
 1 

 

MTG2: An efficient algorithm for multivariate linear 
mixed model analysis based on genomic information 
 
S.H. Lee1,2,*, and J.H.J van der Werf1 
 

1School of environmental and Rural Science, University of New England, NSW 2351, 
Australia,  
2Queensland Brain Institute, The University of Queensland, QLD 4072, Australia. 
 
*To whom correspondence should be addressed. 
 
 
 
 
 

Abstract 

We have developed an algorithm for genetic analysis of complex traits using genome-
wide SNPs in a linear mixed model framework. Compared to current standard REML 
software based on the mixed model equation, our method could be more than 1000 
times faster. The advantage is largest when there is only a single genetic covariance 
structure. The method is particularly useful for multivariate analysis, including multi-
trait models and random regression models for studying reaction norms. We applied 
our proposed method to publicly available mice and human data and discuss 
advantages and limitations. 
 
Availability: MTG2 is available in https://sites.google.com/site/honglee0707/mtg2. 
 
Contact: hong.lee@une.edu.au  
 
Supplementary information: Supplementary data are available. 
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1. Introduction  

 

Previously, methods have been developed to estimate genetic variance and genetic 

correlations between complex traits explained by genome-wide SNPs using linear 

mixed models (Lee, et al., 2012; Maier, et al., 2015; Yang, et al., 2011). Because 

genetic relatedness among (conventionally) unrelated subjects could be estimated 

based on genomic information rather than familial relatedness, the model allows 

estimating genetic effects to be much less confounded with family environmental 

effects. For the same reason, this approach has also been proposed as a more powerful 

tool to detect genotype-environment interaction (G × E) (Lee, et al., 2015). That is, in 

presence of G × E, the genetic correlation between genetic effects in different 

environments is significantly lower than one (Falconer and Mackay, 1996). In order 

to capture G × E across a trajectory of multiple environments, random regression 

models have been proposed for evolutionary and livestock genetics (Kirkpatrick, et 

al., 1990; Meyer and Hill, 1997). The random regression model is also known as 

reaction norm model (Kirkpatrick and Heckman, 1989).  

In estimating genetic variance explained by genetic markers, Lee and van der Werf 

(2006) introduced an efficient average information (AI) algorithm to obtain residual 

maximum likelihood (REML) estimates. As opposed to using Henderson’s mixed 

model equation (MME) the algorithm was based on using the variance covariance 

matrix of phenotypic observations directly, hence the term ‘direct AI algorithm’. The 

algorithm is particularly advantageous when using a dense covariance matrix, such as 

the genomic relationship matrix (GRM), and with a large number of multiple random 

effects. The direct AI algorithm is implemented in GCTA-GREML (Lee, et al., 2012; 

Yang, et al., 2013; Yang, et al., 2011) and MultiBLUP (Speed and Balding, 2014) that 

has been widely used in human, evolutionary and livestock genetics. 

Here, we combine the direct AI algorithm with an eigen-decomposi-tion of GRM, 

as first proposed by Thompson and Shaw (1990). We apply the procedure to analysis 

of real data with univariate, multivariate and random regression linear mixed models 

with a single genetic covariance structure, and demonstrate that the computation 

efficiency can increase by > 1,000 fold compared with standard REML software 

based on MME.  
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2. Methods 

2.1. Model 

We used multivariate linear mixed models and random regression models to estimate 

genetic variances and covariances across multiple traits and among traits expressed in 

different environments. A linear mixed model can be written as 

 

yi =Xibi +Zigi + ei  

 

where yi is a vector of trait phenotypes, bi is a vector of fixed effects, gi is a vector of 

additive genetic value for individuals and ei are residuals for trait or environment i. X 

and Z are incidence matrices. More details can be found in the Supplementary Note. 

To model genotype-environment interactions, a random regression model attempts to 

fit effects as a function of continuous variable (Kirkpatrick, et al., 1990; Meyer and 

Hill, 1997) as 

 

yi =Xibi +Zia !Φi + ei  
 

where a is a n (# records) by k matrix of genetic random regression coefficients, Φi is 

the ith row in a p by k matrix of Legendre polynomials evaluated for p points on the 

trajectory, and k is the order of Legendre polynomials. This model is explicitly 

described in the Supplementary Note. The genetic covariance structure was 

constructed based on genome-wide SNPs.  

 

2.2. Algorithm 

REML is often solved using Newton-Raphson or Fisher’s scoring method where 

variance components are updated based on observed (Hessian matrix) or expected 

second derivatives of the log likelihood (Fisher information matrix). In order to 

increase the computational efficiency in obtaining REML estimates, Gilmour et al. 

(1995) used the average of the Hessian and Fisher information matrix that was 

estimated based on Henderson’s mixed model equation (MME). The MME-based 

average information (AI) algorithm is efficient particularly when the genetic 

covariance structure fitted in the model is sparse. When using dense covariance 

structures such as GRM, the computational efficiency of a direct AI algorithm is 
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substantially more efficient that the MME-based AI algorithm (Lee and Van der 

Werf, 2006). Here, we extend the direct AI algorithm by implementing an eigen-

decomposition of the genetic covariance structure as proposed by Thompson and 

Shaw (1990).  

In recent studies the eigen-decomposition technique has been implemented in a 

Newton-Raphson algorithm in univariate and multivariate linear mixed models (Zhou 

and Stephens, 2014). We show that an implementation in the direct AI algorithm is 

mathematically straightforward and is computational more efficient especially in 

multivariate linear mixed models (Supplementary Note). Moreover, we show how our 

proposed algorithm can be efficiently applied to a random regression model 

(Supplementary Note).  

 

2.3. Data     

We used heterogeneous stock mice data (http://mus.well.ox.ac.uk/mo-use/HS/) to 

estimate genetic variances and covariances of complex traits explained by genome-

wide SNPs. After a stringent QC of genotypic data, we used 9,258 autosomal SNP 

from 1,908 individuals. We used phenotypes of four glucose values (taken at 0, 15, 30 

and 75 minutes after intraperitoneal glucose injection in a model of type 2 diabetes 

mellitus) as well as body mass index (BMI). We analysed this data in a five-trait 

linear mixed model. We also applied a random regression model for the repeated 

glucose measures.     

