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Abstract

Understanding the structure and dynamics of cortical connectivity is vital to understanding cortical function.
Experimental data strongly suggest that local recurrent connectivity in the cortex is significantly non-random,
exhibiting, among other properties, above-chance bidirectionality, an overrepresentation of certain triangular
motifs, and a heavy-tailed distribution of synaptic efficacies. Additional evidence suggests significant
distance dependency to connectivity over a scale of several hundred micrometers, and particular patterns
of synaptic turnover dynamics. It is currently not understood what processes give rise to this combination
of features of cortical wiring. We present a spiking network model of a cortical slice culture which, via the
interactions of a few simple biologically motivated intrinsic, synaptic, and structural plasticity mechanisms,
qualitatively reproduces these non-random effects when combined with simple topological constraints. Our
model suggests that mechanisms of self-organization arising from a small number of plasticity rules provide a
parsimonious explanation for numerous experimentally observed non-random features of recurrent cortical
wiring. Interestingly, similar mechanisms have been shown to endow recurrent networks with powerful learning
abilities, suggesting that these mechanism are central to understanding both structure and function of cortical
synaptic wiring.

Author Summary

The problem of how the brain wires itself up has important implications for the understanding of both brain
development and cognition. We present a self-organizing neural network model incorporating just a handful
of plausible mechanisms of change and development alongside topological constraints. The model gives rise
to numerous non-random features which have been observed in experiments, but never before simultaneously
produced by a single model. The results imply that only a few simple mechanisms and constraints are
required to produce, at least to the first approximation, various characteristic features of a typical fragment
of brain microcircuitry. In the absence of any of these mechanisms, simultaneous production of all desired
features fails, suggesting a minimal set of necessary mechanisms for their production.

Introduction 1

The patterns of synaptic connectivity in our brains are thought to be the neurophysiological substrate of 2

our memories, and framework upon which our cognitive functions are computed. It is believed that a small 3

population of strong synapses forms a relatively stable backbone in recurrent cortical networks – perhaps the 4

basis of long-term memories – while a larger population of weaker connections forms a more dynamic pool with 5

a high rate of turnover [1–3]. It has been shown that much of the lateral recurrent connectivity of the layers 6

of the cortex is significantly non-random [4–6], with a focus on layer 5 (L5), as this is more conventionally 7
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examined via slice studies. It is an open question which non-random features are developed as a result of 8

direct genetic programming, neural plasticity under structured input, and spontaneous self-organization. We 9

examine here several noted non-random features of recurrent cortical wiring that we believe can be explained 10

as the result of spontaneous self-organization — specifically, self-organization driven by the interaction of 11

multiple neural plasticity mechanisms under physiological constraints. The features we will examine are 12

the heavy-tailed, log-normal-like distribution of synaptic efficacies or dendritic spine sizes [6–10] and their 13

associated synaptic dynamics, and the overrepresentation of bidirectional connectivity and certain triangular 14

graph motifs [6]. Understanding the development of micro-structure in the cortex has significant implications 15

for the understand of both developmental and cognitive / computational processes as well. Such insight 16

would be invaluable in understanding the root causes of cognitive and developmental impairments, as well as 17

understanding better the nature of the computational mechanisms employed by the brain. 18

The interaction of multiple plasticity mechanisms, such as synaptic scaling and Hebbian plasticity has 19

been studied before [11, 12], with results suggesting that the interactions for such mechanisms are useful for 20

the formation and stability of patterns of representation. However, we desire a more detailed look at how such 21

self-organization might take place in the cortex. The predecessor to the model we use to address these issues 22

is the Self-Organizing Neural Network, or SORN [13]. The SORN is a recurrent network model of excitatory 23

and inhibitory binary neurons which incorporates both Hebbian and homeostatic plasticity mechanisms. 24

