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Abstract

The inherent uncertainty of the world suggests that brains should internally represent its structure using
probabilities. This idea has provided a powerful explanation for a range of behavioural phenomena. But
describing behaviour in probabilistic terms is not strong evidence that the brain itself explicitly uses
probabilistic models. We sought to test whether populations of neurons represent such models in higher
cortical regions, learn them, and use them in behaviour. Combining theories of probabilistic learning and
sampling, we predicted that trial-evoked and sleeping population activity respectively represent the inferred
and expected probabilities generated from an internal model of a behavioural task; and that these distributions
would become more similar as the task was learnt. To test these predictions, we analysed population activity
from rodent prefrontal cortex before, during, and after sessions of learning rules on a Y-maze. We found that
population activity patterns on millisecond time-scales occurred far in excess of chance in both waking and
sleep activity. The distributions of these patterns changed between sleep episodes before and after successful
learning. Changes were greatest for patterns expressed at the maze’s choice point and predicting correct
choice of maze arm to obtain reward, consistent with the population activity representing an internal model
of the task. As predicted, these changes consistently increased the similarity between the distributions in
trials and in post-learning sleep, compared to pre-learning sleep, implying that the underlying probability
distribution had stabilised over successful learning. Our results provide evidence that prefrontal cortex
contains a probabilistic model of behaviour, which is updated by learning. They thus suggest sample-based
internal models are a general computational principle of cortex.

Author Summary

The cerebral cortex contains billions of neurons. The activity of one neuron is lost in this morass, so it is
thought that the co-ordinated activity of groups of neurons – “neural ensembles” – are the basic element of
cortical computation, underpinning sensation, cognition, and action. But what do these ensembles represent?
Here we show that ensemble activity in rodent prefrontal cortex represents samples from an internal model of
the world - a probability distribution that the world is in a specific state. We find that this internal model is
updated during learning about changes to the world, and is sampled during sleep. These results suggest that
probability-based computation is a generic principle of cortex.

Introduction 1

How do we know what state the world is in? Behavioural evidence suggests brains solve this problem using 2

probabilistic reasoning [1, 2]. Such reasoning implies that brains represent and learn internal models for the 3

statistical structure of the external world [1,3,4]. With these models, neurons could represent uncertainty 4

about the world with probability distributions, and update those distributions with new knowledge using 5

the rules of probabilistic inference. Theoretical work has elucidated potential mechanisms for how cortical 6

populations represent and compute with probabilities [5–9], and shown how computational models of inference 7
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predict aspects of cortical activity in sensory and decision-making tasks [2,9,10]. Indeed, though most work on 8

them has focussed on sensory or motor cortex [2,3,9,11], probabilistic internal models are a candidate general 9

computational principle of cortex. But we lack experimental evidence that neural populations represent 10

probabilistic internal models, and update those models through learning. 11

The medial prefrontal cortex (mPFC) is a natural candidate for addressing questions of internal models in 12

higher cortices. It is necessary for learning new rules or strategies [12,13]. Changes in mPFC neuron firing 13

times correlates with successful rule learning [14], suggesting that mPFC coding of task-related variables 14

changes over learning. Further, mPFC population recording data from the outset of learning on a Y-maze 15

task are available [15]. We thus use that data here to test the hypothesis that mPFC population activity 16

encodes an internal model of a task, and that this model is updated by learning. 17

To address this hypothesis, we needed to specify two things: an algorithm plausibly used by the mPfC to 18

learn and update a probabilistic internal model; and an implementation of those probability distributions by 19

mPfC neurons. Together, these provide experimentally tractable predictions, by specifying when we expect 20

probability distributions to change, and by specifying what form that change will take in terms of neural 21

activity. 22

Learning of an uncertain rule from trial-by-trial feedback can be well captured by a probabilistic rein- 23

forcement learning algorithm. Such algorithms maintain a probability distribution Px(V ) over the estimated 24

value V of some task-related variable(s) x. Each probability distribution Px(V ) is updated by whether 25

reinforcement is received or not. Irrespective of the details of the algorithm, and as we illustrate below, a basic 26

prediction of any probabilistic learning model is that the probability distributions stabilise after sufficient 27

reinforcement. We thus sought signatures of stabilised probability distributions in the mPfC population 28

activity. 29

To detect these probability distributions in neural activity we make use of the recent inference-by-sampling 30

hypothesis [7, 9, 11,16,17]. In this theory, the probabilistic internal model is implemented by the synaptic 31