Secondly, we used human data from the Atheroscierosis Risk in Communities 

(ARIC) cohort (psh000280.v3.p1) (Sharrett, 1992). A similar stringent QC as above 

was applied to the available genotypes. In addition, we randomly removed one of 

each highly related pair of relatedness > 0.05 to avoid bias due to population structure 

or family effects. After QC, 7,263 individuals and 583,058 SNPs remained. We used 

BMI, triceps skinfold (TS), waist girth (WG), hip girth (HG), waist to hip ratio 

(WHR), systolic blood pressure (SP), diastolic blood pressure (DP) and hypertension 

(HP) that were fitted in an eight-trait linear mixed model.    

Missing phenotypic values were less than 10% and 1% for each trait for the mice 

and the human data, respectively. They were imputed with their expected values from 

univariate linear mixed model fitting each trait separately.  

 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 2, 2015. ; https://doi.org/10.1101/027201doi: bioRxiv preprint 

https://doi.org/10.1101/027201


 5 

2.4. Software 

We implemented the direct AI algorithm and the eigen-decomposition technique into 

software named as MTG2. We compared MTG2 with GEMMA (Zhou and Stephens, 

2014), ASReml (Gilmour, et al., 2006) and WOMBAT (Meyer, 2007). GEMMA uses 

the eigen-decomposition technique in the Newton-Raphson algorithm. ASReml and 

WOMBAT are well known REML software that use an MME-based AI algorithm.  

 

3. Results 

When using WTCCC heterogeneous mice data (N=1,908) for multivariate linear 

mixed model with up to five traits, MTG2 only took a few seconds, which was a few 

thousands times faster than ASReml and WOMBAT and few times faster than 

GEMMA (Table 1). Estimated SNP-heritability and genetic correlations between 

traits are shown in Table S1. REML parameters after convergence were essentially 

the same between different software, as shown in Table S8 and S9. 

 

Table 1. Computing time for each software running at 2.7 GHz CPU when using 

WTCCC heterogeneous stock mice data (N=1908).  

 

	
   MTG2	
   GEMMA	
   ASReml	
   WOMBAT	
  
#	
  traits	
   Multivariate	
  linear	
  mixed	
  model	
  

1	
   1	
  sec	
   1	
  sec	
   2	
  min	
   17	
  sec	
  
3	
   1	
  sec	
   1	
  sec	
   210	
  min	
   9	
  min	
  
5	
   2	
  sec	
   6	
  sec	
   950	
  min	
   60	
  min	
  

#	
  order	
   Random	
  regression	
  model	
  
1	
   2	
  sec	
   NAa	
   4	
  min	
   3	
  min	
  
2	
   2	
  sec	
   NA	
   82	
  min	
   30	
  min	
  
3	
   2	
  sec	
   NA	
   310	
  min	
   54	
  min	
  

 

aGEMMA does not have a function for the random regression model. 

For MTG2 and GEMMA, it took ~4 seconds for the eigen-decomposition, which only 

has to be done once per dataset then can then be reused for multiple analyses.  

 

When using a random regression model, the computing time for MTG2 was a few 

seconds, which did not change with increasing the order of the fit in the model (Table 

1). However, the computational efficiency of ASReml or WOMBAT was lower and 

computing time increased substantially with increasing the order of the fit (Table 1). 

GEMMA does not have a function for random regression models. The estimated 
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results from the random regression model are described and shown in Supplementary 

data (Table S2 and Figure S1). 

When using the ARIC cohort human data (psh000280.v3.p1), the pattern of the 

computing time was similar to that for the heterogeneous mice in that MTG2 and 

GEMMA performed similar although MTG2 became relatively faster with increasing 

number of traits (Table S4). ASReml and WOMBAT were too slow to run for this 

data set. Table S6 shows estimated SNP-heritability and genetic correlations between 

obesity and blood pressure traits. 

 

4. Discussion 

There are two limitations to MTG2 as well as GEMMA. The eigen-decomposition 

technique cannot be used with more than one GRM as also noted in Zhou and 

Stephens (2014) unless a special condition is satisfied, i.e. one full-rank GRM and 

multiple low-rank GRMs are given (Speed and Balding, 2014). In models with 

multiple GRMs, GEMMA cannot be used and MTG2 becomes slow although it is still 

considerably faster than ASReml and WOMBAT (Table S5). Secondly, the eigen-

decomposition technique requires a balanced design (i.e. no missing phenotypes 

across traits). Phenotypic imputation can be used for phenotypic missing values. We 

used imputed missing phenotypes for the mice data (<10% missing for each trait) 

although MTG2 without the eigen-decompostion could still be used for the data 

including missing values. We observed that the results from the data with and without 

imputing missing phenotypes were not much different (Table S2 and figure S2). For 

the human data, missing phenotypes were less than 1%, therefore the results with and 

without imputing missing phenotypes were almost identical (result not shown). 

Finally MTG2 and WOMBAT can facilitate a parallel computation that increases the 

efficiency further.  

 

5. Implication 

There are three novel aspects in this application note. The first and most important is 

to estimate parameters for the random regression models with the direct AI algorithm. 

The second is the use of the decomposition in the AI algorithm in a multivariate 

model. The third is to use of the decomposition in the AI algorithm in the random 

regression models. MTG2 can be used for a wider range of statistical models than 

GEMMA, including multivariate linear mixed models, random regression models and 
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multiple random effects models. GEMMA can only be used for a single random effect 

model in multivariate linear mixed models (Table S7). For random regression models 

or/and multiple random effects models, the computational efficiency for MTG2 (even 

without the eigen-decomposition) is considerably higher than that of ASReml and 

WOMBAT (Table 1, Table S5 and S7). Therefore, MTG2 can be a useful and 

efficient tool for complex traits analyses including estimating genetic variance and 

covariance and G × E.    
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Supplementary data 
 

MTG2: An efficient algorithm for multivariate 
linear mixed model analysis based on genomic 
information 
S.H. Lee and J.H.J van der Werf 
 

 

1. Supplementary Note 

 

1.1. Multivariate linear mixed model 

Following Maier et al. (2015), a multivariate linear mixed model can be written as   

y1 =X1b1 +Z1g1 + e1               for trait 1               (A1) 

y2 =X2b2 +Z2g2 + e2            for trait 2                   (A1) 

