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Abstract1

The dynamics of neural populations seem constrained to repeatedly visit a limited sub-2

set of all possible states. Within sensory populations, and especially in the retina, these3

repeated states take the form of millisecond-precise activity patterns. Enumerating a4

population’s activity patterns thus defines a neural dictionary: the set of patterns that5

could potentially represent different things. Unknown is if such a dictionary is a general6

principle of cortical populations, and if learning changes the dictionary. To address these7

questions, we analysed population activity from the medial prefrontal cortex (mPfC) of8

rats learning new rules in a Y-maze. We found that patterns of co-active neurons on9

millisecond time-scales occurred far in excess of those predicted by firing rates alone. The10

set of activity patterns was strongly conserved between waking and sleep. Yet pattern11

frequencies detectably changed between the sleep epochs before and after a maze session.12

These changes were greatest for patterns that, during trials, were expressed at the maze’s13

choice point and predicted the outcome of a trial. Successful learning of a rule system-14

atically changed the dictionary of patterns, such that the probabilities of patterns after15

learning where maintained in post-learning sleep. By contrast, during stable behaviour16

there was no systematic change to the dictionary. Our data show that population activ-17

ity in the mPfC contains a consistent yet plastic dictionary of task-encoding patterns at18

millisecond time-scales. We propose that these finding are a signature of the probabilistic19

representation of behavioural strategies in mPfC.20

Significance statement21

Cortex represents and computes information using the joint activity of many neurons. An22

open question is what experimentally observed features of this joint population activity are23

computationally relevant. We show here that the population activity from the prefrontal24

cortex of rats learning rules in a maze contains a specific dictionary of millisecond-precise25

activity patterns. This dictionary was altered during training, and encoded key parts of26

the task. But only during successful learning of a new rule was the dictionary seemingly27

permanently updated, because the changes could be detected during sleep after training.28

Our results thus further our understanding of the statistical structure of neural activity29

in cerebral cortex, and provides clues for the basis of cortical computation.30

Introduction31

Characterising the joint activity of cortical neurons is a step towards understanding how32

the cortex represents coding and computation (Cunningham and Yu, 2014; Yuste, 2015).33

A consistent observation is that the joint activity of cortical populations seems constrained34

to visit only a sub-set of all the possible states they could reach (Tsodyks et al., 1999;35

Luczak et al., 2009; Sadtler et al., 2014; Jazayeri and Afraz, 2017). Theoretical accounts36

propose that this manifold of possible states is specified by the connections into and within37

the network of cortical neurons (Galan, 2008; Marre et al., 2009; Buesing et al., 2011;38

Habenschuss et al., 2013; Kappel et al., 2015). An implicit prediction of these theories39

is that changing the network connections through learning would change the set of states40

visited by the joint activity of the population. If so, then these changes to the connections41

should constrain cortical activity across both evoked and spontaneous activity (Luczak et42

al., 2009; Ringach, 2009; Miller et al., 2014). Understanding how learning changes the set43

of states visited by a cortical population would provide strong constraints on theories for44

how cortex processes information.45

It is convenient to characterise joint activity states as a set of binary activity patterns,46

or “words”, each word identifying whether or not each neuron has fired in some small slice47

of time, typically on the order of a few milliseconds (Schneidman et al., 2006; Shlens et48
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al., 2006; Ohiorhenuan et al., 2010; Berkes et al., 2011). The set of unique words visited49

by a neural population defines a dictionary, and their rates of occurrence define the use50

of that dictionary to represent information (Schneidman et al., 2006; Tkacik et al., 2014;51

Marre et al., 2015; Ganmor et al., 2015; O’Donnell et al., 2017). Such approaches have52

been successfully applied in retina and V1, but not in higher cortices, and nor to learning53

or behaviour. So we ask here if such a dictionary of millisecond-precise activity patterns54

exist in higher cortices and, if so, what that dictionary encodes about behaviour and how55

it changes with learning.56

The medial prefrontal cortex (mPFC) is a natural candidate for addressing these ques-57

tions. It is necessary for learning new rules or strategies (Ragozzino et al., 1999; Rich58

and Shapiro, 2007). Changes in mPFC neuron firing times correlate with successful rule59

learning (Benchenane et al., 2010), suggesting that mPFC coding of task-related variables60

by the timing of spikes changes over learning. Further, mPFC population recording data61

from the outset of learning on a Y-maze task are available (Peyrache et al., 2009). We62

thus use that data here to test the hypothesis that mPFC population activity contains63

a dictionary of millisecond-precise activity patterns related to learning rules about the64

world.65

We found that millisecond-precise patterns of joint activity occur far above chance66

levels defined by firing rates in the mPfC, across waking and sleeping, and irrespective of67

whether behaviour on the task was changing or stable. A set of these patterns changed68

their rate of occurrence between the sleep epochs before and after training sessions. Dur-69

ing training, these changed patterns occurred around the choice point of the maze and70

predicted trial outcome. But only in learning sessions was the direction of change sys-71

tematic, such that it brought the distribution of patterns in post-training sleep closer to72

the distribution sampled in training. We show how these findings are consistent with the73

mPfC representing and updating a sample-based internal model of the maze rules. Col-74

lectively, our results constrain models for mPfC dynamics, and suggest the existence of75

fine time-scale population codes.76

Materials and Methods77

Task and electrophysiological recordings78

Four Long-Evans male rats with implanted tetrodes in prelimbic cortex were trained on a79

Y-maze task (Figure 1A). Each recording session consisted of a 20-30 minute sleep or rest80

epoch (pre-training epoch), in which the rat remained undisturbed in a padded flowerpot81

placed on the central platform of the maze, followed by a training epoch, in which the82

rat performed for 20-40 minutes, and then by a second 20-30 minute sleep or rest epoch83

(post-training epoch); see Figure 1B. Every trial started when the rat left the beginning84

of the departure arm and finished when the rat reached the end of one of the choice arms.85

Correct choice was rewarded with drops of flavoured milk. Each rat had to learn the86

current rule by trial-and-error, either: go to the right arm; go to the cued arm; go to the87

left arm; go to the uncued arm. To maintain consistent context across all sessions, the88

extra-maze light cues were lit in a pseudo-random sequence across trials, whether they89

were relevant to the rule or not.90

The data analysed here were from a total set of 50 experimental sessions taken from91

the study of (Peyrache et al., 2009), representing a set of training sessions from naive92

until either the final training session, or until choice became habitual across multiple93

consecutive sessions (consistent selection of one arm that was not the correct arm). The94

four rats respectively had 13, 13, 10, and 14 sessions. From these we have used here ten95

learning sessions and up to 17 “stable” sessions (see below).96

Tetrode recordings were spike-sorted only within each recording session for conservative97

identification of stable single units. In the sessions we analyse here, the populations ranged98
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in size from 15-55 units. Spikes were recorded with a resolution of 0.1 ms. For full details99

on training, spike-sorting, and histology see (Peyrache et al., 2009).100

Session selection and strategy analysis101

We primarily analysed here data from the ten learning sessions in which the previously-102

defined learning criteria (Peyrache et al., 2009) were met: the first trial of a block of at103

least three consecutive rewarded trials after which the performance until the end of the104

session was above 80%. In later sessions the rats reached the criterion for changing the105

rule: ten consecutive correct trials or one error out of 12 trials. Thus each rat learnt at106

least two rules, but none learnt the uncued-arm rule.107

We also sought sessions in which the rats made stable choices of strategy. For each108

session, we computed the probability P (rule) that the rat chose each of the three rules109

(left, right, cued arm) per trial. Whereas P (left) and P (right) are mutually exclusive,110

P (cued − arm) is not, and has an expected value of 0.5 when it is not being explicitly111

chosen because of the random switching of the light cue. A session was deemed to be112

“stable” if P (rule) > θ for one of the rules, and the session contained at least 10 trials113

(this removed only two sessions from consideration). Here we tested both θ = 0.9 and114

θ = 0.85, giving N = 13 and N = 17 sessions respectively. These also respectively included115

2 and 4 of the rule-change sessions. For the time-series in Figure 1C,E,F we estimated116

P (rule) in windows of 7 trials, starting from the first trial, and sliding by one trial.117

Activity pattern distributions118

For a population of size N , we characterised population activity from time t to t + δ as119

an N -length binary vector with each element being 1 if at least one spike was fired by120

that neuron in that time-bin, and 0 otherwise. In the Results we predominantly report121

analyses using a bin size of δ = 2 ms; key results were checked for bin sizes ranging over122

two orders of magnitude (Figure 2; Figure 7). We built patterns using the number of123

recorded neurons N , up to a maximum of 35 for computational tractability. The number124

of neurons used in each analysis is listed in Figure 2-1; where we needed to use less than125

the total number of recorded neurons, we ranked them according to their coefficient of126

variation of their firing rate between the three epochs, and choose the N least variable; in127

practice this sampled neurons from across the full range of firing rates.128

To test the predicted proportion of co-activation patterns by independently firing neu-129

rons, we shuffled inter-spike intervals for each neuron independently, then reconstructed130

the activity patterns at the chosen bin size. This procedure kept the same inter-spike131

interval distribution for each neuron, but disrupted any correlation between neurons. As132

both the training and sleep epochs were broken up into chunks (of trials and slow-wave133

sleep bouts, respectively), we only shuffled inter-spike intervals within each chunk. We134

repeated the shuffling 20 times, and in Figure 2B -E we plot for the shuffled data the135

means and error bars of 99% confidence intervals (too small to see on the scales of the136

axes).137

Comparing distributions138

The probability distribution for the activity patterns in a given epoch of the task was139

compiled by counting the frequency of each pattern’s occurrence and normalising by the140

total number of pattern occurrences. We quantified the distance D(P |Q) between prob-141

ability distributions P and Q using both the Kullback-Liebler divergence (KLD) and the142

