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Abstract

The evolutionary nature of cancer relates directly to a renewed focus on the voluminous
NGS (next generation sequencing) data, aiming at the identification of explanatory models of
how the (epi)genomic events are choreographed in cancer initiation and development. However,
despite the increasing availability of multiple additional -omics data, this quest has been frus-
trated by various theoretical and technical hurdles, mostly related to the dramatic heterogeneity
and temporality of the disease. In this paper, we build on our recent works on “selectivity”
relation among driver mutations in cancer progression and investigate their applicability to the
modeling problem – both at the population and individual levels. On one hand, we devise
an optimal, versatile and modular pipeline to extract ensemble-level progression models from
cross-sectional sequenced cancer genomes. The pipeline combines state-of-the-art techniques
for sample stratification, driver selection, identification of fitness-equivalent exclusive alter-
ations and progression model inference. We demonstrate this pipeline’s ability to reproduce
much of the current knowledge on colorectal cancer progression, as well as to suggest novel
experimentally verifiable hypotheses. On the other hand, we prove that our framework can
be applied, mutatis mutandis, in reconstructing the evolutionary history of cancer clones in
single patients, as illustrated by an example with multiple biopsy data from clear cell renal
carcinomas.

Introduction

Since the late seventies evolutionary dynamics, with its interplay between variation and selection,
has progressively provided the widely-accepted paradigm for the interpretation of cancer emergence
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and development [1–3]. Random alterations of an organism’s (epi)genome can sometimes confer a
functional selective advantage to certain cells, in terms of adaptability and ability to survive and
proliferate. Since the consequent clonal expansions are naturally constrained by the availability
of resources (metabolites, oxygen, etc.), further mutations in the emerging heterogeneous tumor
populations are necessary to provide additional fitness of different kinds that allow survival and pro-
liferation in the unstable micro environment. Such further advantageous mutations will eventually
allow some of their sub-clones to outgrow the competing cells, thus enhancing tumor’s heterogeneity
as well as its ability to overcome future limitations imposed by the rapidly exhausting resources.
Competition, predation, parasitism and cooperation are indeed often observed in co-existing cancer
clones [4].

In the well-known vision of Hanahan and Weinberg [5, 6], the phenotypic stages that charac-
terize this multistep evolutionary process are called hallmarks. These can be acquired by cancer
cells in many possible alternative ways, as a result of a complex biological interplay at several
spatio-temporal scales that is still only partially deciphered [7]. In this framework, we distinguish
alterations driving the hallmark acquisition process (i.e., drivers) by activating oncogenes or inac-
tivating tumor suppressor genes, from those that are transferred to sub-clones without increasing
their fitness (i.e., passengers) [8]. Driver identification is a modern challenge of cancer biology, as
distinct cancer types exhibit very different combinations of drivers, some cancers display mutations
in hundreds of genes [9], and the majority of drivers is mutated at low frequencies (“long tail”
distribution), not allowing their detection by examining the recurrence at the population-level [10].
One can also use the evolutionary models to characterize, what may be called, anti-hallmarks – the
phenotypes that are possible by the variational processes, but rarely found to be selected [11]. For
instance, certain collections of driver mutations, whose individual members are often present in the
patient genomes, are never seen jointly. These anti-hallmarks point to tumors’ vulnerabilities, and
thus, novel targets for therapeutic interventions.

Cancer clones harbour distinct types of “alterations”. The somatic ones involve either few
nucleotides or larger chromosomal regions, and are usually catalogued as mutations - i.e., Single
Nucleotide Variants (SNVs) and Structural Variants (SVs) at multiple scales (insertions, dele-
tions, inversions, translocations) – of which only some are detectable as Copy Number Alterations
(CNAs), which appear to be most prevalent in many tumor types [12]. Also epigenetic alterations,
such as DNA methylation and chromatin reorganization, play a key role in the process [13]. The
overall picture is confounded by factors such as genetic instability [14], aneuploidy and tumor-
microenvironment interplay [15], the latter involving stromal and immune-system cells with strong
influence on the final effect of mutations [16]. Furthermore, spatial organization and tissue speci-
ficity play an essential role on tumor progression as well [17]1.

In this scenario, genomic alterations are related to the phenotypic properties of tumor cells
via the structure and dynamics of functional pathways, in a process which has been only partially
characterized [18–21]. In general, in fact, as there exist many equivalent ways to disrupt signaling
and regulatory pathways, many mutations can provide equivalent fitness to cancer cells, leading
to alternative routes to selective advantage across a population of tumors [22]. Practically, if
multiple genes are equally functional for the same biological process, when any of those is altered the
selection pressure on the others is diminished or even nullified [23]. Such genes, e.g., apc/ctnnb1
in colorectal cancer [24], therefore show a trend of exclusivity across a cohort – with few cases of

1We mention that much attention has been recently casted on newly discovered cancer genes affecting global
processes that are apparently not directly related to cancer development, such as cell signaling, chromatin and
epigenomic regulation, RNA splicing, protein homeostasis, metabolism and lineage maturation [10].
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co-occurrent alterations. The same applies when disruptive alterations hit on the same gene, e.g.,
pten’s mutations and deletions in prostate cancer [25].