!  
yt =Xtbt +Ztgt + et             for trait t               (A1) 

where yi is a vector of trait phenotypes, bi is a vector of fixed effects, gi is a vector of 

additive genetic value for individuals and ei are residuals for trait i (i = 1, …, t). The 

random effects (gi and ei) are assumed to be normally distributed with mean zero. X 

and Z are incidence matrices. The variance covariance matrix of all observations can 

be written as, 

V = var(yi) =

Z1Aσg1
2 "Z1 +Z1Iσe1

2 "Z1 … Z1Aσg1,t
"Zt +Z1Iσe1,t

"Zt

! " !
Z1Aσg1,t

"Zt +Z1Iσe1,t
"Zt ! ZtAσgt

2 "Zt +ZtIσet
2 "Zt

#

$

%
%
%
%

&

'

(
(
(
(
  

 (A2) 

where A is the genomic relationship or similarity matrix based on SNP information, 

and I is an identity matrix. The terms, σ gi
2  and σ ei

2  denote the genetic and residual 

variance of trait i, respectively and σ gij  and σ eij  the genetic and residual covariance 

between traits i and j (i=1,…,t, and j=1,…,t).  

 

The log likelihood of the multivariate model is 
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[ ]PyyXVXV '|'|ln||ln
2
1ln 1 ++−= −L         (A3) 

where ln is the natural log, and |  | the determinant of the associated matrices. The 

projection matrix is defined as 11111 ')'( −−−−− −= VXXVXXVVP  with 

X =
X1 ! 0
" # "
0 ! Xn

!

"

#
#
#
#

$

%

&
&
&
&

, and y =
y1

yn

!

"

#
#
#
#

$

%

&
&
&
&

. 

The Newton-Raphson algorithm obtains the residual maximum likelihood (REML) 

estimates using the following equation (Lynch and Walsh, 1998). 

Θ(k+1) =Θ(k ) − (H(k ) )−1 ∂L
∂Θ

Θ(k )                                                                 (A4) 

where Θ  is a column vector of estimated variance components, k is the iteration 

round, 
Θ∂

∂L  is a column vector of the first derivatives of the log likelihood function 

with respect to each variance component, and H is the Hessian matrix which consists 

of the second derivatives of the log likelihood function with respect to the variance 

components. In Fisher’s scoring method, the inverse of the Hessian matrix in (A4) is 

replaced by its expected value (Lynch and Walsh, 1998) as 

)(1)()()1( )( kkkk LF Θ
Θ∂

∂
+Θ=Θ −+ .                                                                (A5)  

The derivation of the Hessian matrix and the Fisher information matrix has been 

described in several studies (Lynch and Walsh, 1998; Searle, et al., 1992). The 

Hessian matrix for the multivariate model is 

H  =  ∂2L
∂σ i

2∂σ j
2 =

1
2
tr ∂V

∂σ i
2 P

∂V
∂σ j

2 P
"

#
$$

%

&
''− y '

∂V
∂σ i

2 P
∂V
∂σ j

2 PPy
)

*
+
+

,

-
.
.

               (A6) 

where y, P and V are defined as above. The Fisher information (F) matrix is 

F = E ∂2L
∂σ i

2∂σ j
2

"

#
$$

%

&
''=
1
2
tr ∂V

∂σ i
2 P

∂V
∂σ j

2 P
"

#
$$

%

&
''

(

)
*
*

+

,
-
-
.                                                      (A7) 

Gilmour et al. (1995) and Johnson and Thompson (1995) used the average of the H 

and F that was estimated based on Henderson’s mixed model equation (MME) 

(Henderson, 1975). Lee and van der Werf (2006) introduced the direct average 
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information algorithm where the average information matrix was derived directly 

from the V matrix. When using a dense genetic covariance structure, this direct 

average information algorithm is much more efficient than the MME-based average 

information algorithm. The equation for the iterative AI algorithm is  

)(1)()()1( )( kkkk L
Θ

Θ∂

∂
+Θ=Θ −+ AI                      (A8) 

where AI is the average information matrix and that for multivariate model can be 

written as 

AI = 1
2
y ' ∂V
∂σ i

2 P
∂V
∂σ j

2 PPy
"

#
$
$

%

&
'
'

.       (A9) 

The first derivative for each variance covariance component i can be obtained as 

(Lynch and Walsh, 1998; Searle, et al., 1992) 

PyVPyVP 222 '
2
1

2
1

iii

trL
σσσ ∂

∂
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
−=

∂

∂ .     (A10) 

 

1.2. Increasing computational efficiency 

Thompson and Shaw (1990) have proposed an efficient algorithm to obtain the 

REML estimates using an eigen-decomposition of the genetic covariance matrix. This 

technique has been used in a number of seminal papers in the context of GWAS 

(Lippert, et al., 2011; Zhou and Stephens, 2012; Zhou and Stephens, 2014). Lippert et 

al. (2011) and Zhou and Stephens (2012) have applied it to a univariate linear mixed 

model using a grid search or the full Newton-Raphson algorithm (i.e. equation A6). 

Zhou and Stephens (2014) extended their approach to a multivariate linear mixed 

model framework. Here, we implement the eigen-decomposition technique into the 

direct AI algorithm (Lee and Van der Werf, 2006) for multivariate REML estimation.  

 

From Thompson and Shaw (1990), the relationship matrix can be decomposed as 

A=UDU’ where I=UU’. With a linear transform by multiplying the left and right hand 

side of the multivariate linear mixed model (A1) with U, the model can be rewritten 
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as !U yi = !UXibi + !UZigi + !U ei  given that the data are a balanced design (i.e. no 

missing phenotypes). The variance covariance matrix (A2) of the transformed data 

can be now rewritten as 

V* = var( !U yi) =

Dσg1
2 + Iσe1

2 … Dσg1,t
+ Iσe1,t

! " !
Dσgt,1

+ Iσet,1
! Dσgt

2 + Iσet
2

"

#

$
$
$
$

%

&

'
'
'
'

.   (A11) 

 

It is also noted that X and y can be transformed and written as  

 X* =

!UX1 ! 0
" # "
0 ! !UXt

"

#

$
$
$
$

%

&

'
'
'
'

, and y* =
!U y1
!
!U yt

"

#

$
$
$
$

%

&

'
'
'
'

.  