Specifically, it incorporates binarized spike timing dependent plasticity (STDP), synaptic normalization (SN), 25

and intrinsic homeostatic plasticity (IP). It had been demonstrated to be computationally powerful and 26

flexible for unsupervised sequence and pattern learning, presenting apparent approximate Bayesian inference 27

and sampling-like behavior [14]. Additionally, it has been used to reproduce synaptic weight distributions 28

and growth dynamics in the cortex [15]. 29

In this paper, we formally introduce the LIF-SORN, a leaky integrate-and-fire based SORN-inspired 30

network model that incorporates a spatial topology with a distance-dependent connection probability, in 31

addition to more biologically plausible variants of and extensions to the plasticity mechanisms of the SORN. 32

The LIF-SORN models a recurrently connected network of excitatory and inhibitory neurons in L5 of the 33

neocortex, or a slice thereof. This new model is the first to reproduce numerous elements of the synaptic 34

phenomena examined in [10], [16], and [15] in combination with the sort of non-random graph connectivity 35

phenomena observed in [6]. The simultaneous reproduction of all these elements with a minimal set of 36

plasticity mechanisms and constraints, and furthermore using only point neurons, represents an unprecedented 37

success in explaining noted features of the cortical micro-connectome in terms of self-organization. 38

Materials and Methods 39

Simulation Methods. 40

We randomly populate a 1000 × 1000 µm grid with 400 LIF neurons with intrinsic Ornstein-Uhlenbeck 41

membrane noise as the excitatory pool, and a similar (though faster refracting) population of 80 noisy LIF 42

neurons as the inhibitory pool. All synapses are populated with a gaussian distance-dependent connection 43

probability profile with a half-width of 200 µm. This particular profile is chosen as a middle ground between 44

the results of [6], which finds no distance dependence up to a scale of 80 - 100 µm, and the results of [5], 45

which finds an exponential distance dependence at a scale of 200 - 300 µm. Recurrent excitatory synapses 46

are not populated, as they will be grown ”naturally” with the structural plasticity. Excitatory to inhibitory 47

and inhibitory to excitatory synapses are populated to a connection fraction of 0.1 and inhibitory recurrent 48

synapses to a connection fraction of 0.5, in approximate accordance with L5 experimental data [17]. Excitatory 49

to inhibitory, inhibitory to excitatory, and inhibitory to inhibitory connections are given fixed efficacies and 50

connectivities. Recurrent excitatory connectivity is begun empty and is to be grown in the course of the 51

simulation. The relevant parameters are summarized in Tables 1 and 2. 52

We use the Brian spiking neural network simulator [18]. The neuron model is a leaky integrate-and-fire 53

(LIF) neuron, the behavior of which is defined by 54

dV

dt
= −V − El

τ
+
σξ√
τ

, (1)

where V is the membrane potential, El is the resting membrane potential, τ is the membrane time constant, 55
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Table 1. Basic network parameters.

parameter value
Nexc 400
Ninh 80
sheet size 1000 × 1000 µm
connection probability profile 200 µm half-width Gaussian

Table 2. Basic connectivity parameters. * indicates growth via plasticity

parameter EE EI IE II
connection fraction target 0.1* 0.1 0.1 0.5
connection strength insertion at 0.0001 mV* 1.5 mV -1.5 mV -1.5 mV
conduction delay 1.5 ms 0.5 ms 1.0 ms 1.0 ms

σ is the standard deviation of the intrinsic membrane noise, and ξ is the Ornstein-Uhlenbeck process which 56

drives the noise. When V reaches a threshold VT , the neuron spikes, and the membrane potential V is 57

returned to Vreset (which may be lower than El in order to provide effective refractoriness). The parameters 58

used are given in Table 3. 59

Table 3. LIF neuron parameters.

parameter value
El -60 mV
τ 20 ms
V exc
reset -70 mV
V inh
reset -60 mV

σ
√

5 mV
VT variable via IP

All parameters are shared between excitatory and inhibitory units unless otherwise denoted by superscripts
”exc” and ”inh.”