An immediate consequence of this state of affair is the dramatic heterogeneity and temporality
of cancer, both at the inter-tumor and at the intra-tumor levels [26]. The former manifests as
different patients with the same cancer type can display few common alterations. This led to
the development of techniques to stratify tumors into subtypes with different genomic signatures,
prognoses and response to therapy [27].The latter refers to the noteworthy genotypic and phenotypic
variability among the cancer cells within a single neoplastic lesion, characterized by the coexistence
of more than one cancer clones with distinct evolutionary histories [28].

Cancer heterogeneity poses a serious problem from the diagnostic and therapeutic perspective
as, for instance, it is now acknowledged that a single biopsy might not be representative of other
parts of the tumor, hindering the problem of devising effective treatment strategies [4]. Therefore,
the quest for an extensive etiology of cancer heterogeneity and for the identification of cancer
evolutionary trajectories is nowadays central to cancer research, and attempt to exploit the massive
amount of sequencing data available through public projects such as The Cancer Genome Atlas
(TCGA) [29].

Such projects involve an increasing number of cross-sectional (epi)genomic profiles collected
via single biopsies of patients affected by various cancer types, which might be used to extract
trends of cancer evolution across a population of samples. Higher resolution data such as multiple
samples collected from the same tumor [28], as well as single-cell sequencing data [30], might be
complementarily used to face the same problem within a specific patient. However, either the
lack of public data or problems of accuracy and reliability, currently prevent a straightforward
application [31].

These different perspectives lead to the different mathematical formulations of the problem
of inferring a cancer progression model from genomic data, which we shall examine at length in
this paper [32]. Indeed, such models can either be focused to describe trends characteristics of a
population, i.e. ensemble-level, or clonal progression in a single-patient. In general, both problems
deal with understanding the temporal ordering of somatic alterations accumulating during cancer
evolution, but use orthogonal perspectives and different input data – see Figure 1.

Ensemble-level cancer evolution. It may seem desirable to extract a probabilistic graphical
model (PGM) explaining the statistical trend of accumulation of somatic alterations in a population
of n cross-sectional samples collected from patients affected by a specific cancer. To make this
problem independent of the experimental conditions in which tumors are gathered, we only consider
the list of alterations detected per sample – thus, as 0/1 Bernoulli variables.

Much of the difficulty lies in estimating the true and unknown trends of selective advantage
among genomic alterations in the data, from such observations. This hurdle is not unsurmountable,
if we constrain the scope to only those alterations that are persistent across tumor evolution in all
sub-clonal populations, since it yields a consistent model of a temporal ordering of mutations.
Therefore, epigenetic and trascriptomic states, such as hyper and hypo-methylations or over and
under expression, could only be used, provided that they are persistent thorough tumor development
[34].

Historically, the linear colorectal progression by Vogelstein is an instance of a solution to the
cancer progression modeling problem [35]. That approach was later generalized to accommodate
tree-models of branched evolution [36–39] and, later, further generalized to the inference of directed
acyclic graph (DAG) models by Beerenwinkel and others [40–42]. We contributed to this research
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Figure 1: (A) Problem statement. (left) Inference of ensemble-level cancer progression models
from a cohort of n independent patients (cross-sectional). By examining a list of somatic muta-
tions or CNAs per patient (0/1 variables) we infer a probabilistic graphical model of the temporal
ordering of fixation and accumulation of such alterations in the input cohort. Sample size and
tumor heterogeneity harden the problem of extracting population-level trends, as this requires to
account for patients’ specificities such as multiple starting events. (right) For an individual tumor,
its clonal phylogeny and prevalence is usually inferred from multiple biopsies or single-cell sequenc-
ing data. Phylogeny-tree reconstruction from an underlying statistical model of reads coverage or
depths estimates alterations’ prevalence in each clone, as well as ancestry relations. This problem
is mostly worsened by the high intra-tumor heterogeneity and sequencing issues. (B) A pipeline
for ensemble-level inference. The optimal pipeline includes several sequential steps to reduce
tumor heterogeneity, before applying the CAPRI [33] algorithm. Available mutation, expression
or methylation data are first used to stratify patients into distinct tumor molecular subtypes, usu-
ally by exploiting clustering tools. Then, subtype-specific alterations driving cancer initiation and
progression are identified with statistical tools and on the basis of prior knowledge. Next is the
identification of the fitness-equivalent groups of mutually exclusive alterations across the input pop-
ulation, again done with computational tools or biological priors. Finally, CAPRI processes a set of
relevant alterations and such groups. Via bootstrap and hypothesis-testing, CAPRI extracts a set of
“selective advantage relations” among them, which is eventually narrowed down via maximum like-
lihood estimation with regularization (with various scores). The ensemble-level progression model
is obtained by combining such relations in a graph, and its confidence is assessed via bootstrap (see
Online Methods).
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prgram with two related algorithms: CAncer PRogression Extraction with Single Edges (CAP-
RESE, [43]) and CAncer PRogression Inference (CAPRI, [33]), which are currently implemented
in TRONCO (TRanslational ONCOlogy), an open source R package available in standard reposito-
ries [44]. Both techniques rely on Suppes’ theory of probabilistic causation to define estimators of
selective advantage [45], are robust to the presence of noise in the data and perform well even with
limited sample sizes. The former algorithm exploits shrinkage-like statistics to extract a tree model
of progression, the latter combines bootstrap and maximum likelihood estimation with regulariza-
tion to extract general directed acyclic graphs that capture branched, independent and confluent
evolution. Both algorithms represent the current state-of-the-art to approach this problem, as they
outperform others in speed, scale and predictive accuracy.

