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Abstract

Cellsthat mutate or commit to a specialized function (differentiate) often undergo conversions that are effectively irreversible.
Slowed growth of converted cells can act as a form of selection, balancing unidirectional conversion to maintain both cell types
at a steady-state ratio. However, when one-way conversion is insufficiently counterbalanced by selection, the original cell type
will ultimately be lost, often with negative impacts on the population’s overall fitness. The critical balance between selection
and conversion needed for preservation of unconverted cells and the steady-state ratio between cell types depends on the
spatial circumstances under which cells proliferate. We present experimental data on a yeast strain engineered to undergo
irreversible conversion: this synthetic system permits cell type-specific fluorescent labeling and exogenous variation of the
relative growth and conversion rates. We find that populations confined to grow on a flat agar surface are more susceptible than
their well-mixed counterparts to fitness loss via a conversion-induced “meltdown.” We then present analytical predictions for
growth in several biologically-relevant geometries – well-mixed liquid media, radially-expanding two-dimensional colonies,
and linear fronts in two dimensions – by employing analogies to the directed percolation transition from non-equilibrium
statistical physics. These simplified theories are consistent with the experimental results.
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Introduction

Irreversible change is an important aspect of both devel-
opment (1) and evolution (2). Many mature tissues retain
stem cells that replenish specialized cells lost to damage
or aging. Proliferation balanced by irreversible differentia-
tion can maintain stem and specialized cells in a dynamic
steady-state (3), but an imbalance between these forces can
eliminate the stem cell population, with dire health con-
sequences (4). Like differentiation, harmful mutations can
be effectively irreversible; natural selection can check their
spread if the mutants reproduce more slowly, but if the muta-
tion rate is too great or selection too weak, these mutations
can fix permanently. Such a mutational meltdown is known
as Muller’s ratchet in the population genetics literature (5, 6).
We will employ the generic term “conversional meltdown”
to describe the loss of an unconverted cell type due to an
unfavorable balance between mutation and selection, differ-
entiation and proliferation, and, more generally, any form of
irreversible conversion and differential growth. The abrupt
shift from maintenance to extinction of the unconverted cell
type as conversion rate increases is analogous to the well-
studied directed percolation phase transition in statistical
physics (7–9).

Though most analyses of this important phase transition
have focussed on well-mixed populations, spatial structure
can play a crucial role (8, 10, 11). Here, we investigate
conversional meltdown for one-dimensional growth without
subsequent migration, a geometry relevant in natural circum-
stances such as population expansions and growth of the
plant meristem, as well as in experimentally-tractable sys-
tems such as microbial range expansions (12, 13). Yeast (13)
and immotile bacteria (12) on Petri dishes grow in colonies
that remain relatively flat, proliferating primarily at the edges
(14). Due to the small effective populations which compete
to divide into virgin territory, the thin region of dividing cells
at the frontier can be treated as a one-dimensional popu-
lation. Nutrient depletion in the colony core preserves the
colony interior, which reflects the past history of such popu-
lations: the balance between cell types can be studied using
fluorescence detection techniques. When a particular cell
type has locally fixed at the colony frontier, its descendants
form a “sector” as shown in blue in Fig. 1(a). The geometric
properties of the spatial sectors reflect the underlying evo-
lutionary dynamics: for example, the sector opening angleθ
provides an estimate of the selective advantage of cells in the
sector relative to their neighbors (13, 14).
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Figure1: (a) A micrograph of the edge of a two-dimensional
budding yeastS. cerevisiaecell colony grown on a Petri dish.
In this linear range expansion (characterized by an conver-
sion rateμ and a selective advantages of blue cells over
yellow cells), the blue unconverted cells form a spatial sec-
tor with an opening angleθ marked with overlaid black lines.
With each cell division, the blue cells enjoying a selective
advantages convert to the yellow ones at a rateμ, which
creates yellow patches within the blue sector. The growth, or
time-like, direction is indicated. (b) A phase diagram indi-
cating where theory predicts the eventual extinction of the
blue strain as a function of its selective advantages and
conversion rateμ for a linear range expansion. In the yel-
low “inactive” phase, a genetic sector formed by a blue cell
always dies out, leading to a fully converted population. In
the blue “active” phase, there is a non-zero probability of
forming a surviving cluster, leading to a population with
conversion occurring stochastically. The transition line for a
well-mixed population is also shown for comparison (dashed
line). In the well-mixed case, the active phase forms a much
larger region in the(μ, s)-plane. The insets show examples
of simulated sectors. Note the resemblance between the sec-
tor in the active phase and the experimental sector in part
(a).