A simple transmitting synapse model is used, connecting neuron i to neuron j. When neuron i spikes, the 60

synaptic weight Wij is added to the membrane potential V of neuron j following the conduction delay for 61

the type of connection (as in Table 2). 62

As in the original binary SORN, we include multiple plasticity mechanisms. The first is exponential spike 63

timing dependent plasticity (STDP), which is executed at a biologically realistic timescale [19–24]. This 64

defines the weight change to a synapse caused by a pair of pre- and post-synaptic spikes as in Equations 2, 3, 65

and 4: 66

∆wj =

Nf∑
f=1

Nn∑
n=1

W
(
tni − t

f
j

)
(2)

67

W (x) = A+ exp (−x/τ+), x > 0 (3)
68

W (x) = A− exp (x/τ−), x < 0. (4)

Here, j indexes the synapse, f indexes presynaptic spikes, and n indexes postsynaptic spikes. A+ and A− are 69

the maximal amplitudes of the weight changes, and τ+ and τ− are the time constants of the decay windows. 70

Values are set to approximate experimental data; in particular, round numbers were chosen that roughly 71

approximate data in [19] and [20], with τ+ = 15 ms, A+ = 15 mV, τ− = 30 ms, and A− = 7.5 mV. We use 72

the ”nearest neighbor” convention in order to efficiently implement this online, in which only the closest pairs 73

of pre- and post-synaptic spikes are used. 74
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Synaptic normalization [25–28] serves to ensure that a neuron receives a roughly constant input in the 75

face of changing relative input strengths by homeostatic regulation of incoming connections to a neuron so 76

that their sum approaches a constant value over a long timescale. Anatomically this is manifested in the 77

behavior of synaptic areas on dendrites. [26] demonstrated, for example, that the summed synaptic area per 78

µm of dendrite stays roughly constant over long-term potentiation, but the area per synapse increases while 79

the number of synapses per µm of dendrite decreases. [28] suggests a multiplicative scaling dynamic manifests 80

on a slow timescale. Most biological evidence suggest that synaptic normalization is not an instantaneous 81

process, and may even involve multiple timescales or mechanisms working in concert. We use a simple 82

multiplicative model with a fast (but variable) timescale to keep things computationally simple: 83

Wi → Wi

(
1 + ηSN

(
Wtotal∑N
j Wij

− 1

))
. (5)

Here, Wi is the vector of incoming weights for any neuron i, Wij are the weights of the individual synapses, 84

Wtotal is the target total input for each neuron, and ηSN is a rate variable which, together with the size of the 85

timestep, determines the timescale of the normalization. Wtotal is calculated before the simulation run for 86

each of the four types of synapse (E to E, E to I, I to E, and I to I) by multiplying the connection fraction for 87

that type of connection by the mean synapse strength by the size of the incoming neuron population (or, in 88

the case of the E to E connections, the target values thereof). The timescale we use is on the order of seconds 89

and therefore accelerated from biology; corresponding to an application of the process once per second and 90

ηSN = 1.0. The accelerated timescale is sufficiently separated from that of the STDP, which operates on the 91

order to tens of milliseconds, to avoid unwanted interactions while decreasing the necessary simulation time. 92

Neuronal excitability is regulated by various mechanisms and over different time scales. On a very fast 93

milliseconds time scale, a neuron’s refractory mechanism prevents it from exhibiting excessive activity in 94

response to very strong inputs [29]. This is inherently included in the neuron model we use. At a somewhat 95

slower time scale, spike rate adaptation reduces a neuron’s response to continuous drive [30]. Given that 96

our model lacks any strong external drive, we neglect this. At very slow time scales of hours to days, 97

intrinsic plasticity mechanisms change a neuron’s excitability through the modification of voltage gated ion 98

channels that can modify its firing threshold and the slope of its frequency-current curve in a homeostatic 99

fashion [31,32]. Here we use a simple form of homeostatic firing threshold regulation implemented at discrete 100

time steps in the following way: 101

VT → VT + ηIP (Nspikes − hIP) (6)
102

Nspikes → 0. (7)