Clonal architecture in individual patients. At the time of this writing, technical and econom-
ical limitations of single-cell sequencing prevent a straightforward application of phylogeny inference
algorithms to the reconstruction of the clonal evolutionary history of genomic alterations within a
single tumor [46, 47]. Conversely, samples of cells collected from a single bulk tumor do not define
an isogenic lineage [48] and most likely contain a large number of cells belonging to a collection
of sub-clones resulting from the complex evolutionary history of the tumor, where the prevalence
of a particular clone in time and its spatial distribution reflect its growth and proliferative fitness.
To overcome hurdles such as this, many recent efforts have aimed at inferring the clonal signatures
and prevalence in individual patients from sequencing data [28,49].

The majority of attempts employ different strategies, usually based on Bayesian inference, to
relate allelic imbalance to cellular prevalence, and benefit from multiple sample per patient, taken
across time or space. In particular, most tools usually process a set of read counts from a high-
coverage sequencing experiment to estimate Variant Allele Frequency (VAF). Some of them are
based on the VAF analysis of specific SNVs [50, 51]. Recent algorithms attempt to minimize the
error between the observed and inferred mutation frequencies with distinct optimization procedures
[52–54]. Other approaches support explicitly short-read data and different types of data, such as
CNAs, SNVs and B-allele fractions [55]. Distinct techniques, instead, use genome-wide segmented
read-depth information to determine mixtures of subclonal CNA profiles [56, 57], while others use
a generative approach to deconvolve sequencing data to clonal architectures [58]. Clearly, any of
these approaches gains precision from high-coverage sequencing data, since high read counts yield
high confidence estimate of allele frequency.

Results

Here, we report on the design, development and evaluation of an optimal, versatile and modular
pipeline which exploits state-of-the-art tools to extract ensemble-level cancer progression models
from cross-sectional data. We also show its applications in interpreting colorectal cancer data
which, because of its high levels of heterogeneity, may be thought of as one of the most challenging
case studies. Here, we are able to show that, in general, tools to detect cancer evolution at the
ensemble-level can be effective even on single-patient data.

A pipeline to infer ensemble-level progression models

We have devised a customizable pipeline to infer ensemble-level cancer progression models from
cross-sectional data with CAPRI [33]. To increase the statistical quality of its predictions our
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Figure 2: .(A) Selected MSI-HIGH colorectal tumors used for inference. Data from the
TCGA COADREAD project [59], restricted to 27 samples with both somatic mutations and high-
resolution CNA data available and a selection out of 33 driver genes annotated to wnt, ras, pi3k,
tgf-β and p53 pathways. This dataset is used to infer the model in Figure 4. (B) Altered
pathways. Mutations and CNAs in these tumors mapped to pathways confirm heterogeneity even
at the pathway-level. (C) Mutually exclusive alterations. Groups were obtained from [59]
- which run the MEMO [60] tool - and by MUTEX [23] tool. Plus, previous knowledge about
exclusivity among genes in the ras pathway was exploited. (D) Construction of a formula. A
Boolean formula inputed to CAPRI to test the hypothesis that alterations the RAF genes kras,
nras and braf confer equivalent selective advantage. The formula accounts for hard exclusivity
of alterations in nras mutations and deletions, jointly with soft exclusivity with kras and nras
alterations.

pipeline pre-processes data to diminish the confounding effects of inter and intra-tumor hetero-
geneity. At a high-level, we shall thus identify: (i) biologically meaningful subtypes with similar
molecular profiles via tumor stratification, (ii) the set of driver alterations and (iii) the groups of
fitness-equivalent (i.e., exclusive) alterations.

Thus, this pipeline, which is briefly sketched in Figure 1 and detailed as Online Methods, is
similar in spirit to those implemented by consortia such as TCGA to analyze huge populations
of cancer samples [59, 61]. One of the main novelties of our approach, which is only possible by
the specific features of hypothesis-testing provided by CAPRI [33], is the exploitation of groups
of exclusive alterations as a proxy to detect fitness-equivalent routes of cancer progression. Thus,
CAPRI may be thought of as an ideal tool for efficient and theoretically-grounded investigations in
population-based studies on cancer genomics.

Our approach allows one to produce a progression model for virtually every cancer subtype
identified in the input cohort, which shall be characteristic of the population trends of cancer
initiation and progression. In the following, we empirically characterize the efficacy of our approach
in processing colorectal cancer data from TCGA project [59], demonstrating that we were able to
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re-discover most of the existing body of knowledge about colorectal tumor progression or to propose
further experimentally verifiable hypotheses2.

Evolution in a population of MSI/MSS colorectal tumors with CAPRI

It is common knowledge that colorectal cancer (CRC) is a heterogeneous disease comprising differ-
ent molecular entities. Since similar tumors are most likely to behave in a similar way, grouping
tumors with homogeneous characteristics may be useful to define personalized therapies. Indeed,
it is currently accepted that colon tumors can be classified according to their global genomic status
into two main types: microsatellite instable tumors (MSI), further classified as high or low, and
microsatellite stable (MSS) tumors (also known as tumors with chromosomal instability). This
taxonomy plays a significant role in determining pathologic, clinical and biological characteristics
of CRC tumors [62]. Thus, MSS tumors are characterized by changes in chromosomal copy number
and show worse prognosis [63, 64]. On the contrary, the less common MSI tumors (about 15%
of sporadic CRC) are characterized by the accumulation of a high number of mutations and show
predominance in females, proximal colonic localization, poor differentiation, tumor-infiltrating lym-
phocytes and a better prognosis [65]. In addition, MSS and MSI tumors exhibit different responses
to chemotherapeutic agents [66,67]. Regarding molecular progression, it is also well established that
each subtype arises from a distinctive molecular mechanism. While MSS tumors generally follow
the classical adenoma-to-carcinoma progression (sequential apc-kras-tp53 mutations) described
in the seminal work by Vogelstein and Fearon [68], MSI tumors results from the inactivation of
DNA mismatch repair genes like mlh-1 [65].