This investigation focuses on the effect of spatial popu-
lation structure on the conversional meltdown phase transi-
tion. We performin vivo experiments, complemented with
analytical and simulation-based approaches, which show the
striking effects of spatial structure on evolutionary dynam-
ics. We employ a strain of budding yeast engineered to
undergo irreversible conversions with independently tunable
frequency and fitness cost to study population dynamics in

well-mixed liquid media, as well as microbial range expan-
sions on Petri dishes. We find that the spatial distribution
of the cells qualitatively changes the dynamics. Only adja-
cent individuals in spatially distributed populations compete,
and the local effective population size is thus small rela-
tive to the total population. The small number of competing
individuals amplifies the important of number fluctuations,
i.e., genetic drift. We will show through experiments, sim-
ulation, and theory that this enhanced genetic drift signif-
icantly favors extinction, relative to well-mixed situations.
This enhancement of extinction may have important conse-
quences for diverse processes including tissue renewal (3),
meristematic growth (15), and mutation-selection balance
(16), since the relative proliferation of the unconverted strain
must occur faster in a spatially distributed population than
expected from experiments on well-mixed populations to
prevent extinction of the unconverted population.

Crucially, the extinction transition we study here is dis-
tinct from extinction due to neutral competition dynamics.
For example, previous studies of stem cells in intestinal
crypts (3, 10, 17) found that different stem cell clones may
compete until a single clone takes over the whole popula-
tion, while the other clones go extinct. These previous stud-
ies found that the clones are neutral with respect to each
other, so that any one of them may take over. However, apart
from this competition, the clones also terminally differenti-
ate into other cell types. The evolutionary dynamics of this
differentiation process is not expected to be neutral, as the
differentiated cells may reproduce more slowly and suffer a
selective disadvantage. Moreover, even when the selection
is weak, the associated extinction transition is of a different
type from neutral competition: its dynamical scaling laws are
governed by spatial mutation-selection balance and not by
genetic drift alone. Since different cell types generically have
different growth rates, we expect that our theory and experi-
mental results describe features of extinction transitions in a
broad range of biological systems.

Materials and Methods

Microbes such as the budding yeast,Saccharomyces cere-
visiae, are easily cultured in both test tubes and on Petri
dishes. This makes them excellent candidates for compar-
ing well-mixed and two-dimensional spatial dynamics. Con-
struction of a yeast strain which undergoes irreversible con-
version events with exogenously-tunable conversion rates
and fitness cost was described in Ref. (18). Briefly, aS.
cerevisiaestrain was genetically engineered to lose a cyclo-
heximide resistant ribosomal protein coding sequence via
excision of a fragment of DNA by site-specific recombi-
nation. The activity of Cre, the site-specific recombinase,
was controlled by varying the concentration ofβ-estradiol
in the medium as described by Lindstrom et al. (19). This
irreversible conversion event occurs once per cell division
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(duringmitotic exit) with a probabilityμ, which we will call
the conversion or mutation rate (per division). The proba-
bility μ depends on the ambientβ-estradiol concentration.
The cycloheximide resistant sequence (thecyh2r alleleof the
ribosomal protein L28 (20)) confers a measurable selective
advantage for the unconverted strain relative to the converted
strain when the strains are grown in the presence of cyclo-
heximide. The precise selection coefficients ≥ 0 associated
with this advantage is tunable by varying the cycloheximide
concentration in the medium. Both the conversion rateμ
and selection coefficients can be directly measured in well-
mixed media and tuned over more than an order of magni-
tude by selecting appropriateβ-estradiol and cycloheximide
concentrations. Since these compounds are not consumed by
the cells and diffuse readily through agar, and because yeast
colonies are not particularly thick, these measurements also
determineμ ands for populations grown on agar media.

To measure the fraction of converted versus uncon-
verted cells in the population over time, we labeled the two
cell types with fluorescent markers. Specifically, the cod-
ing sequence for the fluorescent protein mCherry is excised
along withcyh2r via the Cre-mediated recombination. After
the recombination event, an mCitrine fluorescent protein is
expressed, instead. This set-up allows us to monitor the
unconverted and converted cells using two different fluores-
cence channels. Throughout this manuscript, we have cho-
sen to color the unconverted, mCherry-expressing cells blue
and the converted, mCitrine-expressing cells yellow (see
Fig. 1(a), for an example).