Here, VT is the threshold for an individual neuron, ηIP is a learning rate, hIP is the target number of spikes 103

per update interval, and Nspikes is the number of times a neuron has spiked since the last time a homeostatic 104

plasticity step was executed. This operation is performed at a biologically accelerated timescale. The desired 105

target rate is chosen to be 3.0 Hz, so hIP = 3.0 Hz× 0.1 ms = 0.0003 and ηIP is set to 0.1 mV. The operation 106

is performed at timesteps of 0.1 ms, which is the basic timestep of the simulation. Like the SN process, the 107

accelerated (relative to biology) timescale is sufficiently separated from the timescale of the STDP to avoid 108

unwanted interactions while decreasing the necessary simulation time. 109

We implement structural plasticity via simultaneous synaptic pruning and synaptic growth. Synaptic 110

pruning is implemented in a direct fashion in which synapses whose strength has been driven too close to 111

zero (the threshold is 0.0001 mV) by the other plasticity mechanisms are eliminated. At the same time, new 112

synapses are stochastically added, according to the distance-dependent per-pair connection probabilities, at a 113

regular rate. This is done at an accelerated timescale by adding a random number of synapses (drawn from 114

an appropriately scaled normal distribution) once a second. A mean growth rate is hand-tuned to lead to the 115

desired excitatory-excitatory connection fraction. In this case, the growth rate is 800 synapses per second 116

and the target connection fraction is 0.1. The synapses are added according to pre-calculated connection 117

probabilities determined by the gaussian connectivity profile described in the first paragraph of this section. 118

Like the previous two plasticity mechanisms, the acceleration of the timescale from biology is justified by the 119

principle of separation of timescales. 120
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Analysis. 121

As the network runs, new recurrent excitatory synapses are allowed to grow and, if their strengths are driven 122

to zero, be pruned. The network first enters a growth phase, which lasts 100-200 seconds of simulation time, 123

and then a stable phase in which the growth rate balances the pruning rate, as in Figure 1. The growth rate 124

has been hand-selected so that the connection fraction in the stable phase corresponds with experimental 125

observations for small slices ( 0.1, [6, 17]). The network is allowed to run for 500 seconds and the state of the 126

excitatory connectivity and the dynamics of the connection changes during the final epoch are then examined. 127

We first examine, alongside the growth of the network, the prevalence of bidirectional connections as 128

compared to chance, a phenomenon noted to be significantly above-chance in [4] and [6], as shown in Figure 1. 129

We observe for the total connection fraction a reliable value of 0.1, as selected. We observe a stable phase value 130

of 0.021 for the bidirectional connection fraction, translating to a factor of 2.05 above chance. Our control for 131

chance is the expected number of bidirectional connections for an Erdős-Rényi graph containing the same 132

number of nodes and edges as the simulated network. For comparison purposes, a value of approximately 4 133

times chance is observed in [6]. We note that an otherwise equivalent non-topological network, in which the 134

probability of connection between neurons is uniform rather than distance-dependent, produces a slightly 135

below chance overrepresentation of bidirectional connections, reinforcing the well-known expectation that 136

classical STPD, in the absence of other factors, favors unidirectional connectivity. 137

Figure 1. Evolution of total and bidirectional connection fraction with simulation time.
Connection fraction evolution for plastic networks with and without topology. (a) Growth and subsequent
stabilization of the connection fraction of the network with simulation time. (b) Growth of the bidirectional
connection fraction. (c) Evolution of the bidirectional connection fraction with time as it relates to chance
level. Data averaged over ten trials; standard deviation in red.

