bioRxiv preprint doi: https://doi.org/10.1101/027227; this version posted September 18, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Genomic variant calling: Flexible tools and a
diagnostic data set

Michael Lawrence, Melanie A. Huntley,
Eric Stawiski, Art Owen, Thomas D Wu, Leonard D Goldstein, Yi Cao,
Jeremiah Degenhardt, Jason Young, Joseph Guillory, Sherry Heldens,
Marlena Jackson, Somasekar Seshagiri, Robert Gentleman

September 3, 2015

1 Abstract

The accurate identification of low-frequency variants in tumors remains an
unsolved problem. To support characterization of the issues in a realistic
setting, we have developed software tools and a reference dataset for diag-
nosing variant calling pipelines. The dataset contains millions of variants at
frequencies ranging from 0.05 to 1.0. To generate the dataset, we performed
whole-genome sequencing of a mixture of two Corriel cell lines, NA19240 and
NA12878, the mothers of YRI (Y) and CEU (C) HapMap trios, respectively.
The cells were mixed in three different proportions, 10Y/90C, 50Y /50C and
90Y/10C, in an effort to simulate the heterogeneity found in tumor samples.
We sequenced three biological replicates for each mixture, yielding approxi-
mately 1.4 billion reads per mixture for an average of 64X coverage. Using
the published genotypes as our reference, we evaluate the performance of
a general variant calling algorithm, constructed as a demonstration of our
flexible toolset, and make comparisons to a standard GATK pipeline. We
estimate the overall FDR to be 0.028 and the FNR (when coverage exceeds
20X) to be 0.019 in the 50Y/50C mixture. Interestingly, even with these
relatively well studied individuals, we predict over 475,000 new variants,
validating in well-behaved coding regions at a rate of 0.97, that were not
included in the published genotypes.
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2 Introduction

A genomic variant is an observed nucleotide difference from some reference
at a specific position in the genome. Detecting genomic variants at low
allele frequencies is important for cancer research, and knowledge derived
from variant calls drives the development of new therapies and diagnostics.
Variant calling is distinct from genotyping, which requires an assumption
of ploidy and an assumption that the cells being sequenced share a com-
mon genome. In the diploid case, we expect nucleotide frequencies at 0,
0.5 or 1 |[DePristo et al., 2011], [Li et al., 2009]. Genotyping of diploid or-
ganisms is straightforward and the concordance between different methods
is high provided there is sufficient coverage. However, in tumors, variants
have a wide range of allelic frequencies, in large part due to copy number
changes and sample heterogeneity [Zhao et al., 2014]. Detecting variants in
tumors remains problematic and there is limited agreement between methods
[O'Rawe et al., 2013]. We believe that a primary reason for the discordance
is the lack of an extensive data set with millions of variants, in different
genomic contexts with approximately known frequencies. Such a data set
would allow for direct comparison of methods across the entire genome.

There are many variant calling algorithms available, and indeed a variety
of distinct objectives that are collectively described as variant calling (see
Methods). For example, Varscan2 generates variant calls from the output
of samtools mpileup [Koboldt et al., 2012, |Li et al., 2009|. It implements
a number of tunable filters that consider variant frequency; read depths;
biases in strand, read position and quality; and other aspects of the data.
In contrast, LoFreq calls variants based on a Poisson-Binomial model that
incorporates base quality information [Wilm et al., 2012]. Others have im-
plemented error correction models [Wong et al., 2014]. However, there is lit-
tle concordance among current callers and the concordance decreases when
low frequency variants are considered |[O’Rawe et al., 2013]. A flexible and
efficient set of tools suitable for generating and analyzing variant calls will
facilitate the diagnosis and comparison of existing methods and help drive
innovations in this field.

We present two contributions that aim to foster the development of better
variant calling algorithms. The first is an experimentally-generated whole
genome sequencing dataset, with a large number of known variants at a range
of allele frequencies and located in a variety of genomic contexts. Algorithm
developers can use the dataset as a reference when diagnosing algorithm
performance. We have also developed a Bioconductor package, VariantTools,
which is a flexible framework for manipulating and filtering variant calls
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during algorithm development and adhoc analyses. We apply VariantTools
to the reference dataset to demonstrate how one might use it to generate a
general, exploratory set of variant calls.