Hellinger distance.143

The KLD is an information theoretic measure to compare the similarity between two144

probability distributions. Let P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn) be two discrete145

probability distributions, for n distinct possibilities – for us, these are all possible indi-146

vidual activity patterns. The KLD is then defined as DKLD(P |Q) =
∑n

i=1 pi log2(
pi
qi

). We147
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normalised this by unit time (2 ms bins except where noted) to obtain the information148

rate in bits/s.149

There are 2N distinct possible activity patterns in a recording with N neurons. The150

empirical frequency of these activity patterns is biased due to the limited length of the151

recordings (Panzeri et al., 2007). To counteract this bias, we used the Bayesian estimator152

and quadratic bias correction exactly as described in (Berkes et al., 2011). The Berkes153

estimator assumes a Dirichlet prior and multinomial likelihood to calculate the posterior154

estimate of the KLD; we used their code (github.com/pberkes/neuro-kl) to compute the155

estimator. We then computed a KLD estimate using all S activity patterns, and using156

S/2 and S/4 patterns randomly sampled without replacement. By fitting a quadratic157

polynomial to these three KLD estimates, we could then use the intercept term of the158

quadratic fit as an estimate of the KLD if we had access to recordings of infinite length159

(Strong et al., 1998; Panzeri et al., 2007). This final estimate varies according to the160

patterns sub-sampled in order to fit the quadratic; however, in our data the variation161

introduced by the sub-sampling was negligible on the scale of the distances measured162

(Figure 7).163

We attempted here to characterise the population’s joint activity as fully as possible,164

by making use of as many simultaneously recorded individual neurons as possible. We165

capped our activity patterns to a maximum of N = 35 neurons; but this still means that,166

for some populations, a full estimation of KLD using the above Bayesian estimator would167

mean enumerating all 235 patterns every time we computed a KLD estimate. This is com-168

putationally intractable; moreover, in extensively checking the results and the raster model169

(see below) we produced thousands of KLD calculations for each recorded population. So170

we sought a practical solution, and set P = 0 for any activity pattern that was not in either171

distribution being compared (this was the vast majority of all potential patterns). Our172

data shows only a tiny fraction of activity patterns that appear in one distribution and do173

not appear in the other (Figure 2F), so we expected the disagreement between the KLD174

computed using the full enumeration of all 2N patterns and using P = 0 to be small, and175

not to qualitatively affect results. We tested this explicitly for a full enumeration using176

patterns of N = 15 for all learning-session populations, and found that setting P = 0 did177

not qualitatively affect the results, nor showed a systematic bias in the distances measured178

by either approach (Figure 7). We note that this is not, in general, a safe assumption:179

we can only do this here because of the very low proportion of unique patterns in each180

compared distribution. Moreover, we checked the main results throughout with a different181

measure of inter-distribution distance - the Hellinger distance - that did not rely on any182

bias-correcting estimators or priors.183

The Hellinger distance for two discrete distributions P andQ isDH(P |Q) = 1
2

∑n
i=1(
√
pi−184 √

qi)
2. To a first approximation, this measures for each pair of probabilities (pi, qi) the185

distance between their square-roots. In this form, DH(P |Q) = 0 means the distributions186

are identical, and DH(P |Q) = 1 means the distributions are mutually singular: all positive187

probabilities in P are zero in Q, and vice-versa. The Hellinger distance is a lower bound188

for the KLD: 2DH(P |Q) ≤ DKLD.189

To compare distances we computed a normalised measure of the relative “conver-190

gence” between the distributions. We computed the “convergence” score by computing191

the difference between a pair of distances between training and sleep epochs, and nor-192

malising by the the maximum distance between training and sleep epochs: [D(Pre|X)−193

D(Post|X)]/max{D(Post|X), D(Pre|X)}. We express this here as a percentage, giving a194

range of [−100, 100]%. Convergence greater than 0% indicates that the distance between195

the training epoch P (X) and post-training sleep (P (Post)) distributions was smaller than196

that between the training and pre-training sleep (P(Pre)) distributions.197
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Estimating equivalence between distributions with finite samples198

Even if two underlying probability distributions are exactly the same, empirical measure-199

ments of samples taken from them will not show exact equivalence [D(P |Q) = 0] due to200

finite sampling effects. We estimated a baseline measure of equivalence for the activity dis-201

tributions in the sleep epochs by bootstrapping the activity patterns within each epoch.202

To do this, we drew two sets of patterns with replacement from the set of empirically203

recorded patterns, and computed the distance between the two bootstrapped sets. This204

emulates the finite-sampling problem within the empirical data. We also tested a more205

severe version where the set of recorded activity patterns was split randomly in half and206

the distance computed between each half. However, as this procedure is itself halving207

the number of patterns, it induces more variation by further finite sampling; nonetheless,208

identical results to those in Figure 3 were obtained.209

Statistics210

Quoted measurement values are mean x̄ and 95% confidence intervals for the mean [x̄ −211

tα/2,nSE, x̄ + tα/2,nSE], where tα/2,n is the value from the t-distribution at α = 0.05 and212

given the number n of data-points used to obtain x̄. All hypothesis tests used the non-213

parametric Wilcoxon signtest for a paired-sample test that the number of changes in sign214

(-,+) between each pair of samples exceeds that expected from the binomial distribution215

with P = 0.5. For testing the changes in convergence, we used the Wilcoxon signrank test.216

Throughout, we have n = 10 learning sessions and n = 17 stable sessions (using θ = 0.85).217

All results were checked with the θ = 0.9 criterion for identifying stable sessions, giving218

n = 13.219

Relationship of location and change in pattern probability220

We examined the spatial correlates of activity pattern occurrence for the learning and221

stable sessions. To rule out pure firing rate effects, we excluded all patterns with K = 0222

and K = 1 spikes, considering only co-activation patterns K ≥ 2; that is, those with two223

or more active neurons. The location of every occurrence of a co-activation pattern was224

expressed as a normalized position on the linearised maze (0: start of departure arm; 1:225

end of the chosen goal arm).226

Within each session, we computed the absolute change δi = |pi(pre)−pi(post)| in each227

pattern’s probability of occurrence between pre- and post-training slow-wave sleep. To228

combine data across sessions, for each session we normalised all changes by the maximum229

change in that session: δ∗i = δi/maxi{δ}. Normalised change scores were pooled over all230

learning sessions.231

Our main claim for this analysis was that activity patterns which changed probability232

between sleep epochs occur predominantly around the choice point of the maze, and so233

change and overlap (of the choice area) are dependent variables (Figure 4A,C ). To test234

this claim, we compared this relationship against the null model of independent variables,235

by permuting the assignment of location centre-of-mass (median and interquartile range)236

to the activity patterns. For each permutation, we compute the proportion of patterns237

whose interquartile range overlaps the choice area, and bin as per the data. We permuted238

5000 times to get the sampling distribution of the proportions predicted by the null model239

of independent variables: we plot the mean and 95% range of this sampling distribution240

as the grey region in Figure 4B,D.241

Outcome prediction242

We examined the correlates of co-activation pattern occurrence with behaviour for the243

learning sessions. To check whether individual activity patterns coded for the outcome on244
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each trial, we used standard receiver-operating characteristic (ROC) analysis. For each co-245

activation pattern, we computed the distribution of its occurrence frequencies separately246

for correct and error trials (as in the example of Figure 5A). We then used a threshold247

T to classify trials as “error” or “correct” based on whether the frequency on that trial248

exceeded the threshold or not. We found the fraction of correctly classified correct trials249

(true positive rate) and the fraction of error trials incorrectly classified as correct trials250

(false positive rate). Plotting the false positive rates against the true positive rates for all251

values of T gives the ROC curve. The area under the ROC curve gives the probability252

that a randomly chosen pattern frequency will be correctly classified as from a correct253

trial; we report this as P (predict outcome).254

Relationship of sampling change and outcome prediction255

Correlating P (predict outcome) against the change in pattern probability between sleep256

epochs δ∗i showed that the better a pattern predicted trial outcome, the more it tended to257

change probability between pre- and post-training slow-wave sleep. But as most patterns258

had little change and little prediction of outcome, this correlation was skewed (Figure 5C).259