We instantiated the pipeline discussed as Online Methods to process MSI-HIGH - hereby shortly
denoted as MSI - and MSS colorectal tumors collected from the The Cancer Genome Atlas project
“Human Colon and Rectal Cancer” (COADREAD, [59]) – see Supplementary Figure S1. Details on
the implementation are available as Supplementary Material, as well as source code to replicate this
study. COADREAD has enough samples to implement a training/test statistical validation of our
findings - see Supplementary Table S1 and Supplementary Figure S2. In brief, we split subtypes by
the microsatellite status of each tumor, and select somatic mutations and focal CNAs in 33 driver
genes manually annotated to 5 pathways in [59] - wnt, raf, tgf-β, pi3k and p53. Groups of
exclusive alterations were scanned by MUTEX [23] (Supplementary Table S2), and fetched by [59]
using the MEMO [60] tool; groups were used to create CAPRI’s formulas, see Supplementary Table
S3. Data for MSI tumors are shown in Figure 2, for MSS tumors are shown in Supplementary
Figure S3 and S4. CAPRI was run, on each subtype, by selecting recurrent alterations from the
pool of 33 pathway genes and using both AIC/BIC regularizators.

The model inferred for MSS tumors is in Figure 3, the model for MSI-HIGH ones is in Figure 4.
Each edge in the graph mirrors selective advantage among the upstream and downstream nodes, as
estimated by CAPRI from training datasets (statistics: p < 0.05, 100 non-parametric bootstraps);
only the minimum amount of edges is selected to maximize the likelihood of data (see Online
Methods). As statistical validation of these models, we mark those relations that display significant
p-values in the test datasets, and rank them if they contribute (or otherwise) to max-likelihood.
For some edges it is not possible to provide a validation, as some upstream or downstream event
may be missing in the test dataset, while other edges do not show statistical evidence in the test
datasets.

2We remark that in-vitro and in-vivo experiments could provide an optimal validation for the newly suggested
selective advantage relations and hypotheses, yet this is out of the scope of the current work.
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Figure 3: Progression model of MSS colorectal tumors. Selective advantage relations
inferred by CAPRI constitute MSS progression; input dataset in Supplementary Figure S3 and S4.
Formulas written on groups of exclusive alterations are expanded with colors representing the type
of exclusivity (red for hard, orange for soft). We mark also those relations that display significant p-
values in the test dataset, and rank them if they contribute (or otherwise) to max-likelihood. For all
MSS tumors in COADREAD, we find at high-confidence selection of sox9 alterations by fbxw7
mutations (with AIC), as well as selection of alterations in pi3k genes by the kras mutations
(direct, with BIC, and via the MEMO group, with AIC).

Interpretation of the models. Our models capture the well-known features distinguishing MSS
and MSI tumors, e.g., apc-kras-tp53 primary events and chromosomal aberrations in MSS, versus
braf mutations in MSI, which lacks chromosomal alterations. Of all 33 driver genes, 15 are common
to both models - e.g., apc, braf, kras, nras, tp53 and fam123b among others (mapped to
pathways like wnt, mapk, apoptosis or activation of T-cell lymphocites), although in different
relationships (position in the model), whereas new (previously un-implicated) genes stood out from
our analysis and deserve further research.