Regarding the growth of the network and the stabilization of its activity, we note two additional things. 138

Firstly, in Figure 2, we note that the distribution of interspike intervals (ISIs) and their coefficients of variation 139

(CVs) follow the properties of an approximately Poisson-like spiking with an effective refractory period, as 140

is observed in cortical circuits. That is to say, the distribution of ISIs follows an exponential decay with a 141

distortion, induced by the refractory period, at the low end, and that the CVs of the ISIs tend to be close to 142

one. Secondly, we note the reproduction of some of the results of [16], specifically that during network growth 143

there is a tendency for larger synaptic weights to be more likely to shrink than smaller synaptic weights, as 144

seen in Figure 3. 145

We next observe the distribution of synaptic weights via histogramming, as previously stated, in Figure 4. 146

This is in qualitative agreement with the heavy-tailed, log-normal-like shape typically observed in experimental 147

data [6–10]. We believe that this is primarily due multiplicative-like behavior under the interaction between 148

the (additive) spike timing dependent plasticity and the synaptic normalization while network activity is 149
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Figure 2. Distributions of ISIs and CVs thereof during stabilized network activity. (a) Pooled
distribution of ISIs with exponential fit, suggesting Poisson-like behavior with a refractory period. Individual
neuron distributions have been tested to be similar. (b) Distribution of CVs of ISIs, suggesting Poisson-like
behavior. Single trial data.

Figure 3. Synaptic change dynamics during network growth. Synaptic change dynamics during
network growth epochs, before stabilization. ”Bunching” in earliest epoch is an artifact of normalization
under a small number of synapses. Single trial data.

stabilized by the intrinsic plasticity. We note that the topology of the network seems to have a minimal effect 150

on this result, as would be expected from the results of [15]. 151

We observe next the synaptic change dynamics in the stable phase of the network. We follow the format 152

used in [10], comparing initial synaptic weight during a test epoch to both absolute and relative changes 153

in synaptic weight, and demonstrate in Figure 5 that strong synaptic weights are less likely to fluctuate 154

over time, as experimentally observed [10]. Additionally, this serves to reinforce the earlier success of [15] in 155

modeling such synaptic dynamics as the result of self-organization, and demonstrates that such results carry 156

over into a biologically more realistic model. 157

We examine, as well, the distribution of synaptic lifetimes. It has been predicted that the lifetimes of 158
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Figure 4. Log distribution of synaptic weights. The distribution of the base ten logarithm of synaptic
weights for plastic networks with and without topology. Data averaged over ten trials; error bars are
standard deviation.

Figure 5. Change in synaptic weight as a function of initial synaptic weight. The above plots
show the distributions of change in synaptic weight as a function of initial synaptic weight. The plots on the
left are from the simulated network and are in electrophysiological units. The plots on the right are from
experiment [10] and are in units of volume as determined by fluorescence data. The plots on the top show
the absolute change in synaptic weight. The plots on the bottom show the relative change in synaptic weight.
Single trial data.

fluctuating synapses may follow a power law distribution [15]; our model makes this prediction as well. 159

However, we expand upon previous predictions with two highly notable observations. In its current form, our 160

model produces a slope of approximately 5/3 in the stable phase. This decreases slightly in the growth phase. 161

Secondly, we have observed as well that the slope can be modified by adjusting the balance of potentiation 162

and depression in the STDP rule, varying between values between 1 and greater than 2, depending on the 163

chosen parameters. For example, doubling the amplitude of the depression term in the STDP leads to a 164

slope of approximately 5/2, while halving it leads to a slope of approximately 5/4. This is, in retrospect, 165
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an intuitive phenomenon. A preponderance of potentiation will lead to synapses being depressed to a value 166

below the pruning threshold less frequently, thereby lengthening the typical lifetime and decreasing the slope 167

of the power law. Similarly, in a depression-dominated scenario, synapses will be driven below the pruning 168

threshold more frequently, and, as a result, have shorter typical lifetimes, leading to a higher power law slope. 169

Returning to the slight decrease in slope during the growth phase, this makes sense, as a reduction in the 170

effective pruning rate is necessary for the network to continue to grow. We believe that with a more extensive 171

investigation of the effects of other model parameters on the power law, the slope of this distribution could 172

be used as a meaningful measure of the potentiation-depression balance in a recurrent cortical network. 173

Figure 6. Distributions of synaptic lifetimes. The above plots show the distributions of of synaptic
lifetimes during the stable (right) phases. Slope is approximately 5/3. The equivalent slope in the growth
phase is slightly less. Here, we define entries in the growth phase as having synaptic end times of less than
150 seconds, and entries in the stable phase as having synaptic start times of greater than 350 seconds.
Slopes are approximated via linear regression to the data points before the drop-off. Single trial data.