Consequently, to better characterise the distributions of change between pre- and260

post-session sleep, we binned δ∗i using variable-width bins of P (predict outcome): each261

consecutive bin-width was chosen in order to place the same number of data-points in262

every bin. We computed the empirical cumulative distribution in each bin, to visu-263

alise the distribution of changes in pattern probability between sleep epochs, and the264

change in that distribution with P (predict outcome). To quantify this change, we re-265

gressed P (predict outcome) against the median change in each bin; we used the mid-point266

of each variable-width bin as the value for P (predict outcome). Our main claim is that267

prediction and change are dependent variables (Figure 5C -G). To test this claim, we com-268

pared the data correlation against the null model of independent variables, by permuting269

the assignment of change scores to the activity patterns. For each permutation, we repeat270

the binning and regression. We permuted 5000 times to get the sampling distribution of271

the correlation coefficient R∗ predicted by the null model of independent variables. To272

check robustness, all analyses were repeated for a range of fixed number of data-points273

per bin between 20 and 100.274

Raster model275

To control for the possibility that the systematic changes in activity pattern occurrence276

during learning were due solely to changes in the firing rates of individual neurons and277

of the total population between vigilance states, we used the raster model exactly as278

described in (Okun et al., 2012). For a given data-set of spike-trains N and bin size δ,279

the raster model constructs a synthetic set of spikes such that each synthetic spike-train280

has the same mean rate as its counterpart in the data, and the distribution of the total281

number of spikes per time-bin matches the data. In this way, it predicts the frequency282

of activity patterns that should occur given solely changes in individual and population283

rates.284

For Figure 8 we generated 1000 raster models per session using the spike-trains from285

the post-training slow-wave sleep in that session. For each generated raster model, we com-286

puted the distance D(Model|Data) between the distribution of patterns for that model287

P (Model) and the corresponding data distribution P (Data) of post-training slow-wave288

sleep patterns. For each generated raster model, we then computed the distance be-289

tween its distribution of activity patterns and the data distribution for post-learning trials290

D(Post−model|Learn). This comparison gives the expected distance between the train-291

ing and post-training slow-wave sleep distributions due to firing rate changes alone. We292

plot the difference between the mean of D(Post − model|Learn) over the 1000 raster293

models and the data D(Post|Learn) in Figure 8.294
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Probabilistic reinforcement learning model295

In the Results, we propose that our observed changes in pattern probability are consistent296

with the encoding and learning of a probabilistic internal model. To illustrate the expected297

behaviour of a probabilistic internal model during learning, we constructed a Bayesian298

reinforcement learning model of the Y-maze task. We modelled the trial-by-trial behaviour299

as a Bayesian multi-arm bandit problem (Ghavamzadeh et al., 2015), where the agent’s300

task on each trial was to chose which strategy to adopt, based on a probabilistic estimate301

of the value of each strategy. We use this simplified representation as a proxy for more302

complex models with probability distributions over the uncertain values of individual303

actions and the transitions they cause between states in the maze, which collectively make304

a strategy.305

Here we report results from modelling three strategies: go to the left arm; go to the306

right arm; and go to the cued arm. For each strategy x, the agent maintained a posterior307

probability distribution over the value of choosing that strategy Vx ∈ [0, 1], given by a Beta308

distribution P (Vx) with parameters (αx, βx). On each trial t, the winning strategy was309

chosen using Thompson sampling: a random value ζx was sampled from the probability310

distribution P (Vx) for each strategy, and the strategy s with the highest sampled value311

was chosen. The corresponding action was then chosen: left, right, or cued arm (where, as312

per the experiment, the cued arm was randomly chosen on each trial). There was a small313

probability η of a mistake in choosing the corresponding action: if a mistake was made,314

then the opposite action was chosen (being the uncued arm for the cued-arm strategy).315

We used η = 0.2 for the simulations reported here. This was implemented to include noise316

into the decision process, providing a better replication of the rats’ behaviour. Having317

taken the action, the agent received reward according to the current rule (left, right, or318

cued arm), with R = 1 if the action corresponded to the rule, and R = 0 otherwise. The319

reward was then used to update the probability distribution P (Vs) of the chosen strategy320

s.321

The full Bayesian update of the posterior should be proportional to P (Vs|R = r) ∝322

P (R = r|Vs)P (Vs), where P (R = r|Vs) is the likelihood function for the outcome r given323

the probability distribution over the strategy’s value, and P (Vs) is the prior distribution324

over that value. In simulation, we make use of the standard result that, assuming a325

binomial likelihood function P (R = r|Vs) because each trial is a Bernoulli trial, then the326

Beta distribution P (Vs) is the conjugate prior (Daw et al., 2005; Ghavamzadeh et al.,327

2015). Consequently, Bayesian updating is obtained by just updating the parameters of328

P (R = r|Vs) by (α+ r, β+ (1− r)). Distributions P (Vx) for trial 1 was set to the uniform329

distribution (α = 1, β = 1).330

To make comparisons with the behavioural data, we made proxy estimates of learning331

trials, and then virtual “sessions” around those trials. For each simulation, the nominal332

“learning trial” was identified as the trial in the cumulative reward curve corresponding333

to the greatest inflection in reward rate. To do this, we fitted a piecewise linear slope334

around each trial t, with one line fitted to eleven trials before and including t, and one line335

fitted to eleven trials after and including t. The trial tl with the greatest increase in slope336

of the lines before and after it was selected as the “learning” trial. A virtual session was337

given by the 14 trials before and after the chosen learning trial, giving a session length of338

29 trials. The trials corresponding to the beginning (tpre) and end (tpost) of this virtual339

session were deemed the pre- and post-training “sleep” epochs for the model.340

In the Results, we claim that any such reinforcement-driven recursive updating of a341

set of probability distributions will stabilise those distributions over time. Estimating the342

probability distribution of some unknown value vt (of, for example, a state or action) at343

time t, given all the rewards (r1, r2, . . . , rt) up to time t, can be computed recursively using344

Bayes’ theorem:345

P (vt|r1, r2, . . . , rt) ∝ P (rt|vt)P (vt|r1, r2, . . . , rt−1), (1)

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 22, 2017. ; https://doi.org/10.1101/027102doi: bioRxiv preprint 

https://doi.org/10.1101/027102
http://creativecommons.org/licenses/by-nc/4.0/


9

where the posterior distribution P (vt|r1, r2, . . . , rt−1) for step t − 1 becomes the prior346

distribution for step t. In general, given that r is stationary and given sufficient t, then the347

difference between the posterior and the prior δ = P (vt|r1, r2, . . . , rt)−P (vt|r1, r2, . . . , rt−1)348

will become arbitrarily small. Thus, the posterior distribution will stabilise in any recursive349

Bayesian estimation.350

This stabilisation of distributions is predicted to happen once our Bayesian reinforce-351

ment learning model has learnt the current rule. Once learnt, the agent will experience352

a long run of sustained rewards, with two consequences. First, for the Beta distribution353

Px(v) modelling the correct strategy x this will mean a continuously increasing αx, with354

βx approximately fixed. As a result, we expect αx � βx. Second, the other Beta distribu-355

tions, modelling the incorrect strategies, will be rarely updated (as they are only updated356

when selected). These distributions will thus be approximately stable.357

For our specific model using Beta distributions, we show here the explicit stabilisation358

of Px(v) by calculating the change in the distribution’s mean and variance as a function359

of the number of rewards α. The mean of Px(v) is:360

E(v) =
α

α+ β
, (2)

so the change in mean with increasing accumulated rewards is:361

dE(v)

dα
=

β

(α+ β)2
. (3)

It is easy to see that as α � β, so dE(v) → 0: the mean stops changing over time with362

increasingly obtained reward.363

The variance of Px(v) is364

V ar(v) =
αβ

(α+ β)2(α+ β + 1)
, (4)

so the change in variance with increasing accumulated rewards is:365

dV ar(v)

dα
=
β(−2α2 − α(β + 1) + β(β + 1))

(α+ β)3(α+ β + 1)2
(5)

Thus as α� β, so dV ar(v) ≈ (−2α2 − α)/α5; given the dominance of raising to the fifth366

power in the denominator, this also ensures dV ar(v) → 0: the variance stops changing367

over time with increasingly obtained reward. Thus, long runs of reward are expected to368

stabilise Px(v).369

Results370

Rats with implanted tetrodes in the mPfC learnt one of four rules on a Y-maze: go371

right, go to the randomly-cued arm, go left, or go to the uncued arm (Figure 1A). Rules372

were changed in this sequence, unsignalled, once the rat did 10 correct trials in a row,373

or 11 correct trials out of 12. Each rat experienced at least two of the rules, starting374

from a naive state. Each training session was a single day containing 3 epochs totalling375

typically 1.5 hours: pre-training sleep/rest, behavioural training on the task, and post-376

training sleep/rest (Figure 1B). Here we consider bouts of slow-wave sleep throughout,377

to unambiguously identify periods of sleep. Tetrode recordings were spike-sorted within378

each session, giving populations of single neuron recordings ranging between 12 and 55379

per session (see Figure 2-1 for details of each session and each epoch within a session).380

In order to test for the effects of learning on the states of joint population activity,381

we needed to compare sessions of learning with those containing no apparent learning as382

defined by the rats’ behaviour. In the original study containing this data-set, Peyrache et383
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al. (2009) identified 10 learning sessions as those in which three consecutive correct trials384

were followed by at least 80% correct performance to the end of the session: the first of the385

initial three was considered the learning trial. By this criterion, the learning trial occurred386

before the mid-point of the session (mean 45%; range 28-55%). We first confirmed that387

this criterion indeed corresponded to clear learning: in each of the ten sessions there was388

an abrupt step change in reward accumulation around the identified learning trial (Figure389