MSS (Microsatellite Stable). In agreement with the known literature, we identify kras, tp53 and
apc as primary and pten as late events in the carcinogenesis, as well as nras and kras deter-
mining two independent evolution branches, the former being “selected by” tp53 mutations,
i.e. being a downstream event in the model, the latter ”selecting for” pik3ca mutations.
The leftmost portion of the model links many wnt genes, in agreement with the observation
that multiple concurrent lesions affecting such pathway confer selective advantage. In this
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Figure 4: (A) Progression model of MSI-HIGH colorectal tumors. Selective advantage
relations inferred by CAPRI constitute MSI-HIGH progression; input dataset in Figure 2. Formulas
written on groups of exclusive alterations are expanded as in Figure 3. We note the high-confidence
in apc mutations selecting for pik3ca ones, both in training and test via BIC, as well as selection
of the MEMO group (erbb2/pik3ca mutations or igf2 deletions) predicted by AIC. Similarly, we
find a strong selection trend among mutations in erbb2 and kras. For each relation, confidence
is annotated as in Figure 3. (B) Predicting clonal expansion from the model. Evolution-
ary trajectories from two example selective advantage relations. apc-mutated clones shall enjoy
expansion, up to acquisition of further selective advantage via mutations or homozygous deletions
in nras. These cases should be representative of different individuals in the population, and the
ensemble-level interpretation should be that “apc mutations select for nras alterations, in hard
exclusivity” as no sample harbour both alterations. A similar argument can show that the clones
of patients harbouring distinct alterations in acvr1b - and different upstream events - will enjoy
further selective advantage by mutating tgfbr2 gene.
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respect, our model predicts multiple routes for the selection of alterations in sox9 gene, a
transcription factor known to be active in colon mucosa [69]. Its mutations are indeed se-
lected by apc/ctnnb1 alterations or by fbxw7, an early mutated gene that both directly,
and in a redundant way via ctnnb1, relates to sox9. The sox family of transcription factors
have emerged as modulators of canonical wnt/β-catenin signaling in many disease contexts,
with evidences that multiple sox proteins physically interact with β-catenin and modulate
the transcription of wnt-target genes, as well as with evidences of regulating of sox’s ex-
pression by wnt, resulting in feedback regulatory loops that fine-tune cellular responses to
β-catenin/tcf activity [70]. Also interestingly, fbxw7 has been previously reported to be
involved in the malignant transformation from adenoma to carcinoma [71], and it was recently
shown that SCFFbw7, a complex of ubiquitin ligase that contains such gene, targets several
oncogenic proteins including sox9 for degradation [72]; this relation has high-confidence also
in the test dataset. The rightmost part of the model involves genes from other pathways, and
outlines the relation between kras and the pi3k pathway. We indeed find, consistently in
the training and test, selection of pik3ca mutations by kras ones, as well as selection of the
whole MEMO module, which is responsible for the activation of the pi3k pathway [59]. smad
proteins relate either to kras or braf genes, and fam123b, tcf7l2 converge in dkk2 or
dkk4 which is interesting as these four genes are implicated in the wnt signalling pathway.
It is also worth pointing that the model predicts a selection trend among sox9/arid1a and
atm/fam123b; however, given that the within these couples the events have very similar
frequencies, it is not possible to confidently assess the direction of the selectivity relations,
which, in fact, are found to be reversed in the test dataset.

MSI (Microstaellite Instable). In agreement with the current literature, braf is the most com-
monly mutated gene in MSI tumors [73]. CAPRI predicted convergent evolution of tumors
harbouring fbxw7 or apc mutations towards deletions of nras gene, as well as selection of
smad2 or smad4 mutations by fam123b mutations, for these tumors. Relevant to all MSI
tumors seems again the role of the pi3k pathway. Indeed, a relation among apc and pik3ca
mutations was inferred with a high confidence in both training and test datasets, consistent
with recent experimental evidences pointing at a synergistic role of these mutations, which
co-occurr in the majority of human colorectal cancers [74]. Similarly, we find consistently
a selection trend among apc and the whole MEMO module. Interestingly, both mutations
in apc and erbb3 select for kras mutations, which might point to interesting therapeutic
implications (see Discussion). In contrast, mutations in braf mostly select for mutations
in acvr1b, a receptor that once activated phosphorylates smad proteins. It forms receptor
complex with acvr2a, a gene mutated in these tumors that selects for tcf7l2 mutations.
Tumors harbouring tp53 mutations are those selected by exhibit mutations in axin2, a gene
implicated in wnt signalling pathway, and related to instable gastric cancer development [75].
Inactivating mutations in this gene are important, as it provides serrated adenomas with a
mutator phenotype in the MSI tumorigenic pathway [76]. Thus, our results reinforce its
putative role as driver gene in these tumors.

By comparing these models we can find similarity in the prediction of a potential new early event
for CRC formation, fbxw7, as other authors have recently described [71]. This tumor suppressor
is frequently inactivated in human cancers, yet the molecular mechanism by which it exerts its anti-
tumor activity remains unexplained [77], and our models provide a new hypothesis in this respect.
We also note that genes involved in these models exhibit distinctive functional features, suggesting
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Figure 5: (A) Application of ensemble-level algorithms to individual-patient data. With
data provided by Gerlinger et al. in [49], we infer a patient-specific clonal evolution from 6 biopsies
of a clear cell renal carcinoma (5 primary tumor, 1 from the thrombus in the renal vein, VT).
Validated non-synonymous mutations are selected for vhl, smarca4, pten, pbmr1 (p.Lys1282fs
and p.Leu207fs), arid1a, atm and msh6 genes. CNAs are detected on 12 chromosomes. For
this patient, both region-specific allele frequencies and Bernoulli profiles are provided. Thus, we
can extract a clonal tree, signature and diffusion of each clone, by the unsupervised CAPRESE
algorithm [43]. (B) Clonal expansion in patient RMH004. The unsupervised model inferred
by CAPRESE predicts an analogous clonal expansion observed in [49], and extracted with most
parsimonious phylogeny tree reconstruction from allelic frequencies, and hand-curated for selection
of the optimal model. For simplicity, we show only expansion of the sub-clones harbouring pten’s
frame shift mutation. (C) Inference from single-cell data. We estimate average precision
and recall from single-cell sequencing data sampled from the phylogeny history of patient RMH004
(details as Supplementary Material). Sampled datasets vary for number of sequenced cells, n ≤ 200,
and noise in the data - as a model of potential experimental errors in data collection, manipulation
and analysis.

that each one imparts alterations in different pathways in the early stages of carcinogenesis.
Private alterations of these tumors denote potential different progression mechanisms. Muta-

tions or CNAs specific to MSS tumors involve intracellular genes like ctnnb1 or pten. In contrast,
private MSI mutations appear in membrane receptors such as acvr1b, acvr2a, erbb3, lrp5,
tgfbr1 and tgfbr2; as well as in secreted proteins like igf2.This suggests that MSI tumors need
to disturb cell-cell and/or cell-microenvironment communication to grow, as their lesions accumu-
late in private pathways like cytokine-cytokine receptor, endocytosis and tgf-β signalling pathway.
On the other hand, genes specific to MSS tumors are implicated in p53, mTOR, sodium transport
and inositol phosphate metabolism.