The AI algorithm (A8) needs to evaluate three parts; i) the log likelihood (A3), ii) the 

AI matrix (A9) and iii) the first derivatives (A10). For the evaluation for the log 

likelihood the inverse V is required (A3). Because V* (A11) is a matrix with t2 

diagonal blocks, the computational complexity for obtaining the inverse and 

determinant of V* is only O(nt3) where t is the number of traits and n is the sample 

size. The product matrix (X*’V*-1X*)-1 and |X*’V*-1X*| require O (nc2t+c3t3) where c 

is the number of fixed effects for each trait. Following Lynch and Walsh (1998), The 

product of P* and y* can be efficiently obtained as 

P*y* =V*−1y* −V*−1X*(X* 'V*−1X*)−1X* 'V*−1y* =V*−1(y* −Xb̂) ,   (A12) 

which requires only O(nt2) because also V*-1 has a simple structure with diagonal 

blocks. Further, y*P*y* requires additional O(nt).  

The second part of the AI algorithm comprises derivation of the AI matrix which 

consists of two terms; ∂V
*

∂σi
2 P

*y*  and P* ∂V
*

∂σj
2 P

*y* . Because the partial derivative, 

∂V*

∂σi
2  is a partial diagonal matrix with In×n (for ei) or D (for gi) for the ith 

corresponding component in the AI matrix, the first term, ∂V
*

∂σi
2 P

*y*

 
can be easily 

obtained with O(n) (note that P*y* is already obtained as above (A12)). Replacing y* 

with ∂V
*

∂σi
2 P

*y*  in (A12), the second term can be efficiently obtained as 
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P* ∂V
*

∂σj
2 P

*y* =V*−1 ∂V*

∂σj
2 P

*y* −X*b̂°
#

$
%%

&

'
((  where b̂°  is the generalised least square 

estimate with ∂V
*

∂σi
2 P

*y*  as the response variable (the computational complexity is 

O(nct2)). Given P* ∂V
*

∂σi
2 P

*y*  is known, the term, y* 'P* ∂V
*

∂σi
2 P

*y*  in the first 

derivative (A10), can be easily obtained with O(n). The trace term in the first 

derivative involves only the diagonal part of the P* and ∂V
*

∂σi
2 , therefore can be 

efficiently obtained with O(n). The computational complexity our direct AI algorithm 

would be ~ O(nt3+ nct6) within each iteration.  

 

1.3. Random regression linear mixed model 

A specific case of a multivariate model arises if the observations with the associated 

effects can be described as a function of a trajectory, e.g. as a function of time or age. 

In a random regression model, the model parameters can then be regressed on the 

trajectory variable, e.g. the genetic covariance structure underlying the data can be 

modelled as a function of age. If the trajectory variable is an environmental indicator, 

the random regression model provides a framework to model reaction norms where 

the genetic effects are modelled as a function of the environmental gradient. This is an 

elegant form of modelling genotype by environment interaction, or environmental 

sensitivity of genetic effects. Following Kirkpatrick et al. (1990) and Meyer and Hill 

(1997), a linear mixed model to incorporate observations at p different points in time 

or in p different environments can be written as   

y1 =X1b1 +Z1g1 + e1               for environment 1             (A13) 

y2 =X2b2 +Z2g2 + e2            for environment 2              (A13) 

!  
yp =Xpbp +Zpgp + ep             for environment p      (A13) 

If the environments can be ranked according to a continuous variable on which effects 

of genes can be regressed, e.g. with an environmental gradient (reaction norm), this 

can be effectively modelled with random regression coefficients. A random regression 

model attempts to fit effects as a function of continuous variables, e.g. by using 

Legendre polynomials (Kirkpatrick, et al., 1990; Meyer and Hill, 1997), as 
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yi =Xibi +Zia !Φi + ei, (i =1,..., p)                                                                  (A14) 

where a is a n by k matrix of genetic random regression coefficients, Φi is the ith row 

in a p by k matrix of Legendre polynomials evaluated for p points on the trajectory, 

and k is the order of Legendre polynomials. This random regression model reduces a 

t-dimensional multivariate problem to a k-dimensional problem. The variance and 

covariance matrix of random regression coefficients is 

 K = cov(αim,αil ) =

σα1

2 ! σα1,k

" # "
σαk,1

! σαk

2

#

$

%
%
%
%

&

'

(
(
(
(

  

where αim or αil is the mth or lth genetic random regression coefficient for the ith 

individual (i = 1 - n). The genetic variance and covariance matrix of individual 

genetic effects across the different environmental conditions is a function of random 

regression coefficients and Legendre polynomials, and can be written as  

G =

σ g1
2
e1
2 … σ g1,Pe1,P

! " !
σ g1,Pe1,P

! σ gP
2
eP
2

!

"

#
#
#
#

$

%

&
&
&
&

=ΦK (Φ .                   (A15) 

Here we propose the direct average information algorithm for the random regression 

model, which is suitable for dense genetic covariance structure. The log likelihood of 

the random regression model is the same as (A3) as 

[ ]PyyXVXV '|'|ln||ln
2
1ln 1 ++−= −L  

where the matrix V can be decomposed as  

V = var(yi ) =

Z1Aσg1
2 "Z1 +Z1Iσe1

2 "Z1 + Iσe1*
2 … Z1Aσg1,p "Zp +Z1Iσe1,p "Zp

! " !
Z1Aσg1,p "Zp +Z1Iσe1,p "Zp # ZpAσgp

2 "Zp +ZpIσep
2 "Zp + Iσep*

2

#

$

%
%
%
%

&

'

(
(
(
(

 

and the matrices P, X and y are defined as above. From (A15), the additive genetic 

and permanent environmental effects can be parameterised as a function of Legendre 

polynomials (Φ) and variance covariance matrix of random regression coefficients 

(K) as 
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Φ1K1 "Φ1 =

σg1
2
e1
2 … σg1,Pe1,P
! " !

σg1,Pe1,P # σgP
2
eP
2

$

%

&
&
&
&

'

(

)
)
)
)

  and Φ2K2 "Φ2 =

σe1
2
e1
2 … σe1,Pe1,P
! " !