1C,D), corresponding with the switch to a consistent, correct strategy within that session390

(Figure 1E ). We further identified a set of 17 sessions with a stable behavioural strategy391

throughout, defined as a session with the same strategy choice (left, right, cue) on more392

than 85% of trials (Figure 1F ). This set included 4 sessions in which the rule changed.393

Setting this criterion to a more conservative 90% reduced the number of sessions to 13394

(including two rule change sessions), but did not alter the results of any analysis; we thus395

show the 85% criterion results throughout.396

mPfC population activity contains a dictionary of millisecond precise co-397

activation patterns398

We first tested whether the joint activity of mPfC populations contains above-chance399

statistical structure on millisecond time-scales. Population-wide activity patterns were400

characterised as a binary vector (or “word”) of active and inactive neurons within some401

small time window (Figure 2A). We used up to 35 neurons per session to construct the402

patterns for computational tractability; this meant using every neuron in all but 2 learning403

and 6 stable sessions (Figure 2-1). Our primary interest was in co-activation patterns of404

more than one neuron firing together, as the occurrences of each pattern with a single405

active neuron (a single “1”) can correlate strongly with that neuron’s firing rate. We thus406

first determined the time-scales at which co-activation patterns appear.407

Figure 2B,D show that at low millisecond time-scales the proportion of activity pat-408

terns containing co-active neurons increases by an order of magnitude when doubling the409

bin size, for both learning and stable sessions. The smallest bin size with a non-negligible410

proportion of co-activation patterns was 2 ms, with ∼ 1% (89731/7452300) of all pat-411

terns in learning sessions. This was also true for each epoch considered separately, for412

both learning (Figure 2C ) and stable (Figure 2E ) sessions. We thus used a 2 ms bin size413

throughout, as this was the smallest time-scale with consistent co-activation patterns.414

Such co-activation patterns could be due to persistent, precise correlations between415

spike-times in different neurons, or just due to coincident firing of otherwise independent416

neurons. We found that the proportion of co-activation patterns in the data exceeded417

those predicted for independent neurons by a factor of 3 (Figure 2B) at low millisecond418

time-scales. This was also true for each separate epoch (Figure 2C ), extending up to a419

factor of at least 6 for the task trials. We found similar results for the stable sessions420

(Figure 2E ); though we noted that the difference between the data and the predictions421

for independent neurons was not as consistent as it was for the learning sessions, with the422

greatest departure being at a bin size of around 20 ms. Nonetheless, these analyses rule423

out the possibility that the excess of precise correlations was due to differences in vigilance424

state.425

While these results show there exist non-trivial fine time-scale patterns in mPfC pop-426

ulation activity, they do not yet show they are the same structure in different states. We427

found that each recorded population of N neurons had the same sub-set of all 2N possible428

activity patterns in all epochs (Figure 2F ). This was true in both learning and stable429

sessions, with no apparent difference between them. Consequently, the overwhelming ma-430

jority of words appeared in both the task-evoked activity of waking and the spontaneous431

activity of slow-wave sleep. This is consistent with the theoretical idea that a cortical432

population is constrained to a manifold of specific states - its dictionary - irrespective of433

the vigilance state of the animal.434
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Figure 1. Task and behaviour. (A) Y-maze task set-up (top); each session included the epochs of
pre-training sleep/rest, training trials, and post-training sleep/rest (bottom). One of four target rules for
obtaining reward was enforced throughout a session: go right; go to the cued arm; go left; go to the
uncued arm. No rat successfully learnt the uncued-arm rule. (B) Breakdown of each learning session into
the duration of its state components. The training epoch is divided into correct (red) and error (blue)
trials, and inter-trial intervals (white spaces). Trial durations were typically 2-4 seconds, so are thin lines
on this scale. The pre- and post-training epochs contained quiet waking and light sleep states (“Rest”
period) and identified bouts of slow-wave sleep (“SWS”). (C ) Internally-driven behavioural changes in
an example learning session: the identified learning trial (grey line) corresponds to a step increase in
accumulated reward and a corresponding shift in the dominant behavioural strategy (bottom). The
target rule was ’go right’. Strategy probability was computed in a 7-trial sliding window; we plot the
mid-points of the windows. (D) Peri-learning cumulative reward for all ten identified learning sessions: in
each session, the learning trial (grey line) corresponded to a step increase in accumulated reward. (E)
Peri-learning strategy selection for the correct behavioural strategy. Each line plots the probability of
selecting the correct strategy for a learning session, computed in a 7-trial sliding window. The learning
trial (grey line) corresponds to the onset of the dominance of the correct behavioural strategy. (F )
Strategy selection during stable behaviour. Each line plots the probability of selecting the overall
dominant strategy (P > 0.85 for the session) computed in a 7-trial sliding window.
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Figure 2. Activity patterns occur more than predicted by firing rates and are conserved between
epochs. (A) The population activity of simultaneously recorded spike trains was represented as a binary
activity pattern in some small time-bin (here 2 ms). (B) The proportion of co-activation patterns in the
learning sessions, per bin size (red line). Here we count every occurrence of every pattern. The grey line
indicates the proportion of ∼ 1% at a bin size of 2 ms. In black we plot the corresponding proportion of
co-activation patterns predicted if all neurons were firing independently; these are obtained by shuffling
the inter-spike intervals of each neuron and recomputing the activity patterns. Error bars of 99% CI are
too small to see on this scale. (C ) Proportion of co-activation patterns per epoch of the learning sessions.
Predicted proportions by independently-firing neurons are in grey. Error bars of 99% CI are too small to
see on this scale. (D-E) As B-C, for stable sessions. (F ) Consistent sampling of activity patterns across
session epochs. Each circle is the proportion of unique activity patterns (2 ms time-bin) from the entire
session that appeared only in that epoch. Unique activity patterns are defined as those that occurred at
least once in the entire recording. Grey bar and line give the median and interquartile range across the
10 (learning) or 17 (stable) sessions. Note the log-scale, showing that the median proportion of patterns
was less then 0.1% in all three epochs. Figure 2-1 gives the numbers of patterns in each epoch.
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Figure 3. Distributions of joint activity patterns change between pre- and post-learning sleep. (A) The
joint frequency of every occurring pattern (dots) in pre-training sleep (distribution P (Pre)) and
post-training sleep (distribution P (Post)) for one learning session. (B) Distances between pre- and
post-training sleep distributions (y-axis) for every learning session, compared to a per-session estimate of
baseline differences (x-axis), obtained by bootstrap sampling of patterns within the pre-training sleep
epoch. Distances are computed using the Kulback-Liebler divergence (see Materials and Methods). Error
bars give the mean and 95% confidence interval on the bootstrapped within-epoch distance
D(Pre|Pre∗); identical results were obtained when using D(Post|Post∗). (C ) As for B, for stable
sessions (85% criterion). (D) Cumulative distribution of the change in pattern probability between sleep
epochs, over all sessions. Grey line indicates the tail plotted in panel E. (E) Tail of the cumulative
distribution in panel D, on a linear scale.

The dictionary’s activity patterns change in probability between sleep435

epochs436

These results demonstrate there is a dictionary of “words” in the mPfC population activity,437

and that dictionary is conserved across vigilance states. Because it is conserved, we expect438

that changes to the dictionary due to learning, if any, will thus be mostly expressed as the439

changes in the probability of particular patterns appearing, rather than the appearance440

of new patterns or the suppression of existing patterns.441

To test this idea, we asked whether training changed the probability of activity pat-442

terns appearing. We did this by comparing the probability distributions of patterns in443

sleep before P (Pre) and after P (Post) training (Figure 3A), and measuring the distance444

between them D(Pre|Post) using the Kulback-Liebler divergence (see Material and Meth-445

ods). Due to the finite duration of the two sleep epochs, and so the limited sampling of each446

activity pattern, identical underlying probability distributions will give rise to similar but447

not identical distributions of activity patterns. We thus estimated the expected distances448

for identical distributions by bootstrap sampling within each epoch, giving estimates of449

D(Pre|Pre∗) and D(Post|Post∗) for the distances between sets of patterns drawn from450

identical underlying distributions.451

In every learning (Figure 3B) and stable (Figure 3C) session, we found the distance452

between sleep-epoch distributions D(Pre|Post) was greater than their estimate of equiva-453

lence. We found similar results when we estimated D(Pre|Pre∗) by randomly dividing the454

sleep epochs into two sets of samples and computing the distance between the two (results455

not shown). Pooling over all sessions, we found that the changes in probability followed a456

long-tailed distribution (Figure 3D), with the vast majority of changes close to zero and457

the largest changes only occurring for a small proportion (≈ 5%) of activity patterns. The458

distributions were not identical (Kolmogorov-Smirnov test, P = 5.4× 10−4; Dn = 0.0517;459