Inference of patient-specific clonal evolution with CAPRESE

We also discovered that the CAPRESE [43] algorithm can be used to successfully reconstruct the
clonal architecture in individual patients, an instance of tree-phylogeny of Figure 1. This result is
indicative of the power of the selective advantage scores à-la-Suppes [45], even outside the scope of
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cross-sectional data. We performed our analysis on data from Gerlinger et al., who have recently
used multi-region targeted exome sequencing (> 70x coverage) to resolve the genetic architecture
and evolutionary histories of ten clear cell renal carcinomas [49].

Besides quantification of intra-tumor heterogeneity, their work found that loss of the 3p arm
and alterations of the Von Hippel-Lindau tumor suppressor gene vhl are the only events ubiquitous
among their patients. In Figure 5 we show the clonal evolution estimated for one of those patients,
RMH004, computed with CAPRESE (shrinkage coefficient λ = 0.5, time < 1 sec) from the Bernoulli
0/1 profiles provided in Supplementary Table 3 and Figure 4 of [49], with non-parametric bootstrap
confidence (time < 6 sec). This model may be compared to the one inferred by processing the
region-specific VAF with a max-mini optimization of most parsimonious evolutionary trees [78], and
performing selection-by-consensus when multiple optimal solutions exist - Supplementary Figure 9
in [49]. CAPRESE requires no arbitrarily defined curation criteria to select the optimal tree, as it
constructively searches for a solution which, in this case, is analogous in suggesting parallel evolution
of subclones via deregulation of the swi/snf chromatin-remodeling complex – i.e., as may be noted
from multiple clones with distinct pbmr1 mutations. Finally, the approach in [78], estimates also
the number of non-synonymous mutations acquired on a certain edge of the tree. While our model
is silent about this, it is very likely due to the limitations imposed by the lower-resolution and small
sample size of the data – 9 events from 8 regions, and not the VAFs for all alleles.

Single-cell synthetic data. We estimate the efficiency of our approach to single-cell sequencing
data, as if it was collected from patient RMH004 (synthetic data generated from the clonal phylogeny
architecture of Figure 5). To mimic a poor reliability of this technology, to each sampled cell a
noise model which accounts for false positives and negatives in the calls of their genomic alterations
is applied. Performance is measured as the fraction of true-positive and negative ancestry relations
inferred among cells (precision and recall), as a function of the number of sequenced cells and noise
level. Results indicate a very good performance even with very small number of cells and reasonable
noise levels, hinting at a promising application with this technology. Complete details for synthetic
data generation and further performance measures are provided as Supplementary Material.

Discussion

In this paper, we have continued our exploration of the nature of somatic evolution in cancer, but
with an emphasis on colorectal cancer and jointly with epidemiologists who study the disease. The
nature of the proposed model of somatic evolution in cancer not only supports the heterogeneity
and temporality seen in tumor population, but also suggests a selectivity/causality relation that
can be used in analyzing (epi)genomic data and exploited in therapy design. We have shown in
this paper that our approach can be effective in extracting evolutionary trajectories for cancer
progression both at the level of populations and individual patients. In the former case we have set
up a pipeline to minimize the confounding effects imputable to tumor heterogeneity, and we have
applied it to a highly-heterogeneous cancer such as colorectal. In the latter we have have shown
how our techniques can be readily applied to reconstruct clonal philogeny from multi-sample data,
with an application to clear renal cell carcinoma.

Emphasis of this work is on the population-level inference of cancer progression. Our pipeline has
been able to infer the role of many known events in colorectal cancer progression, and sheds light
on the roles of new players such as fbxw7, sox9 or axin2 which deserve further investigation.
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In colon carcinogenesis, although each model identifies characteristic early mutations suggesting
different initiation events, both model appear to be “converging” in common pathways and functions
such as wnt or mapk. However, each progression model recapitulates private functions related to
microenvironment communication in the case of MSI tumors and with intracellular signalling in the
case of MSS tumors.

Our models might have implications also for treatment strategies. For instance, some of the
relations that we observed in our models might point to cancer hallmarks to be exploited for therapy
design. As an example, the interesting relation between sox9 and fbxw7 in microsatellite stable
tumors, interpreted together with genes such as tp53, might point to a DNA fragmentation and cell
cycle arrest hallmark as these genes are sensitive for cell-cycle regulation - via the p53 protein - and
for degradation and senescence, via sox9. This would also be supported by other cancer studies
since transcription factor sox9 seems to play an important role in colon cancer development [79].

Personalized treatment strategies might also benefit from our analyses. In fact, kras status
is currently used as a predictive biomarker for the selection of CRC patients susceptible to be
treated with anti-egfr targeted therapy [80]. However, resistance in kras wild-type tumors has
been observed that could be caused by mutated genes in the same pathway other than kras [81].
Models could then be useful to detect these alternative mutated genes, like nras or erbb family,
which are characteristic of the population of observed tumors.