3 Methods
3.1 WGS of a CEU/YRI mixture

A good reference data set should be based on real data and generated by
applying current tools and protocols so that it reflects error rates that users
are likely to see in practice. Further, it should have large numbers of well-
characterized true positive variants that are present in different genomic
contexts and at varying frequencies. Genomic context is important, because
it affects the accuracy of both sequencing and alignment, as well as other
aspects of the experiment. Li [Li, 2014] recognized the need for real data in
diagnosing variant calling algorithms and sequenced a haploid cell line, where
heterozygous calls were reasonably assumed to be errors. We complement
his work by performing whole genome sequencing on a series of titrated cell
mixtures to evaluate caller performance on heterogeneous samples.

Others have sequenced titrated cell mixtures over targeted, well-behaved
regions [Stead et al., 2013|, but aligners struggle to find unambiguous align-
ments in low complexity regions, or in regions with strong homology to other
parts of the genome. The sequencing error rate depends on factors like the
local GC content and the presence of homopolymers.

We mixed DNA extracted from two Coriell cell lines, NA12878 and
NA19240, corresponding to the mothers of the HapMap CEU and YRI trios
(GQ12878 and GQ19240, respectively). To achieve a broad range of frequen-
cies, we mixed these reagents at ratios of 10Y/90C, 50Y /50C and 90Y /10C,
in triplicate, (Figure [1]A). This is expected to generate frequencies at 5%,
10%, 45%, 50%, 55%, 90%, 95% and 100% in the 90/10 mixtures, and 25%,
50%, 75% and 100% in the 50/50 mixture (Figure[I]B). While variants can be
present at <5% in complex samples, 5% is a reasonable lower bound, given
the typical coverage of a WGS experiment. Figure [ID shows how much
variability there was between the replicates.

3.2 Reference genotypes

The two individuals have been sequenced and genotyped by a variety of ap-
proaches [The 1000 Genomes Project Consortium, 2012], [DePristo et al., 2011],
and NA12878 is the subject of the Genome in a Bottle Consortium
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[Genome in a Bottle Consortium, 2014]. We obtained SNV calls for both
from the 1000 Genomes Pilot 2 study, which incorporated sequencing from
three different technologies (Illumina GA II, ABI SOLiD, and Roche 454) at
a total coverage of 66X. These calls were lifted over from hgl8 to hgl9 using
the 1ift0Over function from the rtracklayer package [Lawrence et al., 2009).
We extracted an additional set of NA12878 SNV calls from the GATK Re-
source Bundle. The calls were generated by GATK, according to best prac-
tices, from a 64X Illumina HiSeq whole-genome sequencing dataset, aligned
with BWA to hgl9 (Figure [1C).

The 1000G calls are based on older tools and technology compared to
those from GATK, and the 1000 Genomes genotype calls were made in a
way that controls the false positive rate and hence there is a relatively high
false negative rate for the 90Y/10C mixture (Figure [I[B). This impacts our
estimates of the FDR, as many of the supposed false discoveries may in fact
correspond to true positives that are present in the genomes, but were not
included in the reference genotype.

We first merged the 1000G and Broad CEU genotypes, taking the union
of the two call sets to form a single CEU genotype. Where both sources
called the same alternative allele, we took the het/hom determination from
the Broad genotypes. We then constructed a reference genotype for the
mixtures by combining the YRI and CEU genotypes into a single reference
in the same way. We allowed for multiple different alternative alleles at any
locus. The variants present at each locus are constant across mixtures, but
the frequency of the variant in each mixture depends on the genome of origin
and the proportion of that genome in the mixture. The combined reference
genome for the 50-50 mixture is described in Figure [I[C.

We identified a specific set of variants, which we refer to as the YRI-
specific variants. These variants were homozygous non-reference in the YRI
genotype and were not called as variant in the CEU genome (and hence were
presumptive homozygous reference). Thus their frequencies should track at
10%, 50% and 90% across our mixtures 10Y/90C, 50Y/50C and 90Y /10C.