N(learning) = 2353; N(stable) = 4374), as the learning sessions showed a consistently460

higher probability of large changes except at the extreme end of the distribution (with461

less than 1% of patterns) (Figure 3E). Together, these results show there were detectable462

changes to the dictionary between sleep epochs either side of training in both learning463

and stable sessions, with a suggestion of a higher probability of a larger change in pattern464

frequency during learning.465

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 22, 2017. ; https://doi.org/10.1101/027102doi: bioRxiv preprint 

https://doi.org/10.1101/027102
http://creativecommons.org/licenses/by-nc/4.0/


14

The dictionary encodes task elements necessary for learning the maze466

rules467

What is it that is changing in the dictionary between sleep states? If the mPfC dictio-468

nary is encoding some rules or regularity of the world, then the patterns which change469

between sleep states, putatively reflecting some update during training, should correlate470

with aspects of the task critical for understanding those rules. To test this, we examined471

the spatial correlates of the co-activation patterns.472

In Figure 4A,C, we plot the positions at which each co-activation pattern occurred473

during training as a function of its change in probability between the sleep epochs. We474

found that the most-changed activity patterns almost exclusively occurred around the475

choice point of the maze (Figure 4A,C ). Particularly striking was that the most-changed476

patterns rarely occurred in the departure arm. Both these properties were true in both477

learning and stable sessions.478

To test the visual impression of the strong correlation between occurrence at the choice479

point and change in probability, we tested whether this correlation could have arisen by480

chance. This may have occurred if, for example, the overall spatial distribution of patterns481

was strongly peaked at the choice point: then sampling at random a small proportion of482

patterns (the small proportion with the largest changes) would most likely cause this ran-483

dom set of patterns to fall across the choice point. To rule out this possibility, we randomly484

permuted assignment of positions to patterns, and computed the percentage of permuted485

patterns that occurred around the choice point. We found that the percentage of data486

patterns occurring around the choice point well-exceeded the upper-bound predicted by487

random sampling (Figure 4B,D). Again this was true for both learning and stable sessions.488

Consequently, the spatial correlates of the updated activity patterns are consistent with489

the dictionary encoding rule-related aspects of the task.490

For the learning sessions we could also check if the activity patterns correlated with491

the decision on each trial, and thus reflected knowledge of the current rule (by definition,492

we could not do this for the stable sessions, as their behavioural choice was inflexible). To493

test this, for each co-activation pattern we found its ability to predict a trial’s outcome494

by its rate of occurrence on that trial (Fig 5A). We then compared this outcome predic-495

tion P (predict outcome) during trials to the change in pattern probability between pre-496

and post-training sleep (Figure 5B). Figure 5C shows there was a notable positive corre-497

lation between P (predict outcome) and the change in pattern probability. Nonetheless,498

the majority of patterns did not markedly change their probability (Figure 2D), nor were499

they predictive of outcome (72% (1699/2353) have P (predict outcome) ≤ 0.6), so fitting500

a linear regression is not robust as it is dominated by fitting to this majority that do not501

change. Rather it is clear from Figure 5C that the distribution of change in probability502

depends on P (predict outcome).503

To better quantify this dependence, we constructed the distributions explicitly: we504

discretised P (predict outcome) into bins containing a fixed number of patterns, and then505

constructed the distribution of probability change per bin (Figure 5D). We then quantified506

the relationship between P (predict outcome) and the likelihood of a pattern changing its507

sampling between the pre- and post-training sleep, and found a strong correlation (Figure508

5D-E ). This correlation was highly robust to how we constructed the distributions of509

change between sleep epochs (Figure 5E -H ). Consistent with this correlation between510

change and prediction, highly predictive patterns also preferentially occurred around the511

choice point of the maze (Figure 5I ). Again, the percentage of patterns around the choice512

point well-exceeded the upper bound from a permutation test (results not shown). Thus,513

not only did patterns that updated between sleep epochs appear at the decision point for514

each rule during training, but they also predicted the outcome of the trial, consistent with515

an internal representation of a strategy.516
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Figure 4. Activity patterns that change probability between sleep epochs are sampled in the choice
area during behaviour. (A) For learning sessions, the scatter plot of each pattern’s change in probability
between sleep epochs against the positions of its occurrence in the maze during trials. Change between
sleep epochs is the absolute change in probability for that pattern, normalised to the maximum absolute
change in that pattern’s session. All positions are given as a proportion of the linearised maze from the
start of the departure arm. Each dot is the median position; grey line is interquartile range. Red lines
indicate the approximate centre (solid) and boundaries (dashed) of the maze’s choice area (cf Figure 1A).
(B) For learning sessions, the proportion of activity patterns whose interquartile range of positions enters
the choice area (black dots and line). Patterns are binned in change intervals of 0.2. The grey region
shows the median (line) and 95% range (shading) of proportions from a permutation test. The data
exceed the upper limit of the expected proportions for all patterns that change their frequency between
sleep epochs. (C-D) As A-B, for sessions of stable behaviour (85% criterion).
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Figure 5. Activity patterns that change frequency between sleep epochs also encode choice behaviour
during learning. (A) Example distributions for one pattern of its frequency on correct and error trials
during one learning session. We define the ability to predict trial outcome from a pattern’s frequency as
P(predict outcome). (B) Scatter plot of outcome prediction and the (absolute) change in pattern
frequency between pre- and post-training sleep for all co-activation patterns in one session. Change is
normalised to the maximum change in the session. (C ) Scatter plot of outcome prediction and the
(absolute) change in pattern frequency between pre- and post-training sleep for all co-activation patterns
in all learning sessions. Grey line: linear regression (R = 0.22, P < 10−27, N = 2353). (D) Distributions
of the change in pattern frequency as a function of the patterns’ outcome prediction probability. Each
column is the cumulative probability density for the change in pattern frequency between pre- and
post-training sleep, over all patterns in that bin. Circles give the median absolute change for each
distribution. Co-activation patterns from all ten learning sessions were binned by outcome prediction
into variable size bins containing the same number of patterns. In this example, distributions were built
using bins with 90 patterns each. (E) Correlation between the outcome prediction and the median
change in pattern frequency between pre- and post-training sleep from D. Red line: linear regression (P
from permutation test). (F )-(G) As D-E, for the worst-case correlation observed, using 25 patterns per
bin. (H ) Robustness of correlation between the outcome prediction and the median change in pattern
frequency between sleep epochs. Circles are the correlation coefficient R between outcome prediction and
median change in pattern frequency obtained for different binnings of the data; green colour-scale is
proportional to the number of patterns per bin (light to dark: 20-100 per bin). Asterisks indicate data
points correspond to panels D-E and F-G. Lines each give the entire range of R obtained from a
5000-repeat permutation test; none reach the equivalent data point (dashed line shows equality),
indicating all data correlations had P < 0.0002. (I ) Scatter plot of each pattern’s outcome prediction
against the positions of its occurrence in the maze during trials. Strongly predictive patterns appeared at
the choice point. Compare Figure 4A.
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Learning systematically updates the dictionary517

The above results showed that the dictionary in mPfC changes between sleep during train-518

ing, and the changes in pattern probability correlate with task features. This leaves open519

the question of whether or not the changes that occur during training have a consistent520

direction. There are two possibilities. One is that there is no direction: the changes in521

pattern probability during training are random with respect to the pre- and post-training522

sleep, so the distribution in training is equidistant on average from that in pre- and post-523

training sleep. The other is that there is a directional change: the changes in pattern524

probability during training move its pattern distribution systematically closer to one of525

the sleep distributions. If synaptic changes underlie successful behavioural learning, then526

we would expect those synaptic modifications to be detectable in the altered dictionary of527

post-training sleep in learning sessions. We thus hypothesised that learning would move528

the distribution of patterns in training closer to that in post-training sleep.529

To test this, we computed the distances between the distributions of patterns in the530

sleeping and task epochs in the learning sessions. In order to reasonably compare the531

learning and stable sessions, for the learning sessions we computed the activity pattern532

distribution for the all trials after the learning trial P (Learn) so that we only used the533

trials with stable behaviour during the learning sessions (Figure 1E). We compared the534

distance D(Pre|Learn) between the distributions in pre-training sleep and learning tri-535

als to the equivalent distance D(Post|Learn) between the distributions in post-training536

sleep and learning trials. If the dictionary of patterns in post-training sleep more closely537

resembled the dictionary in training than did the dictionary in pre-training sleep then538

D(Pre|Learn) > D(Post|Learn) (Figure 6A). Remarkably, this is exactly what we found:539

Figure 6C shows that D(Pre|Learn) was consistently larger than D(Post|Learn), con-540

sistent with a convergence of the dictionaries in post-learning trial and post-training sleep541

activity.542

If these changes are wrought by learning, then it follows that we should not see any543

systematic change to the dictionary when no learning is observed in the stable sessions. To544

test this prediction, we compared the distance D(Pre|Stable) between the distributions545

in pre-training sleep and stable session trials to the equivalent distance D(Post|Stable)546

between the distributions in post-training sleep and stable session trials. If there was no547

systematic change in the dictionary of patterns then D(Pre|Stable) ≈ D(Post|Stable)548

(Figure 6B). Again, this is exactly what we found: Figure 6C shows that D(Pre|Stable)549

was not systematically different to D(Post|Stable), consistent with a lack of direction in550

the change of dictionaries in training trials and post-training sleep activity.551

It is also useful to consider not just which sleep distribution is closer to the train-552

ing distribution, but how much closer. We express this as a convergence ratio C =553

[D(Pre|X)−D(Post|X)]/max{D(Pre|X), D(Post|X}, for the training distribution X =554