σe1,Pe1,P # σeP
2
eP
2

$

%

&
&
&
&

'

(

)
)
)
)

.  

The residual variance within each environment can be stored in a matrix as 

R =

σ
e1
*
2 … 0

! " !
0 # σ

ep
*
2

"

#

$
$
$
$

%

&

'
'
'
'

.  

We are interested in obtaining the REML estimate for the elements in the matrices K1, 

K2 and R. We use an average information algorithm that requires the first and second 

derivatives of the likelihood function with respect to each variance component in K1, 

K2 and R. The first derivatives and AI matrix can be written as   

∂L
∂σ i

2 = −
1
2
tr P ∂V

∂σ i
2

$

%
&

'

(
)+
1
2
y 'P ∂V

∂σ i
2 Py where σ i

2 ∈ {K1,K2,R}        (A16) 

and 

AI = 1
2
y ' ∂V
∂σ i

2 P
∂V
∂σ j

2 PPy
#

$
%
%

&

'
(
(

where σ i
2 ∈ {K1,K2,R} and σ j

2 ∈ {K1,K2,R} .   (A17) 

An implementation of the eigen-decomposition technique (Thompson and Shaw, 

1990) in the log likelihood, the first derivatives (A16) and the AI matrix (A17) for the 

random regression is analogues to that in the multivariate linear mixed model, i.e. 

ZAZ’ in the matrix V can be replaced by D, thereby substantially reducing the 

computational complexity as shown in the previous section. As with the multivariate 

linear mixed model, the eigen-decomposition technique cannot be used for multiple 

genomic relationship matrices unless the additional relationship matrix is an identity 

matrix, which is to fit permanent environmental effects across different environments 

as in the model above.  

 

In the average information algorithm for the random regression model based on the 

mixed model equations (Gilmour, et al., 2006; Meyer, 2007; Meyer and Hill, 1997), 

the log likelihood is written as  

lnL = − 1
2
n ln |R |+nA ln |K |+P ln |A |+ ln |C |+y 'Py[ ]    (A18) 
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where n is the number of records, nA is the number of individuals and C is the 

coefficient matrix in the mixed model equation (MME) (Henderson, 1975). It is noted 

that the classical AI algorithm based on equation (A18) is substantially different from 

what we propose here with different working variables.  

 

1.4. Convergence 

With illegal or bad starting values, the REML process can have numerical problems. 

ASReml (Gilmour, et al., 2006), WOMBAT (Meyer, 2007) and GEMMA (Zhou and 

Stephens, 2014) use EM type algorithms in initial iterations to obtain a better set of 

starting values. This is mostly because if starting values are very different from the 

REML estimate, Newton type algorithms effectively update parameters that 

substantially depart from the current value, which occasionally results in updated 

values outside the legal parameter space. However, it is possible to prevent updated 

values from being in illegal states by moderating the magnitude of updates in the 

Newton type algorithm. The pseudo code of this moderating update is as follows: 
 

 

Initial	
  values	
  assigned	
  to	
  parameter	
  (Θ0);	
  

i=0	
  

Loop	
  until	
  REML	
  estimate	
  is	
  found	
  {	
  

	
   i	
  =	
  i	
  +	
  1	
  

Δ0	
  is	
  obtained	
  from	
  the	
  first	
  derivatives	
  and	
  AI	
  matrix;	
  

Θi	
  =	
  Θi-­‐1	
  +	
  Δ0	
  (i.e.	
  A8)	
  

k	
  =	
  1;	
  

Log	
  likelihood	
  evaluation	
  given	
  the	
  updated	
  parameters	
  Θi	
  	
  

If	
  updated	
  values	
  are	
  illegal	
  

	
   Update	
  values	
  are	
  reduced	
  by	
  Δk	
  =	
  Δk-­‐1	
  ×	
  f
k	
  	
  

	
   Θi	
  =	
  Θi-­‐1	
  +	
  Δk	
  	
  

k	
  =	
  k	
  +	
  1	
  

Goto	
  log	
  likelihood	
  evaluation	
  

	
   End	
  if	
  

}	
  

 

We used an arbitrary value of f = 0.7 and observed no convergence and numerical 

problems with poor starting values (Table S8 and S9). Computational complexity for 

the moderating update requires only evaluation of the log likelihood, i.e. ~ O(nt3) in 
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each update iteration (noted as r1 in Table S7, S8 and S9). The number of iterations 

needed to find a converged REML estimate is typically less than ten when using a 

moderating update strategy (Table S8 and S9). The moderating update strategy is also 

implemented in ASReml, but only in the first iteration round.  

 

1.5. Comparison of computational efficiency 

We quantified the computational efficiency by comparing approximated 

computational complexity (Table S7). The computing time needed to find REML 

estimates was much lower for MTG2 and GEMMA than for ASReml and WOMBAT. 

MTG2 can be used for a wider range of statistical models than GEMMA, including 

multivariate linear mixed models, random regression models and multiple random 

effects models. GEMMA can only be used for a single random effect model in 

multivariate linear mixed models (Table S7). For random regression models or/and 

multiple random effects models, the computational efficiency for MTG2 (even 

without the eigen-decomposition) is considerably higher than that of ASReml and 

WOMBAT (Table S5 and S7). The moderating updating strategy further increases the 

relative computational efficiency of MTG2, resulting in a better performance of 

MTG2 compared with other methods. The advantage of MTG2 was larger when the 

number of traits increased (Table 1 and Table S4). We have checked the convergence 

behaviour for MTG2 with poor or good starting values, compared to that for ASReml, 

standard REML software using ten replicates of simulated phenotype data (Table S8 

and S9). It is shown that the maximum log likelihood was perfectly agreed between 

MTG2 and ASReml and the process was converged well within a few iterations for 

both software whether using a multivariate (Table S8) or a random regression linear 

mixed model (Table S9). With good starting values, the number of iterations required 

for convergence reduced considerably for MTG2.  
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2. Supplementary Figures 

 

    

 

 

 

 

 
 

 

Figure S1. Genetic covariance pattern of glucose levels across time series after 

glucose injection from the random regression (see Supplementary Note). The order of 

Legendre polynomial is 3 for both genetic and residual variance components (see 

Table S3).   
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Figure S2. The same analysis as in Figure S1 except that the analysis was done 

without imputing missing phenotypes. This is to show the results from data with and 

without imputing missing phenotypic values are not much different.  
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3. Supplementary Tables 

 

Table S1. Estimated SNP-heritability (h2) and genetic correlation (rg) between glucose 

level for each time after glucose injection and BMI when using the heterogeneous 

stock mice.  
 