3.3 Variant calling with GSNAP and VariantTools

We have developed the VariantTools Bioconductor package as a modu-
lar toolkit for generating, filtering and comparing sets of variant calls
[Lawrence et al., 2014]. Users can construct variant calling pipelines by com-
bining filters, including those defined by the user. Integration with Biocon-
ductor facilitates annotation of variants and analysis of the association be-
tween variants and their genomic context. We demonstrate an application
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to the latter in Section J111

For the sake of comparing a general variant calling approach to one based
on the standard BWA/GATK workflow, we applied VariantTools to con-
struct a simple, example variant calling pipeline, as diagrammed in Figure
2A. We aligned the reads using GSNAP [Wu and Nacu, 2010] (see S1}1 for
the details) and tallied the nucleotides at each position, excluding base calls
with a quality score of 23 or less. To focus this analysis, we restrict to SN'Vs,
but indels are present in the data, and should be useful for the development
of indel callers.

Within the VariantTools framework, we defined a filter based on a like-
lihood ratio (equivalently a Bayes factor) as the basis of our method, along
with several other filters (see ]2 for details). We use a Binomial distri-
bution to model the observed counts and use pp = 0.001 for the error rate
with py = 0.20 as a lower bound for the frequency of a true variant. The
error rate and lower frequency bound are parameters and users will set them
according to their needs. We chose 0.2 as the lower bound, which is slightly
below the expected frequency of heterozygote variants in the 50-50 mixture
and should give good sensitivity and specificity for that data set, which is
our focus. We declare either error or variant, according to which probability
is the larger. With our selected values of pp and py, the test is equivalent to
calling a variant when the observed non-reference frequency cutoff is above
0.04.

Others have reported extra Binomial variation [Plagnol et al., 2012],
|Gerstung et al., 2012] and hence suggested alternatives, such as the Beta-
binomial. We found (see Section that extra-binomial variation is associ-
ated with whether the variant has a positive self-chain score, suggesting that
it arises due to mapping/alignment issues.

3.4 Variant calling with BWA /GATK

For comparison purposes, we called variants with a pipeline based on
commonly used tools. Reads were mapped to the UCSC human genome
(GRCh37/hgl9) using BWA [Li and Durbin, 2009]. We called variants with
the GATK UnifiedGenotyper [DePristo et al., 2011] (see 52| for more details
on the GATK pipeline). While other approaches exist, this pipeline meets
our need for a baseline genotyping pipeline.
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3.5 TUCSC self-chain scores

We rely on the UCSC self-chain scores [Karolchik et al., 2014] for measuring
similarity between different genomic regions (see Section . The self-chain
score is a generic and robust indicator of intragenomic similarity that is
independent of the aligners we used. This is in contrast to the mapping
quality (MAPQ in the SAM spec), which represents the probability that an
alignment is correct, under assumptions specific to the aligner.

3.6 Cell culture and sequencing

Three independent pairs of plates of NA12878 and NA19240 cells were cul-
tured to 80% confluence in RPMI supplemented with 10% Fetal Bovine
Serum, 1% Sodium Pyruvate and 1% Glutamine. Total DNA from these
6 plates was isolated with DNeasy Blood & Tissue Kit from Qiagen, and
quantified by picogreen. Samples were mixed as described previously (Fig-
ure [I]A). The 9 mixed samples were prepared for whole genome sequencing
using the Illumina Truseq DNA sample preparation kit, and sequenced on
an [llumina HiSeq.

4 Results

We generated a diagnostic dataset for variant calling by whole genome se-
quencing a titrated mixture series of two HapMap individuals (NA12878 /CEU,
NA19240/YRI) with well characterized genotypes. There were three mix-
ture ratios (10Y90C, 50Y50C, 90Y10C), with three replicates each, and we
merged the replicates to yield about 64X coverage per sample. We called
variants using a custom general variant calling pipeline, as well as a best
practice GATK pipeline.

4.1 Comparison of Alignment Pipelines

The two pipelines were in high agreement. They called variants at the same
loci and the frequencies of the observed variants were highly concordant (Fig-
ure . However, regions of homology are challenging for aligners and in
these regions the two approaches are more discrepant. In our hands BWA
tends to uniquely align more reads at some loci than GSNAP, as shown in
Figure 2D. The plot is divided by the GSNAP/VariantTools concordance
versus the published genotypes in terms of false negatives (FN), false pos-
itives (FP) and true positives (TP). In general, the agreement is better in


https://doi.org/10.1101/027227
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/027227; this version posted September 18, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

regions that are not self-chained. Figure2JE compares the BWA and GSNAP
observed variant frequencies for the YRI-specific variants. We see strong
agreement, although the agreement is weaker in self-chained regions.