We subsequently examine the prevalence of triadic motifs in the graph of the simulated network. An 174

overrepresentation of certain motifs was noted in [6]. We used a script written for the NetworkX Python 175

module [33, 34] to acquire a motif count for the graph of the simulated network. As the overrepresentation of 176

bidirectional connections will trivially lead to an overrepresentation of graph motifs containing bidirectional 177

edges, the control for chance is, in this case, a modified Erdős-Rényi graph with the same number of nodes, 178

same number of unidirectional edges, and same number of bidirectional edges as the graph of the simulated 179

network, with the unidirectional and bidirectional edges being independently populated. A similar control 180

is used in [6]. We observe a similar pattern of “closed loop” triadic motifs being overrepresented in Figure 181

7, as as experimentally observed in [6]. We note that the results for a non-topological plastic network with 182

classical STDP, in the absence of additional factors, does not, relatively speaking, strongly select for any 183

particular family of motifs. We similarly note that while distance-dependent topology does select for the 184

observed family of motifs, it does not do so at the experimentally observed level. It is only the combination 185

of topology and plasticity that strongly selected for the desired family of motifs. 186

Discussion 187

The problem of how the non-random micro-connectivity of the cortex arises is a nontrivial one with significant 188

implications for the understanding of both cognition and development. We attempt, in this paper, to provide 189

insight into this problem by presenting a plausible model by which such non-random connectivity arises as the 190

self-organized result of the interaction of multiple plasticity mechanisms under physiological constraints. Some 191

models attempt to describe elements of the graph structure of the micro-connectome in purely physiological 192
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Figure 7. Triadic motif counts as a multiple of chance, corrected for bidirectional
overrepresentation. Triadic motif counts (in the same order as [6]) for a simulated network as a multiple
of chance value. The counts have been corrected for the observed overrepresentation of bidirectional
connections. Results are shown for a complete network, a purely topological construction, and an equivalent
network with no topology. For the latter, the count of motif 16 is out of range due to the extremely low
expected count after bidirectionality corrections. Data averaged over ten trials; error bars are standard
deviation.

and topological terms [35]. However, such models necessarily lack an active network, and are thus unable to 193

simultaneously account for synaptic dynamics, as our model does. Our model is, of course, a simple model, but 194

the degree to which it accounts for observed non-random features of the typical cortical microcircuit without 195

detailed structural features, metabolic factors, or structured input to drive the plasticity in a particular 196

fashion is highly suggestive in terms of what is necessary at a bare minimum to drive the development and 197

maintenance of the complex microstructure of the brain. Additionally, as mentioned in the introduction, it is 198

hypothesized that a small backbone of strong synapses may form the stable backbone of long-term memory. 199

The fact that in our model, strong weights remain stable in the presence of ongoing plasticity and despite 200

significant fluctuations of smaller weights (which has been modeled as a stochastic Kesten process [36]), and 201

the naturalness with which such a dynamic arises out of the interactions of known plasticity mechanisms, is 202

both suggestive and supportive of this theory. 203

An additional noted non-random feature of cortical recordings that has been passed over in this model is 204

the observed log-normal distribution of cortical firing rates. Our intrinsic plasticity mechanism necessarily 205

negates this feature, which may be self-organized via mechanisms not included in our model, such as diffusive 206

homeostasis [37]. In order to maximize simplicity, a single target firing rate is chosen for all neurons. This 207

also permits pooling of the ISIs for analysis. Additional testing in which the target firing rate is drawn from 208

a log-normal distribution produces minimal qualitative effects on the observed features (except, trivially, the 209