weights between neurons. The moment-to-moment joint activity of these neurons thus represents samples 32

from the encoded probability distribution. Neural activity evoked by external input represents samples 33

from a “posterior” probability distribution for the world being in a particular state. A strong prediction 34

of this theory is that if the model is encoded by synaptic weights, then spontaneous activity of the same 35

neurons must still represent samples from the internal model. In the absence of external input, these are then 36

samples from the “prior” probability distribution over the expected properties of the world. Such apparent 37

sampling of posterior and prior distributions has been reported in V1 during observations of natural images 38

and in darkness, respectively [16]. A series of models from Maass and colleagues have shown how generic 39

cortical circuits can produce samples from an encoded probability distribution [7,17]. Thus, the sampling 40

implementation is a reasonable candidate for testing the hypothesis of probabilistic internal models in mPfC. 41

The sampling implementation tells us we can experimentally access probability distributions by observing 42

changes to the joint activity of a population. It also tells us how we might best isolate the encoded internal 43

model, by observing spontaneous activity in the absence of task-related input. For our data, this type of 44

spontaneous activity only occurs during sleep before and after sessions of trials on the maze. This reasoning 45

led us to the hypothesis that we could observe sampling from the internal model during sleep. This hypothesis 46

is consistent with the observations that waking activity in cortex, including mPfC, is coarsely recapitulated 47

during subsequent slow-wave sleep [15, 18–20]. We thus sought to isolate stable probability distributions 48

by comparing population activity in sleep before and after training, and between sleep and training-evoked 49

activity. 50

We show here that changes to moment-to-moment joint activity in mPFC populations during learning 51

match these predictions. Patterns of joint activity during sleep occur above chance both before and after 52

training, consistent with the sampling of an underlying probability distribution. A set of these patterns 53

change their rate of occurrence after training sessions in which behavioural strategy changes. This set of 54

patterns are predictive of task performance, consistent with them being samples from an internal model of 55

the task. As predicted by the probabilistic reinforcement learning model, the direction of change brings the 56

distribution of joint activity in sleep closer to the distribution in the trials after the behavioural strategy 57

changes, indicating the underlying internal model has stabilised. These findings suggest mPFC represents 58

and updates a sample-based internal model of the maze rules. 59
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Fig 1. Task and behaviour. (A) Y-maze task set-up (top); each session included the epochs of pre-training
sleep/rest, training trials, and post-training sleep/rest (bottom). One of four target rules for obtaining
reward was enforced throughout a session: go right; go to the cued arm; go left; go to the uncued arm. No
rat successfully learnt the uncued-arm rule. (B) Breakdown of each learning session into the duration of its
state components. The training epoch is divided into correct (red) and error (blue) trials, and inter-trial
intervals (white spaces). Trial durations were typically 2-4 seconds, so are thin lines on this scale. The pre-
and post-training epochs contained quiet waking and light sleep states (“Rest” period) and identified bouts
of slow-wave sleep (“SWS”). Inset: duration of the Rest period between the end of the last trial and the
start of the first SWS bout (lines give mean ± 2 s.e.m.) (C ) Cumulative reward curve from an example
learning session. Grey line: learning trial. (D) Strategy selection in the same example learning session as
panel C. The target rule was ’go right’. Strategy probability was computed in a 7-trial sliding window; we
plot the mid-points of the windows. (E ) Strategy selection in an example “stable” session of consistent
behavioural choice. The target rule was ’go to the uncued arm’.

Results 60

Rats with implanted tetrodes in the mPfC learnt one of four rules on a Y-maze: go right, go to the randomly- 61

cued arm, go left, or go to the uncued arm (Fig. 1A). Each rat experienced at least two of the rules. Each 62

training session was a single day containing 3 epochs totalling typically 1.5 hours: pre-training sleep/rest, 63

behavioural training on the task, and post-training sleep/rest. We primarily focussed on ten sessions where 64

the animal reached the learning criteria for a rule mid-session (15-55 neurons per session, Fig. 1B). Each 65

learning session had a marked increase in reward accumulation (Fig. 1C ), correlating with a switch to a 66

consistent, correct strategy (Fig. 1D). We also identified a separate set of stable-behaviour sessions, in which 67

the rat consistently used the same strategy throughout irrespective of its accuracy (Fig. 1E). As we show 68

below, we used these learning and stable sessions to seek changes to the hypothesised internal models of the 69

task. 70

Probabilistic reinforcement learning model predicts stabilisation of probability 71

distributions 72

We used a model of probabilistic reinforcement learning on a simulated Y-maze task to illustrate how a 73