Figure 2F shows that our general variant caller always detects more vari-
ants than GATK genotyper and that the differences are most pronounced
when the mixture is imbalanced with one sample present at 10%.

4.2 Observed variant frequencies

Figure suggests that the reference genotype is not as accurate as we had
anticipated. While the boxplots for the 10Y/90C mixture look as expected,
the observed frequencies of the 10% variants in the 90Y/10C do not. There
are many high frequencies observed which would be consistent with real YRI
variants missing from the reference genotype. We anticipated that the CEU
genotype would be better estimated, since we derived it from two external
sources, including newer data from the GATK project. The high frequencies
are also consistent with the notion that the 1000G calling was conservative
and strongly controlled the FP rate at the cost of an increased FN rate.
Indeed, if we consider the variants with an observed frequency above 0.2
and an expected frequency of 0.1 in the 90Y10C sample, we find that 89%
of them follow a frequency trend consistent with their being homozygous in
CEU and non-ref in YRI (see 99 for details on the algorithm).

Accurate frequency estimation is important for characterizing the com-
position and evolution of tumors. Figure [JA presents the variant frequency
distributions for the YRI-specific variants. The frequency peaks observed in
Figure BJA match well with the mixture frequencies we achieved. While the
frequency distributions for the nominal 5 and 10% variants overlap substan-
tially, all others are well separated.

Accurately estimating frequency depends on the coverage. Figure
shows that the distribution of YRI-specific variant frequencies in the
50Y/50C mixture, conditioned on coverage range. Only the frequency dis-
tribution for the moderate coverage variants aligns with our expected fre-
quencies.

4.3 Concordance of variant calls

We now consider how concordant our calls are with the reference genotypes
we constructed in Section[3.2} In Figure[dA we show the observed frequencies
for variants across mixtures where variants are classified according to the
known genotypes. We encode the genotypes according to YRI/CEU, where
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YRI and CEU can be either 0 (no-call), 0.5 (het) or 1.0 (hom alt). For
example, a 1/0 variant is homozygous alt in the YRI but uncalled in the
CEU. Such a variant should have an observed frequency of approximately
10% in the 10Y/90C mixture, increasing to 50% in the 50Y/50C mixture
and 90% in the 90Y/10C mixture. The frequency trends largely match our
expectations, although in the top-middle panel of (CEU het, YRI WT),
there is some evidence of error. Some loci have been misgenotyped due to
undercalling in YRI, while others appear to be false positives in the CEU
calls.

Due to the design of our experiment, the observed frequencies at any TP
locus should track according to one of the patterns in Figure @JA. We exploit
that fact to construct a genotype classification method for all variants (see
Sg[). In short, we binned the observed frequencies and mapped particular
sequences of bins to a genotype. For example, if a variant was observed at
10%, 50% and 90% for corresponding mixtures of 10Y/90C, 50Y/50C and
90Y/10C, we assign the genotype 1/0 (YRI: hom-alt, CEU: WT). We refer
to a variant as "tracking" if its cross-mixture frequency pattern tracked an
expected pattern and we predicted a genotype based on that pattern. Non-
tracking variants were not assigned a predicted genotype and were labeled
as No Call (NC). Figure shows the count of each predicted genotype
combination.

In Figure B we show the observed frequencies for a subsample of vari-
ants from each predicted genotype. While there is a strong similarity between
Figures and , there are some discrepancies in the 0/0.5 panel of Fig-
ure (A, which we suspected are due to missed YRI calls in the reference
genotypes. We confirmed this with Sequenom-based validation (see Section
)

We see strong concordance between the reference genotypes and our pre-
dictions in Figure[dIC. The largest discrepancies are consistent with the obser-
vation that the YRI genome was substantially under-called in the reference.
We found that 70% of the FP variants that we predicted to be in the YRI
were excluded by the mask applied by the 1000G during calling (see Sec-
tion §8). About 97% of those were masked due to having over 20% of the
reads with a mapping quality of zero, which suggests that multi-mapping of
the shorter, 36bp 1000G reads may have been a major factor in the lack of
sensitivity.

