Table S3. Data and exclusivity groups for MSS tumors508

are shown in Supplementary Figure S4 and S5.509

CAPRI was run, as the last step of PicNic, on each subtype, by selecting recurrent alterations510

from the pool of 33 pathway genes and using both AIC/BIC regularizer. Timings to run the relevant511

steps of the pipeline are reported in the Supplementary Material. In the models of Figures 4 and512

Figure 5 each edge mirrors selective advantage among the upstream and downstream nodes, as513

estimated by CAPRI; Mann-Withney U test is carried out with statistical significance 0.05, after514

100 non-parametric bootstrap iterations.515

The significance of the reconstructed models and the input data is assessed by computing all the516

statistics/tests discussed in the Main text (temporal priority, probability raising and hypergeometric517

testing p-values, bootstrap and cross-validation scores). Motivation and background on each of518

these measures is available in the Supplementary Materials. A table with their values for edges519

with highest non-parametric bootstrap scores is in Supplementary Figure S8.520

For the MSS cohort all the p-values are strongly significant (p⌧0.01) except for the temporal521

priority of the edges connecting mutations in fam123b and atm, and erbb2 alterations (mutations522

and amplifications), which leads us to conclude that, even if these pairs of genes seem to undergo523

selective advantage, the temporal ordering of their occurrence is ambiguous and failed to be imputed524

correctly from the datasets, analyzed here. The same situation occurs in MSI-HIGH tumors, for the525

relation between kras and erbb3. Non-parametric and statistical bootstrap estimations are used526
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to assess the strength of all the findings (Supplementary Figures S6 and S7). Moreover, any bias527

in the data is finally evaluated by cross-validation (Supplementary Figures S8-S11) and common528

statistics such as entropy loss, posterior classification and prediction errors. In general, most of the529

selective advantage relations depicted by the inferred models present a strong statistical support,530

with the MSS cohort presenting the most reliable results.531

Summary implementation for COADREAD (PicNic steps, Figure 2): (1) TCGA clinical classi-532

fication, (2) MutSigCV and TCGA manual curation, (3) MEMO, MUTEX and knowledge of wnt533

and raf pathways and (4) CAPRI.534

Implement your own case study with PiCnIc/TRONCO. TRONCO started as a project535

before PicNic, and is our effort at collecting, in a free R package, algorithms to infer progression536

models from genomic data. In its current version it offers the implementation of the CAPRI537

and CAPRESE algorithms, as well as a set of routines to pre-process genomic data. With the538

invention of PicNic, it started accommodating software routines to easily interface CAPRI and539

CAPRESE to some of the tools that we mention in Figure 2. In particular, in its current 2.0540

version it supports input/output for the Matlab Network Based Stratification tool (NBS) and541

the Java MUTEX tool, as well as the possibility to fetch data available from the cBioPortal for542

Cancer Genomics (http://cbioportal.orghttp://cbioportal.org), which provides a Web resource543

for exploring, visualizing, and analyzing multidimensional cancer genomics data.544

We plan to extend TRONCO in the future to support other similar tools and become an integral545