To visualize the conversional meltdown (i.e., the directed
percolation transition), we produced linear range expansions
on 1% agar media with judiciously-chosenβ-estradiol and
cycloheximide concentrations. To initiate the expansion, a
thin strip of Whatman filter paper was submerged in a well-
mixed liquid containing unconverted and converted cells,
then placed in the center of the Petri dish; the linear colonies
were then imaged after seven days’ growth (corresponding
to about a1 cm advancement of the colony front) at 30◦C.
Theratio of unconverted to converted cells in the inoculum
was chosen to be small enough so that resulting sectors of
unconverted cells would typically be sufficiently separated
for easy analysis. Fig. 2 displays representative images for
colonies grown in a variety of agar media, the concentrations
of β-estradiol ([β-est]) and cycloheximide ([CHX]) used in
each, and the correspondingμ ands values (as determined
in well-mixed media at the same [CHX] and [β-est]). The
different preparations influence the range expansion dynam-
ics: we see that either increasingβ-estradiol concentrations
or decreasing cycloheximide will yield smaller blue sectors
in Fig. 2, indicating an approach to extinction of the uncon-
verted blue strain. We will also consider range expansions
in which we place a droplet of the yeast cell solution at the
center of the Petri dish, which then forms a circular colony
that spreads out radially.

Figure2: Frontiers of linear range expansions under differ-
ent growth conditions. In (a), theβ-estradiol concentration
in the agar is varied with a fixed cycloheximide concentra-
tion. The corresponding conversion ratesμ are indicated. In
the top-most panel, we indicate an opening sector angle. In
(b), the cycloheximide concentration is varied instead, tuning
the selective advantages of the blue strain over the yellow
over a broad range. Note that the sector angles get smaller as
we either increaseμ or decreases to approach the directed
percolation (conversional meltdown) transition.

Thus, we are able to manipulateμ ands in experiment by
varying the concentrations ofβ-estradiol and cycloheximide,
respectively, in either the nutrient medium for well-mixed
populations grown in test-tube, or in the agar for populations
grown on plates. Note that it is possible to varyμ ands over a
large range, covering values in the simulated phase diagram
in Fig. 1(b): in particular, we are able to tune through the line
separating the active and inactive phases and see extinction
of the unconverted strain. We will now present experimental
results on populations near this transition line.

Results and Discussion

Experimental Results

We first compare the steady-state concentration of uncon-
verted blue cells in well-mixed populations and two-
dimensional range expansions as a function of the mutation
rate μ and the blue cell selective advantages. We expect
that if μ is large enough compared tos, the fit blue strain
will be unable to survive in the population at long times,
and the average fraction of blue cells〈f〉 will eventually
decay to zero. However, ifμ is small, the fraction will
approach some non-zero steady-state valuef∞. We estimate
this value in the well-mixed populations by measuring the
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Figure3: The average steady-state fraction of unconverted
cells〈f〉 at long times in (a) well-mixed populations cultured
in a test-tube and in (b) two-dimensional range expansions.
The concentration for the range expansions was measured
by sampling cells at the edge of a circular colony after five
days of growth. The circles are the collected data points,
which are used to make the interpolated color density plot in
the background. The dashed lines are the theoretical predic-
tions of the phase transition lines (see section titled Theory
and Simulation). In (a), we expect that the transition occurs
aroundμ ≈ s. In (b), we find a significantly different line
shape, consistent withμ ≈ As2, with A ≈ 1.5 as the single
parameter fit to the data.

fraction of mCherry-expressing unconverted cells by flow
cytometry after enough generations to achieve a steady-state
(approximately 40), or until the unconverted fraction is no
longer measurable (18). Similarly, we estimate the fraction
of unconverted cells in colonies at steady-state by collecting
cells from the very edge of circular colonies after five days’
growth with a pipette tip and performing flow cytometry.
The population frontier inflates in the circular range expan-
sions, which has consequences for the dynamics. However,
the steady-state fractionf∞ is insensitive to this change in
geometry (9).

The experimental results in Fig. 3 illustrate the striking
effect of spatial fluctuations on the transition to extinction:
compared to the well-mixed case, there is a significantly
smaller section of the(μ, s) space that yields a non-zero
steady-state fraction of unconverted cells in the popula-
tion. The theoretical predictions for the phase boundaries

(described in detail in the next section) are consistent with
the experiment; We findμ ≈ s for the well-mixed popula-
tion andμ ≈ As2 for the populations grown on Petri dishes,
whereA ≈ 1.5 is a fitting parameter.