Parameter	
   Traits	
   Estimation	
   SE	
  

h2	
   Glucose	
  0	
   0.166	
   0.028	
  
h2	
   Glucose	
  15	
   0.147	
   0.026	
  

h2	
   Glucose	
  30	
   0.210	
   0.031	
  
h2	
   Glucose	
  75	
   0.239	
   0.032	
  

h2	
   BMI	
   0.156	
   0.028	
  

	
   	
   	
   	
  
rg	
   Glucose	
  0	
  and	
  glucose	
  15	
   0.361	
   0.119	
  

rg	
   Glucose	
  0	
  and	
  glucose	
  30	
   0.280	
   0.118	
  
rg	
   Glucose	
  15	
  and	
  glucose	
  30	
   0.953	
   0.025	
  

rg	
   Glucose	
  0	
  and	
  glucose	
  75	
   0.226	
   0.117	
  

rg	
   Glucose	
  15	
  and	
  glucose	
  75	
   0.728	
   0.075	
  
rg	
   Glucose	
  30	
  and	
  glucose	
  75	
   0.804	
   0.052	
  

rg	
   Glucose	
  0	
  and	
  BMI	
   -­‐0.004	
   0.137	
  
rg	
   Glucose	
  15	
  and	
  BMI	
   -­‐0.332	
   0.131	
  

rg	
   Glucose	
  30	
  and	
  BMI	
   -­‐0.153	
   0.128	
  
rg	
   Glucose	
  75	
  and	
  BMI	
   0.041	
   0.124	
  

 

Estimates were essentially the same for the different REML estimation methods. The 

estimated SNP-heritability was moderate for the glucose level traits and BMI, ranging 

from 0.15 to 0.24. Among the glucose level straits, the genetic correlation between 

glucose 15 and 30 was the highest (0.95) while that between glucose 0 and 75 was the 

lowest (0.23). The genetic correlation between glucose levels within 30 minutes from 

the injection and BMI was negative, which was unexpected. However, the genetic 

correlation between glucose 75 and BMI was slight positive. More measurements 

after 75 minutes might be needed to find out the pattern. Further investigation is 

beyond the scope of this paper and warranted in a separate study.    
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Table S2. The same analysis as in Table S1 except that there was no phenotype 

imputation for missing values.  
 

Parameter	
   Traits	
   Estimation	
   SE	
  

h2	
   Glucose	
  0	
   0.157	
   0.029	
  
h2	
   Glucose	
  15	
   0.135	
   0.027	
  
h2	
   Glucose	
  30	
   0.192	
   0.031	
  
h2	
   Glucose	
  75	
   0.229	
   0.033	
  
h2	
   BMI	
   0.151	
   0.029	
  
	
   	
  

	
   	
  rg	
   Glucose	
  0	
  and	
  glucose	
  15	
   0.336	
   0.131	
  
rg	
   Glucose	
  0	
  and	
  glucose	
  30	
   0.214	
   0.131	
  
rg	
   Glucose	
  15	
  and	
  glucose	
  30	
   0.940	
   0.028	
  
rg	
   Glucose	
  0	
  and	
  glucose	
  75	
   0.235	
   0.125	
  
rg	
   Glucose	
  15	
  and	
  glucose	
  75	
   0.792	
   0.074	
  
rg	
   Glucose	
  30	
  and	
  glucose	
  75	
   0.863	
   0.047	
  
rg	
   Glucose	
  0	
  and	
  BMI	
   -­‐0.009	
   0.145	
  
rg	
   Glucose	
  15	
  and	
  BMI	
   -­‐0.341	
   0.141	
  
rg	
   Glucose	
  30	
  and	
  BMI	
   -­‐0.151	
   0.137	
  
rg	
   Glucose	
  75	
  and	
  BMI	
   0.023	
   0.132	
  

 

The estimates from the phenotypic data without imputing missing values (<10% for 

each trait) were very similar to those from the phenotypic data with imputing missing 

values (Table S1).  
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Table S3. Bayesian information criteria (BIC) for each model varying the number of 

order of Legendre polynomial in the random regression model.  
 

	
   #	
  Order	
  for	
  residual	
  variance	
  
1	
   2	
   3	
  

#	
  Order	
  for	
  
genetic	
  
variance	
  

1	
   -­‐7363.56	
   -­‐7708.08	
   -­‐8471.70	
  
2	
   -­‐7700.28	
   -­‐7854.00	
   -­‐8606.18	
  

3	
   -­‐7929.46	
   -­‐8110.98	
   -­‐8636.36	
  

4	
   -­‐7939.51	
   -­‐8123.02	
   -­‐8623.00	
  

 

It shows that the best model was with the order of 3 and 3 for genetic and residual 

variance component. We used BIC that is robust to type I errors although one can use 

AIC, likelihood ratio test or other variants of information criteria under their own 

justification. Figure S1 shows genetic covariance pattern of glucose levels across 

different time after intraperitoneal glucose injection, which was from the best model 

according to BIC.  
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Table S4. Computing time for MTG2 and GEMMA when using the ARIC cohort 

human data (N=7,263). 
 

	
   1	
   3	
   5	
   7	
  

MTG2	
   19	
  sec	
   20	
  sec	
   23	
  sec	
   27	
  sec	
  

GEMMA	
   14	
  sec	
   20	
  sec	
   44	
  sec	
   68	
  sec	
  
 

ASReml and WOMBAT were not used in this comparison. GEMMA was sightly 

faster than MTG2 when using a single trait model. With increasing number of traits, 

the computational efficiency for MTG2 was more increased than that for GEMMA. 

This would be expected given their computational complexity (Table S7). MTG2 and 

GEMMA took ~10 minutes for the eigen-decomposition, which only has to be done 

once per dataset then can then be reused for multiple analyses. 
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Table S5. Computing time for MTG2, ASReml and WOMBAT based on a single or 

multiple random effect models (i.e. multiple genetic covariance matrices) when using 

the heterogeneous stock mice data (N=1908). 
  