Remarkably, we could prove the effectiveness of our approach in inferring the clonal evolutionary
history of single cancer patients as well, by showing a successful application to multiple-biopsy data
on clear cell renal carcinoma. We also demonstrated that, in case of single-cell synthetic data
generated by sampling a real clonal phylogenetic architecture, our inference techniques provide an
excellent performance with a very limited number of samples and also in presence of a certain level
of experimental noise. Even if further investigations on this topic are underway, these preliminary
results point at the efficiency of our algorithmic framework in inferring the clonal architecture of
single cancer patients, especially in anticipation of the expected increasing availability and reliability
of single-cell sequencing data.

Authors contribution. The pipeline was discovered and realized by MA’s Bioinformatics lab at
University of Milan-Bicocca, within a project led and supervised by GC. GC, AG and DR designed
the pipeline, GC, DR and LDS coded and executed it. Data gathering and models interpretation
was done by GC, LDS, DR, AG together with VM and RSP. GM, MA, VM and BM provided
overall organizational guidance and discussion. GC, AG and RSP wrote the original draft of the
paper, which all authors reviewed and revised in the final form. This work follows up on an earlier
project started by BM and involving BIMIB, subsequently including ICO after the 2014 School on
Cancer, Systems and Complexity (CSAC).

Financial support. MA, GM, GC, AG, DR acknowledge Regione Lombardia (Italy) for the re-
search projects RetroNet through the ASTIL Program [12-4-5148000-40]; U.A 053 and Network
Enabled Drug Design project [ID14546A Rif SAL-7], Fondo Accordi Istituzionali 2009. BM ac-
knowledges founding by the NSF grants CCF-0836649, CCF-0926166 and a NCI-PSOC grant. VM
and RSP acknowledge the Instituto de Salud Carlos III supported by The European Regional De-
velopment Fund (ERDF) grants PI11-01439, PIE13/00022, the Spanish Association Against Cancer
(AECC) Scientific Foundation, and the Catalan Government DURSI, grant 2014SGR647.

13

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 24, 2015. ; https://doi.org/10.1101/027359doi: bioRxiv preprint 

https://doi.org/10.1101/027359


References

[1] Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

[2] Fidler, I. J. Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer
Research 38, 2651–2660 (1978).

[3] Dexter, D. L. et al. Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer
Research 38, 3174–3181 (1978).

[4] Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and
ecological process. Nature Reviews Cancer 6, 924–935 (2006).

[5] Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

[6] Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674
(2011).

[7] Huang, S., Ernberg, I. & Kauffman, S. Cancer attractors: a systems view of tumors from a
gene network dynamics and developmental perspective. In Seminars in Cell & Developmental
Biology, 7, 869–876 (Elsevier, 2009).

[8] Futreal, P. A. et al. A census of human cancer genes. Nature Reviews Cancer 4, 177–183
(2004).

[9] Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

[10] Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell 153, 17–37 (2013).

[11] Loohuis, L. O., Witzel, A. & Mishra, B. Cancer hybrid automata: model, beliefs and therapy.
Information and Computation 236, 68–86 (2014).

[12] Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nature Genetics
45, 1134–1140 (2013).

[13] Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome - biological and
translational implications. Nature Reviews Cancer 11, 726–734 (2011).

[14] Weinberg, R. The Biology of Cancer (Garland Science, 2013).

[15] Albini, A. & Sporn, M. B. The tumour microenvironment as a target for chemoprevention.
Nature Reviews Cancer 7, 139–147 (2007).

[16] Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

[17] Nowak, M. A., Michor, F. & Iwasa, Y. The linear process of somatic evolution. Proceedings
of the National Academy of Sciences 100, 14966–14969 (2003).

[18] Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Medicine
10, 789–799 (2004).

[19] Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science
318, 1108–1113 (2007).

14

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 24, 2015. ; https://doi.org/10.1101/027359doi: bioRxiv preprint 

https://doi.org/10.1101/027359


[20] Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global
genomic analyses. Science 321, 1801–1806 (2008).

[21] Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme.
Science 321, 1807–1812 (2008).

[22] Nowak, M. A. Evolutionary Dynamics (Harvard University Press, 2006).
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Online Methods

Our cancer bioinformatics pipeline is versatile and can be easily customized for multiple purposes.
Below, we review how its features may be selected according to the specific research goals, input
data, and cancer type.

A general pipeline to infer ensemble-level progression models

For each of n tumors (n patients) we assume relevant (epi)genetic data to be available. We do
not put constraints on data gathering and selection, leaving the user to decide the appropriate
“resolution” of the input mutational data. For instance, one might decide whether somatic mu-
tations should be classified by type, or aggregated. Or, one might decide to lift focal CNAs to
the wider resolution of cytobands or full arms. These choices depend on data and on the overall
understanding of such alterations and their functional effects for the cancer under study, and no
single all-encompassing rationale may be provided.

Step 1: Reducing inter-tumor heterogeneity by cohort subtyping. We might wish to
identify cancer subtypes in the heterogeneous mixture of input samples. In some cases the classifi-
cation can benefit from clinical biomarkers, such as evidences of certain cell types [82], but in most
cases we will have to rely on multiple clustering approaches at once, see, e.g., [59, 61].