Figure4: Measured average opening angle of sectors formed
in experimental linear range expansions as a function of the
shortest distanceΔ from the critical line found in Fig. 3(b).
The dashed line shows the fit to the expected directed perco-
lation power law behavior discussed in the section titled The-
ory and Simulation (see Eq. 4). Inset: The black lines show
the position of the transition, as determined in Fig. 3(b). The
red crosses show the(μ, s) coordinates of all the growth
conditions used to grow the colonies in the experiment. The
distanceΔ is also shown for one of these points with a solid
red line.

It is also interesting to study the opening angleθ formed
by the sectors in linear range expansions as we approach
the phase transition line. The measured opening angles as
a function ofΔ are shown in Fig. 4. The values are collected
by approximating the opening sector angle from images of
the colony edges and averaging over many sectors. The error
bars are calculated from the standard deviations of the sector
angle measurements used to compute the averages. Growth
conditions corresponding to many different values ofμ and
s were used, as illustrated in the inset of Fig. 4. The experi-
ments are consistent with the theoretical prediction described
in detail in the next section, except for smallΔ. Note that in
this regime, the sector angles are quite small and it is difficult
to resolve them in the range expansion images. It would be
interesting to study this regime in more detail in the future
with better-resolved sector angle images to see if the directed
percolation theory describes the experiments, or if a more
sophisticated theory is necessary.

Theory and Simulation

We will now develop a theory for the observed experimental
results based on the well-studied directed percolation phase
transition (7). We begin with some approximations: As the
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yeastcell colony spreads across the agar plate, the evolu-
tionary dynamics of interest occur at the frontier where cells
settle virgin territory. Because yeast cells have low motility,
cells which are even a few cell diameters behind the advanc-
ing population front may not be able to contribute to the
population at the frontier, even if they continue to divide.
Hence, we expect that the effective population of cells at
the frontier which competes to divide into new territory is
small. Thus, we focus our theoretical analysis on the popu-
lation of cells living on a thin region at the colony frontier.
This assumption is consistent with a previous study of two-
dimensional colonies of mutualistic yeast, which also have
relatively small effective population densities (21). Then,
provided the yeast colony experiences a strong effective
surface tension that forces the colony boundary to remain
approximately circular, we may consider the dynamics along
a uniform, effectively one-dimensional flat front. This geom-
etry is consistent with microscopic observations of the yeast
colony frontier (13). Note that rough fronts can significantly
modify the nature of the extinction transition (22).

Consider the fractionf(x, t) of blue cells along a uni-
form, one-dimensional frontier at positionx and time t.
Every generation timeτg, the fractionf(x, t) will change
due to the conversion probabilityμ and the competition at the
frontier (which will depend on the selection coefficients).
For smalls andμ, the fractionf(x, t) will evolve according
to the stochastic differential equation of the stepping stone
model (11):

∂tf = Ds∂
2
xf + s̄f(1 − f) − μ̄f +

√
Dgf(1 − f) ξ, (1)

wheres̄ = s/τg, μ̄ = μ/τg, andξ ≡ ξ(x, t) is a Gaussian,
white spatio-temporal noise with zero mean,〈ξ(x, t)〉 = 0,
and unit variance:〈ξ(x, t)ξ(x′, t′)〉 = δ(t′ − t)δ(x′ − x).
The noise should be interpreted in the Itô sense (23), and
describes the stochastic birth-death processes of the cells at
the frontier, which have some effective genetic drift strength
Dg. We expect the scalingDg ∼ `/Nτg (11),where` is the
linear size of the frontier over which cells compete to divide
into virgin territory, andN is the number of these competing
cells. We expect̀ to be a few cell diameters. The diffusion
term Ds∂

2
xf describescell rearrangements caused by cell

divisions at the frontier with an effective spatial diffusion
constantDs ∼ `2/τg. The parametersDs andDg dependon
the details of the microbial colony structure. They are mea-
sured for various microbial colonies in Refs. (12, 21). We
will be primarily interested in how various solutions to Eq. 1
depend onμ ands, which we can control in the experiment.