	
   #	
  Random	
  effects	
  
	
   1	
   2	
   3	
  

	
   Multivariate	
  linear	
  mixed	
  model	
  (3	
  traits	
  model)	
  
MTG2	
   6min	
   8min	
   9min	
  

ASReml	
   210min	
   1300	
  min	
   4200min	
  
WOMBAT	
   9min	
   62min	
   130min	
  

	
   Random	
  regression	
  model	
  	
  
(#	
  Order=2	
  for	
  genetic	
  and	
  residual	
  variance	
  component)	
  

MTG2	
   27min	
   39min	
   63min	
  

ASReml	
   82min	
   470min	
   >	
  1000min	
  
WOMBAT	
   30min	
   80min	
   250min	
  

 

GEMMA was not included in these analyses because it cannot fit multiple random 

effects. MTG2 turns off the eigen-decomposition function and its performance was 

slowed down from the computing time of 1 second to 6 minutes for the three-trait 

linear mixed model, and from 2 seconds to 27 minutes for the random regression 

model with the order of 2 for both genetic residual variance components. In any case, 

the computational efficiency for MTG2 was the highest among the methods (Table 

S5). With increasing number of random effects (i.e. genetic covariance matrices), the 

relative computational efficiency for MTG2 was increased, compared to ASReml and 

WOMBAT. This would be expected because MTG2 was based on the direct AI 

algorithm using the variance covariance matrix of phenotypic observation and the size 

of this matrix is not affected by increasing number of random effects (see A(2)). 

However, MME-based AI algorithms (e.g. ASReml and WOMBAT) will slow down 

because the dimension of the MME increases with increasing number of random 

effects.    
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Table S6. Estimated SNP-heritability (h2) and genetic correlation (rg) between obesity 

and blood pressure traits when using ARIC cohort human data. 
 

Parameter	
   Traits	
   Estimation	
   SE	
  

h2	
   BMI	
   0.180	
   0.045	
  
h2	
   Triceps	
  skinfold	
  (TS)	
   0.163	
   0.045	
  

h2	
   Waist	
  girth	
  (WG)	
   0.164	
   0.045	
  

h2	
   Hip	
  girth	
  (HG)	
   0.170	
   0.045	
  
h2	
   Waist	
  to	
  hip	
  ratio	
  (WHR)	
   0.139	
   0.045	
  

h2	
   Systolic	
  blood	
  pressure	
  (SP)	
   0.193	
   0.045	
  
h2	
   Diastolic	
  blood	
  pressure	
  (DP)	
   0.201	
   0.045	
  

h2	
   Hypertension	
  (HP)	
   0.251a	
   0.082	
  

	
   	
   	
   	
  
rg	
   BMI	
  and	
  TS	
   0.660	
   0.104	
  

rg	
   BMI	
  and	
  WG	
   0.884	
   0.041	
  
rg	
   TS	
  and	
  WG	
   0.614	
   0.122	
  

rg	
   BMI	
  and	
  HG	
   0.741	
   0.069	
  
rg	
   TS	
  and	
  HG	
   0.693	
   0.107	
  

rg	
   WG	
  and	
  HG	
   0.856	
   0.056	
  

rg	
   BMI	
  and	
  WHR	
   0.694	
   0.129	
  
rg	
   TS	
  and	
  WHR	
   0.359	
   0.185	
  

rg	
   WG	
  and	
  WHR	
   0.771	
   0.085	
  
rg	
   HG	
  and	
  WHR	
   0.333	
   0.185	
  

rg	
   BMI	
  and	
  SP	
   0.240	
   0.161	
  

rg	
   TS	
  and	
  SP	
   0.159	
   0.175	
  
rg	
   WG	
  and	
  SP	
   0.309	
   0.165	
  

rg	
   HG	
  and	
  SP	
   0.159	
   0.171	
  
rg	
   WHR	
  and	
  SP	
   0.289	
   0.183	
  

rg	
   BMI	
  and	
  DP	
   0.242	
   0.159	
  
rg	
   TS	
  and	
  DP	
   0.443	
   0.172	
  

rg	
   WG	
  and	
  DP	
   0.129	
   0.172	
  

rg	
   HG	
  and	
  DP	
   0.186	
   0.167	
  
rg	
   WHR	
  and	
  DP	
   -­‐0.022	
   0.195	
  

rg	
   SP	
  and	
  DP	
   0.768	
   0.075	
  
rg	
   BMI	
  and	
  HP	
   0.270	
   0.192	
  

rg	
   TS	
  andHDP	
   0.201	
   0.208	
  

rg	
   WG	
  and	
  HP	
   0.324	
   0.199	
  
rg	
   HG	
  and	
  HP	
   0.119	
   0.205	
  

rg	
   WHR	
  and	
  HP	
   0.420	
   0.218	
  
rg	
   SP	
  and	
  HP	
   0.970	
   0.138	
  

rg	
   DP	
  and	
  HP	
   0.858	
   0.149	
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aHypertension is a binary trait and the reported SNP-heritability is on the liability 

scale using the transformation (Dempster and Lerner, 1950; Lee, et al., 2011). The 

obesity traits (BMI, TS, WG, HG and WHR) and blood pressure traits (SP, DP and 

HP) were moderately heritable, with the estimated SNP-heritability ranging from 0.14 

to 0.20. Among the obesity traits, there were positive genetic correlations (0.33 – 

0.88). For the blood pressure traits, there were also strong positive genetic 

correlations (0.77 – 0.97). Between the obesity and blood pressure traits, all of the 

estimated genetic correlations were positive except one between WHR and DP (-

0.02). The genetic correlation between TS and DP was the highest (0.44), followed by 

that between WHR and HP (0.42).  
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Table S7. Approximated computational complexity of the methods   
 

	
   Multivariate	
  linear	
  mixed	
  model	
   Random	
  regression	
  model	
  

	
   With	
  a	
  single	
  genetic	
  covariance	
  matrix	
  
MTG2	
   O(n3	
  +	
  n2t	
  +	
  n2c	
  +	
  r1nt

3+	
  	
  r2nct
6)	
   O(n3	
  +	
  n2p	
  +	
  n2c	
  +	
  r1np

3+	
  	
  r2ncp
2k4)	
  