part of daily laboratory routines, thus facilitating application of PiCnIc to additional use cases.546
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Figure 1: A. Problem statement. (left) Inference of ensemble-level cancer progression models from
a cohort of n independent patients (cross-sectional). By examining a list of somatic mutations or
CNAs per patient (0/1 variables) we infer a probabilistic graphical model of the temporal ordering
of fixation and accumulation of such alterations in the input cohort. Sample size and tumor het-
erogeneity complicate the problem of extracting population-level trends, as this requires accounting
for patients’ specificities such as multiple starting events. (right) For an individual tumor, its clonal
phylogeny and prevalence is usually inferred from multiple biopsies or single-cell sequencing data.
Phylogeny-tree reconstruction from an underlying statistical model of reads coverage or depths es-
timates alterations’ prevalence in each clone, as well as ancestry relations. This problem is mostly
worsened by the high intra-tumor heterogeneity and sequencing issues. B. The PiCnIc pipeline for
ensemble-level inference includes several sequential steps to reduce tumor heterogeneity, before ap-
plying the CAPRI [40] algorithm. Available mutation, expression or methylation data are first used
to stratify patients into distinct tumor molecular subtypes, usually by exploiting clustering tools.
Then, subtype-specific alterations driving cancer initiation and progression are identified with sta-
tistical tools and on the basis of prior knowledge. Next is the identification of the fitness-equivalent
groups of mutually exclusive alterations across the input population, again done with computa-
tional tools or biological priors. Finally, CAPRI processes a set of relevant alterations within such
groups. Via bootstrap and hypothesis-testing, CAPRI extracts a set of “selective advantage rela-
tions” among them, which is eventually narrowed down via maximum likelihood estimation with
regularization (with various scores). The ensemble-level progression model is obtained by combining
such relations in a graph, and its confidence is assessed via various bootstrap and cross-validation
techniques.
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* Data marked as ✗ can be used when it is persistent (i.e., do not revert back to their original state) during tumor progression. Other: data not common to most tumor types such as fusions or partial tandem duplication. 
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Figure 2: The PiCnIc pipeline. We do not provide a unique all-encompassing rationale to instantiate
PiCnIc as all steps refer to research area currently development, where the optimal approach is
often dependent on the type of data available and prior knowledge about the cancer under study.
References are provided for each tool that can be used to instantiate PiCnIc: NMF [61], k-Means,
Gaussian Mixtures, Hierarchical/Spectral Clustering [62], NBS [66], MutSigCV [68], OncodriveFM
[69], OncodriveCLUST [70], MuSiC [71] Oncodrive-CIS [72] Intogen [73], Ratio [74], RME [75],
MEMO [76], MUTEX [77], Dendrix [78], MDPFinder [79], Multi-Dendrix [80], CoMEt [81], MEGSA
[82], ME [83], CAPRI [40], CAPRESE [39], Oncotrees [31, 33], Distance-based [32], Mixtures [34],
CBN [35,36], Resic [37] and BML [38].
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Figure 3: A. MSI-HIGH colorectal tumors from the TCGA COADREAD project [56], restricted
to 27 samples with both somatic mutations and high-resolution CNA data available and a selection
out of 33 driver genes annotated to wnt, ras, pi3k, tgf-� and p53 pathways. This dataset
is used to infer the model in Figure 5. B. Mutations and CNAs in MSI-HIGH tumors mapped
to pathways confirm heterogeneity even at the pathway-level. C. Groups of mutually exclusive
alterations were obtained from [56] - which run the MEMO [76] tool - and by MUTEX [77] tool. In
addition, previous knowledge about exclusivity among genes in the ras pathway was exploited. D.
A Boolean formula input to CAPRI tests the hypothesis that alterations in the ras genes kras,
nras and braf confer equivalent selective advantage. The formula accounts for hard exclusivity
of alterations in nras mutations and deletions, jointly with soft exclusivity with kras and nras
alterations.
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Figure 4: Selective advantage relations inferred by CAPRI constitute MSS progression; input
dataset in Supplementary Figure S3 and S4. Formulas written on groups of exclusive alterations,
e.g., sox9 amplifications and mutations, are displayed in expanded form; their events are connected
by dashed lines with colors representing the type of exclusivity (red for hard, orange for soft), logical
connectives are squared when the formula is selected, and circular when the formula selects for a
downstream node. For this model of MSS tumors in COADREAD, we find strong statistical support
for many edges (p-values, bootstrap scores and cross-validation statistics shown as Supplementary
Material), as well as the overall model. This model captures both current knowledge about CRC
progression – e.g, selection of alterations in pi3k genes by the kras mutations (directed or via the
MEMO group, with BIC) – as well as novel interesting testable hypotheses – e.g., selection of sox9
alterations by fbxw7 mutations (with BIC).
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Figure 5: A. Selective advantage relations inferred by CAPRI constitute MSI-HIGH progression;
input dataset in Figure 3. Formulas written on groups of exclusive alterations are expanded as
in Figure 4. For each relation, confidence is estimated as for MSS tumors and reported as Sup-
plementary Material. In general, this model is supported by weaker statistics than MSS tumors –
possibly because of this small sample size (n=27). Still, we can find interesting relations involving
apc mutations which select for pik3ca ones (via BIC) as well as selection of the MEMO group
(erbb2/pik3ca mutations or igf2 deletions) predicted by AIC. Similarly, we find a strong selection
trend among mutations in erbb2 and kras, despite in this case the temporal precedence among
those mutations is not disentangled as the two events have the same marginal frequencies (26%). B.
Evolutionary trajectories of clonal expansion predicted from two selective advantage relations in the
model. apc-mutated clones shall enjoy expansion, up to acquisition of further selective advantage
via mutations or homozygous deletions in nras. These cases should be representative of different
individuals in the population, and the ensemble-level interpretation should be that “apc mutations
select for nras alterations, in hard exclusivity” as no sample harbour both alterations. A similar
argument can show that the clones of patients harbouring distinct alterations in acvr1b – and
different upstream events – will enjoy further selective advantage from mutation in the tgfbr2
gene.
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