Equation 1 belongs to the directed percolation universal-
ity class and exhibits a line of non-equilibrium phase tran-
sitions as a function ofμ ands (7). The transition line may
be found using Eq. 1 by examining sectors of unconverted
cells as in Fig. 1(b) (i.e., by using Eq. 1 to evolve an ini-
tial f(x, t = 0) with a localized “spike” of blue cells at
the origin), but a uniform initial condition also exhibits a

phase transition along the same phase boundary (9, 24). In
particular, if we start with all blue cells at the initial fron-
tier (f(x, t = 0) = 1), the average fraction of blue cells
〈f(x, t)〉x (averaged over the noiseξ in Eq. 1 and over all
positionsx along the frontier), will approach a non-zero
constant〈f(x, t)〉x → f∞ > 0 as t → ∞ in the active
phase and〈f(x, t)〉x → 0 in the inactive phase. A phase dia-
gram similar to the one illustrated in Fig. 1(b) may then be
constructed.

The directed percolation phase transition occurs along
a line given approximately byμ ≈ As2 for the range
expansions (9), compared toμ ∼ s for well-mixed popu-
lations, whereA is a constant of proportionality that will
depend onDs and Dg. We expect the noise termDg to
be important near the conversional meltdown transition. In
the strong noise limit, we derive an approximation forA
by mapping the sector boundaries to random walks. Then,
assuming the sectors do not collide, we find (9, 16, 25):
A ∼ D

1/2
s /(Dgτ

1/2
g ). We may roughly estimateA by using

measured values for the various parameters for a related
yeast strain studied in Ref. (21):Ds ≈ 15 μm2/hr, Dg ≈ 1.3
μm/hr, and τg ≈ 1.5 hr. With these estimates, we expect
A ≈ 2. Note that the effective population sizeN ≈ 3 is
quite small for these expansions, which is consistent with
the evolutionary dynamics being dominated by competition
at the very edge of the population. However, our growth con-
ditions and yeast strains are different from Ref. (21), and a
detailed check of the scaling ofA with Ds andDg is beyond
the scope of this paper. Hence, we useA as a fitting param-
eter. FittingA to our experimental results in Fig. 3 yields
A ≈ 1.5, which is close to our crude estimate.

It is also possible to understand the sector angles illus-
trated in Fig. 1(a) using properties of the directed percolation
universality class. First, note that a genetic sector formed
from an unconverted (blue) cell at the frontier will have an
opening angleθ given by (9)

θ = 2arctan

[
ξ⊥
ξ‖

]

, (2)

whereξ⊥/ξ‖ is the slope of the sector boundaries, andξ‖
andξ⊥ arecorrelation lengths parallel and perpendicular to
the growth direction. The opening angle can be measured
in experiment. Note that long time sector survival requires
we are in the active phase (see Fig. 1(b)), where there is
a non-zero probability that the unconverted cell type will
survive at long times. For each point(s, μ) in the phase dia-
gram we defineΔ ≡ Δ(s, μ) as the shortest distance to the
phase transition line. We will also change the sign ofΔ as
we cross the transition line, such thatΔ > 0 in the active
phase andΔ < 0 in the inactive phase. As we approach
the phase transition line from the active phase (Δ → 0 with
Δ > 0), we expect that the dynamics will be governed by
the directed percolation phase transition (9). In particular,
the slopeξ⊥/ξ‖ of the sector (measured near the population
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frontier) is predicted to be proportional to a power ofΔ:

ξ⊥
ξ‖

= aθΔν⊥(z−1), (3)

whereaθ is a constant of proportionality,z ≈ 1.581 is a
dynamical critical exponent, andν⊥ ≈ 1.097 is a spatial
correlation length exponent (24). The constant of proportion-
ality aθ is not universal and will depend on the position along
the transition line and on particular details of our model. So,
as we approach the directed percolation transition, the sector
angleθ is predicted to vanish according to

θ ≈ 2 arctan
[
aθΔ

ν(z−1)
]
≈ 2aθΔ

0.637. (4)

Unfortunately, the sector angle experimental results in Fig. 4
are too noisy to check the particular power-law behavior
θ ∼ Δ0.637 (althoughthe data is consistent with this behav-
ior). However, we can now check this particular power law
prediction via range expansion simulations.

Figure5: Average sector angles measured from 25600 sim-
ulations of two-dimensional range expansions as a function
of the distanceΔ away from the critical line separating the
active and inactive phases shown in Fig. 1(b). The inset
illustrates the shortest distanceΔ to the critical line in the
(s, μ)-plane. In the simulations, the distanceΔ is varied by
fixing s = 0.3 and varying the mutation rateμ. The range
expansion has a flat frontier of 4000 cells and is evolved for
4×104 generations.We initialize the populations with a sin-
gle unconverted cell at the frontier and average the opening
sector angle of all surviving sectors.