{Learn, Stable} in each session. Expressed as a percentage, C falls in the range [−100, 100]%,555

and a value greater than zero means that the training-epoch distribution X of activity556

patterns is closer to the distribution in post-training sleep than the distribution in pre-557

training sleep. We found the post-learning distribution of patterns was on average 20.5%558

(95% CI=[7.4,33.7]%]) closer to the post-training than the pre-training sleep distribution,559

whereas the mean convergence for stable sessions was 5.8% (95% CI [-13.6,25.2]%). This560

further supports the finding that there was no systematic change for the stable sessions,561

as the magnitude of change also did not show a convergence.562

Using all trials for the learning sessions (giving distribution P (All)) produced inter-563

mediate results. There was weaker evidence of a systematic change in direction between564

P (Post) and P (All) (8/10 sessions agreed, p = 0.11, Wilcoxon signtest), though the mean565

convergence between P (Post) and P (All) was still greater than zero (mean 18.1%; 95%566

CI=[2.7,33.7]%]). Correspondingly, the average difference between convergence when us-567

ing all trials [P (All)] or just the post-learning trials [P (Learn)] was approximately zero568

(mean difference 2.3%; p = 0.92, Wilcoxon signrank). This partial agreement is consistent569
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Figure 6. Differing convergence of activity pattern distributions between training and post-training
sleep for learning and stable sessions. (A) Schematic of measuring distances between the activity
distributions in sleep and training epochs for learning sessions. To detect changes due to learning, we
construct the distribution P (Learn) from all trials after the learning trial. D(X|Y ): distance between
pattern distributions P (X) and P (Y ) in epochs X and Y . (B) As A, for stable sessions. The distribution
P (Stable) is constructed over all training trials. (C ) Distances between the distributions of pattern
frequencies in sleep and training epochs for learning (top) and stable (bottom) sessions. One dot per
session. L: post-learning trials. S: stable training trials. (D) As C, using the Hellinger distance to
compare distributions. (E) As C, but using patterns up to a maximum of 15 neurons per session for more
accurate estimation of the Kullback-Liebler divergence. (F ) As panel E, using the Hellinger distance. All
P-values from a signtest with N = 10 (learning) or N = 17 (stable) sessions.

with the majority of trials being post-learning in the learning sessions.570

Robustness of systematic changes in learning571

These results required careful checking. The available number of activity patterns in the572

trials was an order of magnitude smaller than for the sleep epochs, due to the short duration573

of the trials (Figure 1B; Figure 2-1). This raises the question of whether the convergence574

of dictionaries only in the learning and not the stable sessions is a fluke, due to a sampling575

issue in reliably estimating both the distributions themselves, and the Kulback-Liebler576

divergence between them. To counteract this possibility, we did three robustness tests.577

First, we recomputed all distances between probability distributions using a different mea-578

sure (Figure 6D), the Hellinger distance, which does not suffer from the same sampling579

issues as the Kulback-Liebler divergence; moreover, it is an asymptotic lower bound for580

the Kulback-Liebler divergence. Indeed, there was a strong correlation between Hellinger581

distances and corresponding Kulback-Liebler divergences across the D(Pre|Learn) and582

D(Post|Learn) measurements (Spearman’s ρ = 0.86, N = 20). Second, we estimated the583

Kulback-Liebler divergence more accurately by restricting patterns to 15 neurons (Fig-584

ure 6F ), chosen in the same way as the 35 neuron patterns. Third, we checked the 15585

neuron patterns using the Hellinger distance (Figure 6F ). In all three tests, we found586

D(Pre|Learn) was systematically larger than D(Post|Learn); and D(Pre|Stable) was587

not systematically different to D(Post|Stable). Consequently, these results suggest learn-588

ing systematically changes the mPfC dictionary, and this new dictionary is sampled in589

post-training sleep.590

We also checked if observing systematic changes only in learning sessions could be a591
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consequence of choices made in our calculations. One possibility was that we happened592

to chose a binsize for the activity patterns that uniquely obtained a convergence for the593

learning sessions. As we show in Figure 7A-B, we found a systematic convergence across a594

range of bin sizes for the patterns, and for patterns of either 35 or 15 neurons. Irrespective595

of the number of neurons used, the maximum convergence was obtained at low millisecond596

bin sizes, suggesting this convergence of dictionaries is specific to fine time-scale patterns597

of synchrony between neurons.598

Two other choices with a potential source of error were in estimating the Kulback-599

Liebler divergence itself. The first is that we used a quadratic estimator to correct the600

inherent bias in estimating the Kulback-Liebler divergence when using finite samples (see601

Materials and Methods). However, this estimator means the Kulback-Liebler divergence602

will vary every time it is calculated. As we show in Figure 7C, this variation was tiny603

on the scales of the distances between distributions, so did not affect the main result of604

convergence for the learning sessions. The second is that we computed Kulback-Liebler605

divergences by setting P = 0 for any pattern that does not appear in either epoch we606

were comparing, to make the computations tractable (see Materials and Methods); while607

this is the empirical estimate, it could underestimate the actual P due to finite sampling.608

Our choice of setting P = 0 thus rests on the assumption that such infrequent patterns609

will not systematically alter the main distance results. To check this, we estimated the610

Kulback-Liebler divergence using a full prior distribution for the probabilities for all pos-611

sible patterns (see Materials and Methods). Figure 7D shows that the choice of setting612

P = 0 or using the full estimator did not systematically change the results: all convergence613

scores were still positive, so all sessions showed a convergence between the distributions614

in training and post-training sleep activity. Thus, the learning sessions had a systematic615

convergence of dictionaries between training and post-training sleep irrespective of how616

we calculated our distributions or calculated the distances between them.617

Convergence of dictionaries is a consequence of changes to correlation618

not firing rate619

The convergence of distributions in the learning sessions was measured across a change in620

brain state between waking and sleeping. While within each vigilance state the occurrence621

of co-activation patterns exceeds chance by up to a factor of six (Figure 2), this still leaves622

open the possibility that the global change in population dynamics between waking and623

sleeping could artificially cause their activity pattern distributions to increase in similarity624

(Okun et al., 2012; Fiser et al., 2013). Indeed, within each learning session, it was clear625

that neurons had different median firing rates between training and sleep (Figure 8A),626

though there was no consistent difference between the rates in pre and post-training sleep627

(Figure 8B).628

To test whether the change in vigilance state could account for the convergence of629

distributions, we used the “raster” model (Okun et al., 2012) to generate predictions630

for how the change in population firing statistics would alter the occurrence of activity631

patterns. The raster model generates surrogate sets of spike-trains from the data by632

permuting spikes within the population’s activity patterns, constrained such that each633

neuron has the same number of spikes and the population has the same distribution of634

total spikes per time-bin (Figure 8C). Consequently, by counting the probability of each635

activity pattern in the raster model, we obtain an estimate for the expected occurrence of636

each pattern due just to the change in vigilance state.637

We fitted the raster model to the post-training sleep population activity for each638

learning session, obtaining the model-derived probability distribution for activity pat-639

terns P (Post−model). Our activity patterns were built from single units, unlike previous640

work using multi-unit activity (Schneidman et al., 2006; Berkes et al., 2011; Okun et al.,641

2012; Tkacik et al., 2014; Ganmor et al., 2015), so we expected our patterns to be sparse642

with rare synchronous activity. Indeed our data are dominated by activity patterns with643
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Figure 7. Convergence of activity pattern distributions during learning is robust. (A) Dependence of
convergence on the bin size used to construct activity patterns for the full recorded population, up to a
maximum of 35 neurons per pattern. Circles are individual learning sessions (N = 10); lines give means
and 95% confidence intervals. All P-values above the strip-plots are from a Wilcoxon signrank test. (B)
As panel A, but using a maximum of 15 neurons per population. (C ) Variation in estimating the
Kullback-Liebler distance is small. Here we plot the variation in the convergence score for each of the
learning sessions over 100 repeated calculations of the Kullback-Liebler distances; symbols give mean
distances; error bars plot two standard deviations - on this scale, they are approximately the width of the
symbols. (D) Comparison of the convergence estimates for the learning sessions when using the full prior
estimator of the unobserved portion of the activity pattern probability distribution (y-axis), and when
using our approximation (x-axis). Here we use a maximum of 15 neurons per session, to allow tractable
calculation of the full estimator.
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Figure 8. Convergence in learning sessions is caused by changes in correlation, not population firing
rate. (A) The distributions of firing rates in the three epochs of one learning session. Firing rates within
epochs have a long-tailed distribution, with low firing rates dominating. (B) The median firing rate in
each sleep epoch, by session. The red symbols indicate the only two sessions with a detectable shift in
firing rates between the sleep epochs at α = 0.05 (Wilcoxon signrank test; see Figure 2-1 for numbers of
neurons per session). (C ) Distributions of the proportion of activity patterns containing exactly K spikes
for each epoch of the learning sessions. Each line is the distribution for one session. (D) Distances
between model and data distributions for post-training sleep epochs (y-axis) for every learning session,
compared to a per-session estimate of baseline differences (x-axis), obtained by bootstrap sampling of
patterns within the post-training sleep epoch. Error bars give the mean and 95% confidence intervals on
the bootstrapped within-epoch distance D(Post|Post∗) [x-axis], and the 100 repeats of the raster model
(y-axis). (E) As panel D, using only co-activation patterns from data and model. (F ) The distance
between the task and post-task sleep distributions D(Post|Learn) is always smaller than the distance
D(Model|Learn) predicted by population firing rate changes during sleep alone, as given by the raster
model. Error bars give the mean and 95% confidence intervals over the 100 repeats of the raster model,
too small to see on this scale. Inset: plot of the difference between model mean and the data for each
session: D(Model|Learn) - D(Post|Learn)

no spikes or one spike (Figure 8C). If all patterns had only no spikes or one spike, then644

the raster model spike trains would be exactly equivalent to the data. Yet despite the645

relative sparsity (∼ 1%) of co-activation patterns in our data, we found that the distance646