Variant calls with a NC status in the predicted genotypes and WT in the
reference (the top-left corner) are often absent from dbSNP [Sherry et al., 2001],
while the tracking variants are almost always found in dbSNP, reinforcing
our argument that the tracking variants are more likely to be TPs. Further,


https://doi.org/10.1101/027227
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/027227; this version posted September 18, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

we found that the transition to transversion ratio (Ti/Tv) for the tracking
variants was 2.15, which matches the expected ratio for humans (about 2.1).
However, the Ti/Tv for the non-tracking variants was much lower (1.38); see
Table [S11

To assess concordance we consider the 50Y /50C mixture since we should
be able to detect all variants from both individuals. The union of the geno-
types contained 5,230,349 alt allele calls. After restricting to regions with at
least 20X coverage, 4,927,652 variants remained. Of those, 4,836,390 were
called, for an FNR of 0.019. There were 5,605,654 variants called by Variant-
Tools in the 50Y/50C mixture, of which 4,965,350 were also in the reference
genotypes (TP). This yields an FDR of 0.11 assuming all predictions are
wrong. However, we predicted genotypes for 5,346,889 of the variant calls,
yielding a best case FDR of 0.028, assuming that our prediction algorithm
correctly classified variants. This yields 381,539 new true positives. For the
GATK calls, similar calculations estimate an FNR of 0.056 and an FDR
of 0.005 (using the predicted genotypes from the GSNAP /VariantTools re-
sults). The GATK FDR is in agreement with the previously reported error
rate of an error every 100-200kb |Li, 2014]. The higher FNR in GATK (0.056
vs. 0.019) suggests that GATK may be achieving a lower FDR by calling
fewer positives. This strategy will result in more FNs.

4.4 Effects of homology and coverage

Figure 5B shows that the FDR is higher in homologous (self-chained) regions
and also provides details on the relationship between FDR and coverage.
Figures 2D and [2JE reveal some of the differences in coverage that we obtain
between the two pipelines and how self-chaining affects the coverage.

High coverage may indicate that reads aligning to one locus in the ref-
erence originated from multiple loci in the individual, which can yield er-
roneous variant calls [Li, 2014]. Or the aligner may identify some reads as
multi-mapping, and as these are often dealt with in an ad hoc manner the
effect on frequency estimates is hard to predict.

Improper alignment may lead to clustered sets of variants. We found
that high variant density is associated with self-chain status (see , and
Figure [2C shows that false positive variants from the GSNAP /VariantTools
pipeline have more neighbors than true positive variants. This motivated
the variant proximity filter (see .3).
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4.5 Effects of copy number variation

Copy number variation can affect the observed variant frequency and cover-
age. Since the probability of capture of the DNA is proportional to abun-
dance, increases in copy number should result in increased coverage, while
decreases in copy number should result in decreased coverage.

We obtained PCR-validated deletion calls from the HapMap project
[Mills et al., 2011]. There were 190 CEU autosomal deletions that were val-
idated by both the LSU and WTSI groups. They covered a total of 213kb
and 92 unique YRI-specific variants. Figure shows that the observed
frequencies for YRI variants within CEU deletions are higher since the CEU
deletions yield a higher proportion of YRI reads. We observe that the cover-
age at those positions decreases with decreasing YRI proportion, Figure 3D,
as expected since there should be no contribution from the CEU. Figure
shows the coverage across mixtures for a single CEU deletion.

4.6 Sensitivity and specificity

Figure shows the false negative rate (FNR) at each expected frequency
for the GSNAP/VariantTools calls. As expected, the FNR is significantly
higher for the 0.05 and 0.10 variants.

We also see an unexpectedly high FNR at 0.45 in the 10Y /90C mixture,
and at 0.25 in the 50Y/50C mixture. Many of these positions lack cover-
age using our GSNAP pipeline as reads that align there were identified as
multimapping. Indeed, about 58% of the FNs have a read-pair-concordant
multimapping coverage at or above 10X, compared to 8% for the TPs.

We found that both the FDR and FNR depend on the genomic con-
text, and, somewhat surprisingly, the FNR for the 50Y50C sample (Fig-
ure ) was highest within coding regions. Using Homologene paralogs
[Coordinators, 2014] we found that the FDR (assuming that tracking vari-
ants are TPs) is higher in coding regions with paralogs (0.19, 136/437) than
in those without (0.03, 1779/36191). Thus, accounting for homology can re-
duce the FDR in the coding regions to a value below the (unadjusted) FDR
of the UTRs.