GEMMA	
   O(n3	
  +	
  n2t	
  +	
  n2c	
  +	
  r3nc
2t2	
  +	
  r2nc

2t6)	
   NA	
  
ASReml	
   O(r3n

3(t	
  +	
  c)3	
  +	
  r2n
3t7)	
   O(r3n

3(p	
  +	
  c)3	
  +	
  r2n
3p3k4)	
  

WOMBAT	
   O(r3n
3(t	
  +	
  c)3	
  +	
  r2n

3t7)	
   O(r3n
3(p	
  +	
  c)3	
  +	
  r2n

3p3k4)	
  

	
   With	
  multiple	
  genetic	
  covariance	
  matrices	
  (m>1)	
  
MTG2	
   O(r1n

3t3	
  +	
  r2n
3t7m4)	
   O(r1n

3p3	
  +	
  r2n
3p3k4	
  m4)	
  

GEMMA	
   NA	
   NA	
  
ASReml	
   O(r3n

3	
  m3	
  (t	
  +	
  c)3	
  +	
  r2n
3t7m7)	
   O(r3n

3	
  m3	
  (p	
  +	
  c)3	
  +	
  r2n
3p3k4m7)	
  

WOMBAT	
   O(r3n
3	
  m3	
  (t	
  +	
  c)3	
  +	
  r2n

3t7m7)	
   O(r3n
3	
  m3	
  (p	
  +	
  c)3	
  +	
  r2n

3p3k4m7)	
  
 

n is the number of individuals, t is the number of traits, c is the number of fixed 

effects, r1 is the number of iterations for the moderating update, r2 is the number of 

iteration for Newton type algorithm, r3 is the number of iterations for EM-type 

algorithm, p is the number of environments, and m is the number of genetic 

covariance matrices (i.e. GRM).  
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Table S8. Obtained log likelihood, the number of iterations and convergence when 

using MTG2 and ASReml with three-trait linear mixed model for the WTCCC 

heterogeneous mice stock.   

Replicates	
   MTG2	
   ASRemlc	
   Converged	
  
Likelihood	
   #	
  iteration	
   Likelihood	
   #	
  iteration	
  

(r2
e)	
  Poor	
  starting	
  

valuea	
  
Good	
  starting	
  

valueb	
  

r1
d	
   r2

e	
   r1
d	
   r2

e	
  

1	
   -­‐4424.15	
   2	
   6	
   0	
   3	
   -­‐4424.15	
   9	
   yes	
  
2	
   -­‐4378.5	
   11	
   10	
   0	
   4	
   -­‐4378.5	
   8	
   yes	
  

3	
   -­‐4375.63	
   3	
   6	
   0	
   4	
   -­‐4375.63	
   8	
   yes	
  
4	
   -­‐4326.18	
   3	
   6	
   0	
   3	
   -­‐4326.18	
   8	
   yes	
  

5	
   -­‐4354.97	
   3	
   6	
   0	
   3	
   -­‐4354.97	
   15	
   yes	
  
6	
   -­‐4411.81	
   2	
   6	
   0	
   4	
   -­‐4311.81	
   14	
   yes	
  

7	
   -­‐4093.76	
   2	
   5	
   0	
   3	
   -­‐4093.76	
   9	
   yes	
  

8	
   -­‐4216.42	
   2	
   6	
   0	
   4	
   -­‐4216.42	
   10	
   yes	
  
9	
   -­‐4119.63	
   2	
   5	
   0	
   3	
   -­‐4119.63	
   8	
   yes	
  

10	
   -­‐4218.67	
   2	
   6	
   0	
   4	
   -­‐4218.67	
   10	
   yes	
  
 

Ten replicates of phenotypic data were used to assess the performance. Simulation 

was based on multivariate normal variables reflecting the variance and covariance 

structure estimated in the random regression model for the glucose traits (Figure S1). 
aArbitary values were assigned, e.g. genetic and residual variances were assigned as 

half of the total phenotypic variance and covariances was assigned as zero. bTrue 

simulated parameters were used. cASReml hardly used EM algorithm unless there 

were numerical problems. dr1 is the number of iterations for the moderating update 

(see Table S7). er2 is the number of iteration for Newton type algorithm (see Table 

S7).  
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Table S9. Obtained log likelihood, the number of iterations and convergence when 

using MTG2 and ASReml with random regression model with Legendre polynomial 

order of 3 for genetic and residual variance components. The heterogeneous mice 

stock was used with simulated phenotypic data. 
Replicates	
   MTG2	
   ASReml	
   Converged	
  

Likelihood	
   #	
  iteration	
   Likelihood	
   #	
  
iteration	
  

(r2)	
  
Poor	
  starting	
  

value	
  
Good	
  starting	
  

value	
  
r1	
   r2	
   r1	
   r2	
  

1	
   -­‐8324.47	
   0	
   9	
   0	
   3	
   -­‐8324.47	
   7	
   yes	
  
2	
   -­‐8311.27	
   0	
   8	
   0	
   3	
   -­‐8311.27	
   7	
   yes	
  

3	
   -­‐8259.34	
   0	
   8	
   0	
   3	
   -­‐8259.34	
   7	
   yes	
  

4	
   -­‐8325.44	
   0	
   8	
   0	
   3	
   -­‐8325.44	
   7	
   yes	
  
5	
   -­‐8315.36	
   0	
   8	
   0	
   3	
   -­‐8315.36	
   7	
   yes	
  

6	
   -­‐8292.39	
   0	
   8	
   0	
   3	
   -­‐8392.39	
   7	
   yes	
  
7	
   -­‐8367.17	
   0	
   8	
   0	
   3	
   -­‐8367.17	
   7	
   yes	
  

8	
   -­‐8363.37	
   0	
   8	
   0	
   3	
   -­‐8363.37	
   7	
   yes	
  
9	
   -­‐8329.45	
   0	
   8	
   0	
   3	
   -­‐8429.45	
   8	
   yes	
  

10	
   -­‐8371.66	
   0	
   8	
   0	
   3	
   -­‐8371.66	
   7	
   yes	
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