D(Post|Post−model) between data and model-derived distributions in post-training sleep647

was always greater than baseline estimates of equivalence between distributions (Figure648

8D).649

It follows that the true difference between data and model is in the relative occurrence650

of co-activation patterns. To check this, we applied the same analysis to distributions651

built only from these co-activation patterns, drawn from data (P (Post)) and from the652

raster model (P (Post − model)) fitted to the complete data. With the co-activation653

patterns, we found that the distance between data and model-derived distributions in654

post-training sleep was up to an order of magnitude greater than estimates of equivalence655

(Figure 8E ). Consequently, when we then checked the distances between the training and656

sleep distributions, we found that the data-derived distance D(Post|Learn) was always657

smaller than the distance D(Post−model|Learn) predicted by the raster model (Figure658

8F ). These results show that the convergence between training and post-training sleep659

distributions could not be accounted for by the change in global brain state; rather, the660

convergence is due to selective changes in when two or more neurons are co-active.661

The mPfC dictionary as a probabilistic representation of strategy662

Having described the existence of and changes to a dictionary of activity patterns in663

mPfC, we now propose an explanation for what computations are represented by this664

dictionary. The recent inference-by-sampling hypothesis (Fiser et al., 2010; Buesing et665
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al., 2011; Berkes et al., 2011; Habenschuss et al., 2013; Haefner et al., 2016) proposes666

that the joint activity of a population of neurons represents samples from an encoded667

probability distribution – or internal model – for some features of the world. We illustrate668

this idea in Figure 9A for the simple case of two neurons representing a two-dimensional669

probability distribution. This joint activity, defined by the synaptic connections within670

and into the population, will specify a particular set of activity patterns: a particular671

dictionary (Figure 9A). In the sampling theory, neural activity evoked by external input672

represents samples from a “posterior” probability distribution for the world being in a673

particular state. A strong prediction of this theory is that if the internal model is encoded674

by synaptic weights, then spontaneous activity of the same neurons must still represent675

samples from the internal model (Fiser et al., 2010; Berkes et al., 2011). In the absence of676

external input, these are then samples from the “prior” probability distribution over the677

expected properties of the world. As we have observed a consistent dictionary between678

waking and sleeping states, and which encodes task features, our data are consistent with679

mPfC activity being samples from the same internal model of the task in both evoked680

(training) and spontaneous (sleeping) states. Thus we propose the hypothesis that the681

dictionary in the mPfC is a signature of representing and learning a probabilistic internal682

model.683

To test the plausibility of this hypothesis, we constructed a model for how a probabilis-684

tic internal model changes over learning. A candidate for the mPfC internal model is the685

probabilistic representation of the behavioural strategies that correspond to the rules or686

regularities of the world (Ragozzino et al., 1999; Rich and Shapiro, 2007, 2009; Durstewitz687

et al., 2010; Karlsson et al., 2012; Powell and Redish, 2016). Indeed, we have already seen688

that the mPfC dictionaries selectively change according to relevant features of the world.689

We thus used a model of probabilistic reinforcement learning of strategies on a simulated690

Y-maze task.691

Our model maintains a probability distribution over the expected reward obtained by692

choosing each strategy (Figure 9B). As the actual distributions encoded by mPFC are693

unknown, we use this simplified representation as a proxy for more complex models with694

distributions over the uncertain values of individual actions and the transitions they cause695

between states in the maze, which collectively make a strategy. On each simulated trial, the696

model stochastically chooses a strategy, takes the corresponding action, and observes the697

resultant feedback. The probability distribution of the selected strategy is then updated698

to increase or decrease the expected value and the variance around it, according to the699

feedback. The model is thus an example of general algorithms for updating probabilistic700

internal models from feedback.701

Simulating the model shows how learning the correct strategy corresponds to the prob-702

ability distributions stabilising (Figure 9C-E). Like the rat, the model shows a marked703

increase in reward accumulation (Figure 9C) when it learns to consistently select the cor-704

rect strategy. Consistent reward accumulation will cause the probability distributions to705

stabilise (Figure 9D), as their changes asymptotically decrease with continual successful706

outcomes. We illustrate this asymptotic stabilisation in the mean of the distributions in707

Figure 9E. As we show in the Materials and Methods, irrespective of the details of the708

algorithm, a basic prediction of any probabilistic reinforcement learning model is that the709

probability distributions stabilise in this way after sufficient reinforcement.710

In this model, we assume that the probability distributions over strategies obtained by711

the end of a training session are then sampled in post-training sleep. This is consistent with712

our observation that the dictionary of patterns is conserved between sleep and waking,713

and with the changes in the probabilities of specific patterns between pre- and post-714

training sleep (Figure 9G). For comparison with the rats’ behaviour, we consider the715

set of trials around the model’s learning trial as a learning session (Figure 9C). The716

internal model will change within a learning session less after the learning trial than717

before it (Fig 9E-F), because of the increased stability of the probability distributions718
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with learning (Figure 9D). Consequently, the probability distributions over strategies in719

post-learning trials will be closer to those in post-training sleep then pre-training sleep;720

thus, so will be the distributions over activity patterns that represent samples from these721

probability distributions, giving D(Pre|Learn) > D(Post|Learn), just as we observed.722

We thus suggest that the convergence of activity pattern dictionaries in mPfC specifically723

during learning is a signature of stabilised probability distributions encoded by the mPfC724

population activity.725

Discussion726

Here we sought to address whether mPFC population activity contains a dictionary of727

millisecond-precise activity patterns, and if that dictionary related to learning rules about728

the world. We found that the set of patterns describing millisecond-scale co-activations of729

neurons occurred well in excess of the levels predicted by neuron firing rates alone. The730

same set of patterns was conserved between sleeping and waking. Yet during training731

the probability of pattern occurrence changed selectively for patterns that occurred at732

the maze’s choice point and predicted the outcome of trials. The direction of change733

was systematic only during sessions of clear learning, and not during sessions of stable734

behaviour. Thus, we have described a dictionary of words in mPfC population activity735

that encodes task features and is updated during training.736

Our finding of a highly similar set of precisely-timed activity patterns across sleeping737

and task performance suggests that mPfC population activity is underpinned by similar738

constraints in both vigilance states. These results extend to fine time-scale activity pat-739

terns the observations in previous studies of strong similarities between spontaneous and740

evoked firing rates (Tsodyks et al., 1999; Hromádka et al., 2008; O’Connor et al., 2010;741

Wohrer et al., 2013), firing sequences (Luczak et al., 2009) or rate ensembles (Miller et742

al., 2014; Carrillo-Reid et al., 2015) in cortex. These findings imply that the underlying743

cortical circuit has similarly constrained dynamics in both spontaneous and evoked states744

(Galan, 2008; Marre et al., 2009). Maass and colleagues (Buesing et al., 2011; Habenschuss745

et al., 2013) have shown that a range of cortical network models can produce specific dis-746

tributions of such precise activity patterns, provided they have a source of noise (such as747

synaptic release failure) to produce stochastic wandering of the global activity level. Our748

data support these models, and suggest that global activity oscillations during slow-wave749

sleep (Destexhe et al., 1999; Steriade et al., 2001) do not prevent the stochastic sampling750

of activity patterns, providing a target for future modelling studies.751

Studies of prefrontal cortex coding generally assume that information is encoded by752

firing rates (Ito et al., 2015; Pinto and Dan, 2015; Siegel et al., 2015; Spellman et al., 2015)753

or ensemble rate correlations (Baeg et al., 2003; Averbeck et al., 2006; Baeg et al., 2007).754

By contrast, here we show evidence of population coding at highly precise time scales of755

both position dependence and outcome. That we could extract anything of interest at this756

resolution was unexpected, and we checked these results extensively, including the use of757

large-repeat permutation tests. Previously, such fine-scale structure of stimulus-evoked758

population activity patterns has only been observed in the retina and V1 during passive759

observation of stimuli (Schneidman et al., 2006; Berkes et al., 2011; Tkacik et al., 2014),760

and only recently have attempts been made to decode information from these patterns761

in the retina (Ganmor et al., 2015; Marre et al., 2015). We extend these results to show762

that such fine time-scale correlation structure can be observed in mPfC, across sleep and763

behaviour.764

We found that the patterns selectively changed during training were just those which765

occurred at the maze’s choice point and, in the learning sessions, predicted trial outcome.766