We simulate range expansions with flat, uniform fron-
tiers (corresponding to a linear innoculation) on a triangular
lattice with a single cell per lattice site. We take the fron-
tiers of actively dividing cells to be a single cell wide and
correspond to rows of the lattice. Cells at the frontier then
compete with their neighbors to divide into the next lattice
row. The probability of division is proportional to the cell
growth rate. The unconverted blue cells have a growth rate

normalized to 1, while the converted yellow cells grow with
rate 1 − s. This protocol implements the selective advan-
tage of the blue cells. After a cell division, the daughter cell
mutates with probabilityμ if it is unconverted (just as in the
designed yeast strain). These competition rules are a gen-
eralization of the Domany-Kinzel model updates (26). The
lattice model is expected to be in the directed percolation
universality class, as well. Our previous model, Eq. 1, is a
possible coarse-grained description of the lattice model with
` equal to the lattice spacing and an effective population size
N = 1 (see Ref. (9) for details).

It is straightforward to evolve sectors by considering ini-
tial frontiers with just a single blue cell surrounded by all yel-
low cells. Some examples of the resulting sectors are shown
in the insets of Fig. 1(b). The average angleθ subtended by
the blue cell sectors is measured by calculating the width of
a sectorW (t), averaged over all sectors that survive to time
t. Then, in the active phase, we expectW (t) ≈ 2ξ⊥/ξ‖t,
from which we may extract the slopeξ⊥/ξ‖ by fitting W (t)
to a linear function. The angle is then extracted from Eq. 2
for various distancesΔ away from the extinction transition
line in the(μ, s) plane (see inset of Fig. 5). We find excel-
lent agreement between simulation and Eq. 4 in Fig. 5. The
parameteraθ ≈ 0.88 is found by fitting.

Conclusion

We have examined an extinction transition using a geneti-
cally modified yeast strain that irreversibly converts from a
more to a less fit strain. This synthetic strain maintains many
sources of biological variability, including variability in
growth rate and sector angle, while providing exquisite con-
trol over conversion, relative growth rate, and visualization
of two cell types.

The experiments reveal that spatial dynamics enhances
conversional meltdown, a major qualitative prediction of the-
ory and simulations based on directed percolation ideas (9).
Spatial fluctuations enhance extinction through genetic drift,
which is much larger at population frontiers than in typical
well-mixed experiments. According to theory, the extinction
in a well-mixed population occurs whenμ ∼ s and when
μ ∼ s2 for a range expansion with a thin (approximately
one-dimensional) frontier. Hence, the unconverted strain is
maintained in a smaller region of the(μ, s) phase space in
the range expansion compared to the well-mixed case, as
shown in Fig. 3. We expect that this enhancement is generic.
The enhanced extinction probability might be observable in
other spatially structured populations, such as tissue growth
and natural range expansions. The enhanced extinction prob-
ability could have implications for maintaining stem cells
populations and for cancer.

We also studied the opening sector angles of clusters of
the fit strain spreading through a less fit population. In the
flat front approximation, this opening angle is expected to
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vanish with a directed percolation power law as we approach
the extinction transition (9). This power law was confirmed
by simulations and is qualitatively consistent with experi-
ments (8, 14). If front undulations are important, similar to
systems described by the Kardar-Parisi-Zhang equation (27)
or the noisy Burgers equation (28), the transition line dis-
cussed here in the context of directed percolation is expected
to be in a different universality class. We then expect simi-
lar power law behavior, but with different critical exponents.
Such power-law sector dynamics might be relevant for can-
cer, where driver mutations may spread through an other-
wise slowly-growing cancerous population while accumu-
lating irreversible, deleterious mutations (29). When many
deleterious mutations can accumulate in parallel, we expect
that there is an analogous extinction transition at which
additional mutations accumulate fast enough to lead to a
population collapse of the cells with the driver mutation
(16, 29, 30).

To better understand these dynamics in models
of precancerous tumors, we would need to consider
three-dimensional range expansions with effectively two-
dimensional frontiers, such as cells dividing at the sur-
faces of spherical masses of growing cells (31). In three-
dimensional populations, the extinction dynamics could be
quite different (30). Genetic drift is a weaker effect at two-
dimensional frontiers, and the phase diagram for extinction
will have a different shape. It would be interesting to exam-
ine three-dimensional range expansions of this synthetic
strain to explore how these different spatial dynamics influ-
ence the extinction transition. Experiments could be done
by embedding the yeast in soft agar, or growing them up
in cylindrical columns with nutrients supplied at the base, as
described in Ref. (32).
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