Many common approaches cluster expression profiles [83], often relying on non-negative matrix
factorization techniques [84] or earlier approaches such as k-means, Gaussians mixtures or hierar-
chical/spectral clustering - see the review in [85]. For glioblastoma and breast cancer, for instance,
mRNA expression subtypes provides good correlation with clinical phenotypes [86–88]. However,
this is not always the case as, e.g., in colorectal cancer such clusters mismatch with survival and
chemotherapy response [86]. Clustering of full exome mutation profiles or smaller panels of genes
might be an alternative as it was shown for ovarian, uterine and lung cancers [89,90]

Step 2: selection of driver events. In subtypes detection, with more alterations available
it becomes easier to find similarities across n samples, as features selection gains precision. In
progression inference, instead, one wishes to focus on m � n driver alterations, which ensure also
an appropriate statistical ratio between sample size (n) and problem dimension (m).
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Multiple tools filter out driver from passenger mutations. MutSigCV identifies drivers mutated
more frequently than background mutation rate, [91]. OncodriveFM, avoids such estimation but
looks for functional mutations [92]. OncodriveCLUST scans mutations clustering in small regions
of the protein sequence [93]. MuSiC uses multiple types of clinical data to establish correlations
among mutation sites, genes and pathways [94]. Some other tools search for driver CNAs that affect
protein expression [95]. All these approaches use different statistics to estimate signs of positive
selection, and we suggest using them in an orchestrated way, as done in some platforms [96]. Notice
that driver genes will likely differ across subtypes, mimicking the different molecular properties of
each group of samples.

Step 3: fitness equivalence of exclusive alterations. When working at the ensemble-level,
identification of “groups of equivalent but alternative” mutually exclusivity alterations is crucial,
prior to progression inference [33]. A plethora of tools can be used; greedy approaches [97, 98] or
their optimizations, such as MEMO, which constrain search-space with network priors [60]. This
strategy is further improved in MUTEX, which scans mutations and focal CNAs for genes with
a common downstream effect in a curated signalling network, and selects only those genes that
significantly contributes to the exclusivity pattern [23]. Other tools, instead, employ advanced
statistics or generative approaches without priors [99–104].

In the fitness equivalent groups, we distinguish between hard and soft exclusivity, the former
assuming strict exclusivity among events, with random errors accounting for possible overlaps, the
latter admitting co-occurrences. [23]. CAPRI is the only algorithm where relations among group
of genes can be input as “testable hypotheses” via logical Boolean formulas. In this case, we can
use logical connectives such as ⊕ (the logical “xor”) as a proxy for hard-exclusivity, and ∨ (the
logical “disjunction”) as a proxy for soft-exclusivity3. For example, these can be used to test wether
colorectal tumors “start” prevalently from β-catenin deregulation, i.e., apc ∨ ctnnb1 , and if they
further progress exclusively (⊕) through kras or nras alterations. In general, as this testing-feature
leaves the inference unbiased - see [33] - arbitrary hypotheses on significantly mutated subnetworks
could be considered as well [105,106].

Step 4: progression inference and confidence estimation. Finally, we use CAPRI to re-
construct cancer progression models of each identified molecular subtype, provided that there exist
a reasonable list of driver events and the groups of fitness-equivalent exclusive alterations.

CAPRI’s input is a binary n × (m + k) matrix M with n samples, m driver alteration events
(Bernoulli 0/1 variables) and k testable formulas. CAPRI first scans pairwise M to identify a set
of S plausible selective advantage relations, which then reduces to the most relevant ones, S∗ ⊂ S.

Construction of S depends on the number of non-parametric bootstrap iterations and confidence
p-values for estimating selective advantage among input events x and y. CAPRI postulates that
“x selects for y” if it estimates that “x is earlier than y” and that “x’s presence increases the
probability of observing y” [45]. These conditions are implemented with these inequalities

p(x) > p(y) p(y | x) > p(y | ¬x) (1)

for which we get p-values by Mann-Withney U Testing. Here, p(·) is an empirical marginal proba-
bility, p(· | ·) is a conditional, and ¬x is the negation of x.

3Logical disjunction of a set of operands is true if and only if one or more of its operands is true. For this reason,
if we shall use that as a model of soft-exclusivity, we shall also check that the majority of observations indeed shows
an exclusivity trend, meaning that few cases of co-occurent observations happen.
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Optimization of S is central to our tolerance to false positives and negatives in S∗. CAPRI’s
implementation in TRONCO [44] selects from S a subset of relations by optimizing the score with
regularization

S∗ = arg min
Ŝ⊂S

{
−2 log[L(Ŝ |M)] + θ|Ŝ|

}
, (2)

where L(·) is the model likelihood; the estimated optimal solution is S∗.
Different values of θ lead to different tolerance to errors in S∗, the Akaike Information Criterion

(AIC) being for θ = 2, the Bayesian Information Criterion (BIC) for θ = log(n). Both scores are
approximately correct; AIC is more prone to overfitting but likely to provide also good predictions
from data and is better when false negatives are more misleading than positive ones. BIC is more
prone to underfitting errors, thus is more parsimonious and better in opposite cases. As often done,
we suggest to combine both approaches and distinguish which relations are selected by BIC/AIC.

Model confidence can be estimated with non-parametric, parametric or statistical bootstrap [107].
These procedures re-sample datasets to provide a confidence to every selective advantage relation
and to the overall model. Bootstrapped datasets are randomly generated by re-shuffling data and
seed (non-parametric), just seed (statistical) or by sampling from the model (parametric). CAPRI’s
other statistics include hypergeometric tests to assess how significant is the overlap between pairs
of alterations.
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