This is consistent with plastic changes to the connections within and into the recorded767

population during training, which in turn changes the frequency of visiting the possible768

states of the network. But these changes in pattern probability were only systematic in769
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Figure 9. Neural sampling and probabilistic reinforcement learning models. (A) Schematic of inference-by-sampling,
showing how an arbitrary joint probability distribution can be represented by the joint firing of a neuron population. (i) A
two dimensional probability distribution (grey shading) for the values of two variables (x, y: grey axes) can be encoded by the
joint firing rate of two neurons (orange circles): high probability regions correspond to frequent pairs of rates. (ii) By finely
discretising time, these joint rates correspond to the four possible joint spiking patterns (orange circles are occurrences of each
pattern, jittered). (iii) The frequency of these activity patterns is thus a direct function of the underlying encoded probability
distribution, and represent samples from that distribution. (B) Schematic of the probabilistic reinforcement learning model.
The model maintains probability distributions over the expected value of choosing each strategy (dashed lines). On each trial,
a strategy is selected according to the highest sample drawn from each distribution. The corresponding action, of selecting the
left or right arm on the maze, is executed. Noise is introduced here as a small probability of executing the opposite action
(labelled ‘Mistake?’). Reward is obtained, and the probability distribution for the chosen strategy is correspondingly updated
(solid lines). (C ) Cumulative reward curve from an example simulation with reward for “go left”. The blue shading identifies
a virtual “learning” session, a group of trials around the identified learning trial (solid grey line; see Methods). The dotted
grey lines identify the trials whose distributions are then sampled in sleep. Red shading identifies an arbitrary later virtual
session of stable behaviour, with consistent accumulation of rewards – see Discussion; the grey lines here identify the
mid-session, and putative pre- and post-session sleep. (D) Corresponding trial-by-trial probability distributions for the
expected value of each strategy. Colour-scale gives probability; white lines indicate the learning and stable session mid-points.
(E) Corresponding trial-by-trial change in the mean of the probability distribution updated on each trial. Shading conventions
as per panel C. (F ) The distribution of changes to the mean before and after the session mid-point, for the learning session
(blue) and stable session (red). Error bars plot means and standard deviations. (G) Probability distributions for each strategy
in pre- and post-training sleep for the learning session (dashed: pre; solid:post).
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learning sessions and not during stable behaviour. These results come with the technical770

issue that the theoretically best distance estimator - the Kullback-Liebler divergence - is771

also the most difficult to measure accurately with finite samples (Panzeri et al., 2007).772

To counteract this, we have extensively checked its behaviour, and re-checked our key773

results with a different, non-parametric distance measure. All showed that the sampling774

of the dictionary converged between training and post-training sleep in learning but not775

stable sessions. Clinching confirmatory data for this difference between learning and stable776

sessions would need recordings from the same set of neurons across multiple sessions, for777

which we await stable long-term population recordings at millisecond resolution (Jun et778

al., 2017).779

This difference in the changes during learning and stable sessions could be underpinned780

by two different forms of plasticity. During successful learning of the current rule in the781

Y-maze, it is plausible that mPfC populations undergo reinforcement-driven plasticity,782

changing synaptic weights into and between neurons whose co-activity tends to lead to783

reward (Izhikevich, 2007; Benchenane et al., 2011). During stable behaviour, in which784

behavioural choice is decoupled from reinforcing feedback, it is plausible that the dictionary785

changes are driven by synaptic turnover (Wolff et al., 1995), allowing exploration of the786

possible network states (Kappel et al., 2015; Maass, 2016). Testing such ideas would again787

require stable long-term recordings of the same population across learning and asymptotic788

behaviour.789

Replay and dictionary sampling790

That the spontaneous activity of sleep and task-evoked activity during waking are sam-791

pling from the same, highly conserved dictionary suggests an alternative interpretation of792

“replay” phenomena (Euston et al., 2007; Peyrache et al., 2009). Replay of neural activity793

during waking in a subsequent episode of sleep has been inferred by searching for matches794

of patterns of awake activity in sleep activity, albeit at much coarser time-scales than795

used here. The better match of waking activity with subsequent sleep than preceding796

sleep has been taken as evidence that replay is encoding recent experience, perhaps to797

enable memory consolidation. However, our observation that the distributions of patterns798

in stable sessions’ trials are not specifically sampled in post-training sleep (Figure 6) is799

incompatible with the simple replay of experience-related activity in sleep.800

Rather, our results suggest that the similarity between waking and sleep activity is801

due to the constraints placed on them by the cortical network, and how that network802

is changed by learning, not recent experience per se. The similarity of the patterns in803

waking and subsequent sleep is then caused by sampling from the same dictionary, not804

by explicitly recalling specific patterns that occurred in waking activity. Our data thus805

suggest that replay may be a signature of resampling.806

Dictionary sampling as a probabilistic internal model807

While the above discussed results give strong constraints on mPfC dynamics and coding,808

they do not in themselves make an obvious connection to neural computation. To address809

this, we have proposed a computational hypothesis that the dictionary itself represents810

a probabilistic internal model in mPfC. While the hypothesis that brains compute us-811

ing probabilities is widely-discussed, most evidence for it has been from observations of812

behaviour that is consistent with probabilistic inference (Wolpert et al., 1995; Körding813

and Wolpert, 2004; Pouget et al., 2013). Strong evidence for probabilistic brains requires814

detecting the representation and use of probability distributions in circuit-level neural ac-815

tivity (Knill and Pouget, 2004). Theoretical work has elucidated potential mechanisms for816

how cortical populations represent and compute with probabilities (Zemel et al., 1998; Ma817

et al., 2006; Beck et al., 2008; Fiser et al., 2010; Buesing et al., 2011; Haefner et al., 2016).818

One popular account is probabilistic population codes (Ma et al., 2006; Beck et al., 2008;819
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Pouget et al., 2013), but these have been elucidated in the context of sensory variables and820

rely on neurons encoding a set of basis functions to represent the range of each sensory821

variable; it is not immediately clear what such a basis function set would be in mPfC or822

rule learning. Rather, our finding of a consistent dictionary of activity patterns is more823

easily interpreted in the context of the inference-by-sampling theory (Figure 9A), which824

allows for the representation of arbitrary probability distributions (Fiser et al., 2010).825

We demonstrated how a probabilistic reinforcement learning model could learn an826

internal model for the Y-maze task using the probabilistic representation of strategies.827

Our model predicts that the internal model stabilises during successful learning of the828

correct strategy. Given the sampling theory’s correspondence between the probability829

distributions of the internal model and the sampled activity patterns, this stabilisation830

predicts that the dictionary of activity patterns in sleep should be closer to the distribution831

in the trials after the behavioural strategy changes, just as we observed in the data. The832

model also makes the prediction that, should stable recordings of the same neurons across833

sessions be obtained, then the dictionaries within each training epoch should become834

progressively more similar in consecutive sessions (compare blue and red shading in Figure835

9C-F). Thus here we suggest that the existence and changes to the neural dictionary in836

mPfC are a signature of probabilistic internal models and their updating through learning.837

Such an account extends the applications of probabilistic internal models to a candidate838

general computational principle of cortex.839

Extended Data Legends840

Figure 2-1 Numbers of neurons in each session, and numbers of activity patterns in841

each epoch for each session.842
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Luczak A, Barthó P, Harris KD (2009) Spontaneous events outline the realm of possible
sensory responses in neocortical populations. Neuron 62:413–425.

Ma WJ, Beck JM, Latham PE, Pouget A (2006) Bayesian inference with probabilistic
population codes. Nat Neurosci 9:1432–1438.

Maass W (2016) Searching for principles of brain computation. Curr Opin Behav
Sci 11:81–92.

Marre O, Botella-Soler V, Simmons KD, Mora T, Tkacik G, Berry II MJ (2015) High
accuracy decoding of dynamical motion from a large retinal population. PLoS Comput
Biol 11:e1004304.
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Extended Data Tables

Neurons Pre-training SWS Post-learning trials Post-training SWS Rest

23 281001 57419 193500 315508
20 65007 49029 165519 350335
20 270012 34910 99488 282512
35 240992 20417 461972 92504
35 558510 43682 322499 131011
31 362007 26713 330485 206006
23 351996 50058 414982 205510
12 433009 29612 266493 204506
25 388006 50995 568512 105997
27 371013 64785 453993 90008

Table S1: Learning sessions: neurons and patterns. The Neurons column give the number of
neurons used from each of the ten learning sessions to build the activity patterns; eight used all
recorded neurons, two were capped at 35. The other columns give the total number of activity
patterns in each epoch.
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Neurons Pre-training SWS All trials Post-training SWS

21 433009 42006 266493
19 377028 70435 468512
35 262999 76452 262511
35 341040 40062 250509
35 166511 70159 389510
35 104998 66319 16998
35 286491 66880 260521
35 109992 46539 209005
21 127997 71266 302997
19 346530 449624 448510
22 238523 30048 139999
17 521982 66071 330505
29 154498 144571 214992
12 107994 111723 204010
19 441977 108721 168996
21 90498 86011 112500
22 99508 97662 81003

Table S2: Stable sessions: neurons and patterns. The Neurons column give the number of
neurons used from each of the 17 stable sessions (using the threshold of 85%) to build the
activity patterns; nine used all recorded neurons, six were capped at 35. The other columns
give the total number of activity patterns in each epoch.
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