ISI distribution, and a slight increase to the peak overrepresentation, though with no change to the overall 210

pattern (S2)). Another issue is that as things stand, the exact statistics of the micro-connectome are difficult 211

to discern – though strong inferences can be made in the right direction – due to inherent sampling biases in 212

paired patch-clamp reconstructions of limited size [38]. It is our hope and belief that advances in fluorescence 213

imaging, automated electron microscopy reconstruction [39, 40], and massive multi-unit array recordings will 214

help to alleviate these biases. One might imagine that additional biases may be caused by the relatively small 215

model size of 400 excitatory neurons, when realistic cortical densities would result in thousands of neurons 216

in such an equivalent volume. We have tested the network at much larger sizes and found no significant 217

qualitative change to our observed results (the higher density does appear to lead to a higher peak motif 218

overrepresentation, without changing the overall pattern of overrepresentation (Figure S1), so we maintained 219
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a relatively small network size to increase computational ease. 220

Some might view the fact that, in this model, the primary driver behind the overrepresentation of 221

bidirectional connections is topology, as a shortcoming. The authors do not view this as such; after all, 222

topology exists in the cortex and the rest of the study’s results suggest it is an important factor in the 223

self-organization of cortical circuits. There are mechanisms utilizing non-classical STDP, such as the so-called 224

triplet and voltage rules [41, 42], which, in the presence of high-frequency activity, are capable of producing 225

and maintaining bidirectional connections. Introducing such mechanisms into a similar model would be a 226

welcome and interesting future study, and could potentially lead to an even stronger and more precise motif 227

selectivity. 228

Often, models of cortical microcircuits are described as random graphs, such as the classical random 229

balanced network [43]. However, experiments have demonstrated that the structure of the cortical microcircuit 230

is significantly non-random [5,6], suggesting that random networks are not sufficient platforms for modeling 231

cortical development and activity. Lacking in structural plasticity of topology, such random graph based 232

balanced networks are incapable of producing the sort of results we have observed. Having provided a 233

mechanism with which one may generate a cortex-like non-random structure, it would be enlightening to 234

determine if said structure provides any significant computational or metabolic advantage as compared to 235

a random graph. Similarly, limitations in online plasticity capabilities significantly hinder the use of such 236

random networks and their relatives in reservoir computing [44] for unsupervised learning and inference 237

tasks, while earlier studies with the original SORN model [13, 14] suggest that the particular combination of 238

plasticity mechanisms in our model can endow networks with impressive learning and inference capabilities. 239

It is additionally our desire to further study learning and inference in such networks with more biologically 240

complete models. It is the belief of the authors that the future of neural network-based computation and 241

modeling of biological processes lies in the incorporation of multiple plasticity and homeostatic mechanisms 242

under simple sets of constraints. 243
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Figure S1. Triadic motif counts as a multiple of chance, corrected for bidirectional
overrepresentation. Triadic motif counts (in the same order as [6]) for a simulated network as a multiple
of chance value. The counts have been corrected for the observed overrepresentation of bidirectional
connections. Results are shown for a complete network of 2000 neurons. Other parameters remain the same,
aside from scaling of IP target to maintain mean per-neuron input spike rate and growth rate to obtain
stable phase connection fraction of 0.1. Error bars are standard deviation.
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Figure S2. Triadic motif counts as a multiple of chance, corrected for bidirectional
overrepresentation. Triadic motif counts (in the same order as [6]) for a simulated network as a multiple
of chance value. The counts have been corrected for the observed overrepresentation of bidirectional
connections. Results are shown for a complete network with IP target rates drawn from a log-normal
distribution instead of a single value. Other parameters remain the same, aside from scaling of growth rate
to obtain stable phase connection fraction of 0.1. Error bars are standard deviation.
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