4.7 Validation of discordant calls

We believe that many of the putative FPs are actually real variants that
were not detected previously and hence are not FPs, but rather TPs. We
have shown that many of these variants have observed frequencies that track
with the mixtures and are registered with dbSNP. Hence, they are consistent

10
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with being TPs. We believe that the tracking variants (where we predicted
a genotype) will validate at a higher rate than those where we were unable
to call a genotype.

For validation we selected variants that were in coding exons, not in self-
chain regions and where the coverage was between 40X and 80X. Validation
was carried out using the Sequenom technology. We selected 130 FP sites (86
tracking, 44 non-tracking). With Sequenom we were able to call a genotype
for 106 of the sites (24 failed primer design). We observed a high validation
rate, 66/68, for tracking variants, whereas only 10/38 of the non-tracking
variants validate.

We also selected 137 TP sites where the predicted genotype did not
match the published genotype. We were able to design primers for 129 sites,
of which 84 were tracking and 45 were non-tracking. A total of 90 sites were
published as unique to the CEU, and 37 as unique to YRI. We validated
them with Sequenom. For the tracking variants, we found a concordance
rate of 63/84 between our predictions and the Sequenom calls. Almost half
of the errors (10/21) were predicted 0.5/0 but validated as 1/0. We may
have underestimated the YRI frequency due to a bias against YRI in the
actual mixture ratios (Figure [I). Of the non-tracking candidates, 10/24
were validated as wildtype, suggesting that some of the published calls are
real, even when their frequencies do not track the expected trend. For more
details on the validation, see

5 Discussion

We have created a valuable data set that can be used to address the issues
of accurate identification of point variants and their frequency. It also rep-
resents an opportunity to improve and enhance the development cycle for
methodological advances. The existence of high quality reference data sets
allows researchers to directly compare their approaches on identical data and
provided (as is the case with our experiment) the data are sufficiently exten-
sive these comparisons are valid. The effect of such a data set often results
in both a convergence of algorithms on standard best practices and the clear
elucidation of problems that have not yet been addressed.

We used these data to show that one can detect variants at low fre-
quency without sacrificing specificity. We called 79% of the 10% variants in
the 10Y/90C sample, while the overall FDR was only 0.028 in the 50Y /50C
sample based on the validated assumption that the tracking variants are ac-
tually TPs. The primary calling filter considers the alternate read frequency,
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which we have shown is an accurate estimate of the underlying frequency.
The performance of the algorithm benefits from exclusion of homopolymers
and low complexity regions. However, while computational filters can over-
come shortcomings in technology, there is a limit to their effectiveness. For
example, we know self-chained regions are prone to error but excluding them
will degrade sensitivity.

Further we showed that FDR was dependent on genomic context and
showed that within coding regions homology was a major factor behind
an increased FDR. We also showed that while others have reported extra-
Binomial variation the phenomenon seems to be largely related to variants
in regions with positive self-chain scores suggesting it arises due to map-
ping/alignment problems. Hence we suggest that the need for additional
modeling complexity may be alleviated instead by accounting for the quality
of the alignment.

While we agree with [Cibulskis et al., 2013] that the accurate detection
of point substitutions is a key step in understanding the cancer genome, we
believe that one has to go even further. In order to achieve the objectives
of [Nik-Zainal et al., 2014] and provide researchers the ability to interpret
the evolutionary history of the tumor we must not just identify the point
mutants, but also characterize their frequency. Our analysis shows that we
are able to accurately estimate the underlying allele frequency.
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Figure 1: Ezperiment. (A) DNA from the NA12878 (CEU) and NA19240
(YRI) cell lines were mixed in three different proportions (10Y/90C,
50Y/50C and 90Y/10C), in biological triplicate. (B) Comparison of the ex-
pected and observed frequencies. The tables show the expected frequencies
as a combination of mixture ratio and the genotypes of the two individuals.
The boxplot shows the distribution of observed frequencies, conditional on
the expected frequency and mixture. We suspect that the unexpectedly high
frequencies for the 5% and 10% variants in 90Y 10C are due to undercalling in
the YRI. (C) Top, the source of the individual reference genotypes. Bottom,
the counts and frequencies for variants in the 50Y50C (D) The observed fre-
quency distribution in each triplicate for variants called homozygous alt in
YRI but WT in CEU. The red line corresponds to the expected frequency if
our mixture of the two DNA sources was perfect. Several of the samples, in
particular the first replicate in each of the mixture ratios, are biased against
YRI. This will yield lower observed variant frequencies and a corresponding
lack of sensitivity in the YRI, especially in the 10Y90C mixture.
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Figure 2: Variant calling pipelines. (A) Our workflow, based on
GSNAP /VariantTools, converting the unique read alignments to variant calls
by tallying the nucleotides and applying filters to the tallies. (B) The FDR
(see Methods) is higher for variants over homopolymers of length > 6. (C)
The FDR is higher for variants with a neighborhood score (see Methods)
above our filter cutoff of 0.1. (D) Comparison of the BWA and GSNAP
coverage at the union of the published alt genotypes and VariantTools calls,
conditional on the concordance in terms of false negatives (FN), false posi-
tives (FP) and true positives (TP) and self-chain status (see Methods). BWA
tends to have greater coverage, especially in self-chained regions, and there
are many FN regions with moderate BWA coverage but near zero coverage in
GSNAP. (E) Comparison of the BWA and GSNAP observed alt frequencies
at alt positions in the published genotypes. Agreement is generally good.
(F) The number of variants called by VariantTools and GATK, conditioned
on the mixture. VariantTools called significantly more variants than GATK,
especially in the imbalanced mixtures (10Y90C, 90Y10C), where variants
were present at low frequencies.
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Figure 3: Variant frequencies. (A) Observed frequency distribution, condi-
tioned on expected frequency, for the YRI-specific variants. We see reason-
able separation and can distinguish 25% variants from those at 50%. The
variants expected at 50% have a lower average frequency than those expected
at 45%, which is due to the bias in the mixtures, see Figure [1| and Section
(B) Observed frequency distribution for the YRI-specific variants in
the 50Y/50C mixture, conditioned on low (<= 40X), moderate and high
(>120X) coverage. Due to unintended mixture bias against YRI, we should
observe a bimodal distribution of frequencies at 20% and 40%. For moderate
coverage that is the case, but in low or high coverage regions the frequencies
do not show this pattern. (C and D) Distribution of frequency and coverage,
respectively, for the YRI-specific het variants, conditioned on whether a vari-
ant falls within a CEU deletion. In C, the frequency distribution for CEU
deletions has a higher variance and slightly higher mean than the overall
distribution. In D, coverage within deletions appears to be lower on average.
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Figure 4: Concordance of frequency trends. (A) The frequency trends for a
random subsample of 100 TP variants for each published genotype. Each
line corresponds to a single locus. For each mixture, the observed frequency
of the variant is computed and those points are joined by a line. (B) The
frequency trends for a random subsample of 100 putative FP variants for
each predicted genotype (see supplement). The trends in panels (A) and (B)
appear quite similar, suggesting that putative FPs with predicted genotypes
are likely to be TPs. (C) Cross-tabulation of the predicted and published
genotypes, counting every unique variant called in any of the three mixtures.
The color indicates presence in dbSNP. There is strong agreement, and most
discordance reinforces our claim that the YRI genotype is undercalled. Those
positions that are no-call (NC) in both the predicted and published genotypes
are likely to be FP, which is consistent with their absence from dbSNP. (D)
Count of each predicted genotype combination.
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Figure 5: Sensitivity and specificity. (A) The count of variant calls from
the reference genotypes at positions with >= 20 coverage, conditioned on
the expected frequency and whether the variant allele was called by the
GSNAP /VariantTools pipeline (TP if called, FN if not). As expected, most
of the FN are for variants expected at <=5% frequency. (B) FDR (counting
tracking variants as TP, see Methods) for the GSNAP /VariantTools pipeline
by coverage bin and self-chain status. The FDR is highest for low cover-
age regions and is also increased at extremely high coverage; the effect is
magnified for self-chained regions, indicating that mapping is playing a role.
(C) Fraction of the reference genotypes that GSNAP/VariantTools called;
similar to panel A except conditioned on genomic context. The fraction is

generally lowest in coding regions, perhaps because repeat masking rarely
extends into coding regions.
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