probabilistic internal model is updated during behaviour. Our model maintains a probability distribution 74

over the expected reward obtained by choosing each strategy (Fig. 2A). As the actual distributions encoded 75

by mPFC are unknown, we use this simplified representation as a proxy for more complex models with 76
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distributions over the uncertain values of individual actions and the transitions they cause between states in 77

the maze, which collectively make a strategy. On each simulated trial, the model stochastically chooses a 78

strategy, takes the corresponding action, and observes the resultant feedback. The probability distribution of 79

the selected strategy is then updated to increase or decrease the expected value and the variance around it, 80

according to the feedback. The model is thus an example of general algorithms for updating probabilistic 81

internal models from feedback. 82

Simulating the model shows how learning the correct strategy corresponds to the probability distributions 83

stabilising (Fig. 2). Like the rat, the model shows a marked increase in reward accumulation (Fig. 2B), 84

corresponding to the dominant selection of the correct strategy. Consistent reward accumulation will cause 85

the distributions to stabilise (Fig. 2C), as their changes asymptotically decrease with continual successful 86

outcomes (see SI Text for details). Thus the model shows the general prediction that successful learning 87

corresponds to stability of the encoded probability distributions. 88

We use this model to demonstrate specific, testable predictions for the changes to the hypothesised internal 89

models in mPfC. A key constraint here is that all neural recordings were spike-sorted within session only, so 90

we can only seek predictions for within session changes - we outline further predictions for between-session 91

changes, testable in future experiments, in the Discussion. 92

First, the model predicts that learning should change the probability distributions encoded in sleep. 93

Learning-induced changes in the encoded probability distributions can be observed by comparing distributions 94

taken before and after learning (Fig. 2B-C). If the spontaneous activity of sleep is sampling from the internal 95

model, then we should observe these changes by comparing the distributions encoded in pre- and post-learning 96

session sleep and finding that they are not the same (Fig. 2F). Calling the pre- and post-training distributions 97

P (Pre) and P (Post), and the distance between those distributions D(Pre|Post), then this prediction is that 98

D(Pre|Post) > 0. 99

Second, the model predicts that learning should move the probability distributions in training closer to 100

those sampled in post-training than pre-training sleep. The internal model will change within a learning 101

session less after the learning trial than before it (Fig 2D-E), because of the increased stability of the 102

probability distributions with learning (Fig. 2C). If the spontaneous activity of sleep is sampling from the 103

internal model, then this means the distribution in post-learning trials will be closer to that in post-training 104

sleep then pre-training sleep. Calling the post-learning distribution P (Learn), then this prediction is that 105

D(Pre|Learn) > D(Post|Learn). 106

Third, the model predicts that stable behaviour correlates with stable probability distributions. While 107

overt changes in behaviour must correlate with changes in neural activity guiding that behaviour, the converse 108

need not be true: neural activity could change without behavioural change (as, for example, in working 109

memory encoding of an object). Nonetheless, if the hypothesised internal model in mPfC is encoding the 110

current behavioural strategy, then we expect that the probability distributions generated by the internal 111

model will not change if behaviour is stable (Fig. 2B-E). Consequently, we expect the probability distributions 112

in pre- and post-training sleep to be equidistant, on average, from the probability distribution in training. 113

Calling the stable-trial distribution P (Stable), then this prediction is that D(Pre|Stable) ≈ D(Post|Stable). 114

Firing rate distributions do not systematically change 115

Our implementation hypothesis is that these probability distributions are encoded by the patterns of joint 116

activity of the population. But is this implementation hypothesis necessary - could these probabilities be 117

simply encoded by the firing rates of neurons in the population? 118

We found that there were no systematic changes to the firing rates with learning. In each learning 119

session, the distribution of firing rates changed more between the training epoch and each sleep epoch than 120

between the sleep epochs (Fig 3A). This shift in distribution during the training epoch was accounted for by 121

a sub-set of neurons whose change in rate compared to sleep was in excess of anything observed between 122

sleep states (Fig. 3B). Of the ten learning sessions, only two showed a detectable change in firing rates across 123

the population between the sleep epochs (Fig. 3C), and these two were in opposite directions. These data are 124

consistent with the need to look at patterns of population activity, rather than individual neurons, to test 125

our predictions. 126
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Fig 2. Probabilistic reinforcement learning model predicts stabilisation at learning. (A) Schematic of the
model. The model maintains probability distributions over the expected value of choosing each strategy
(dashed lines). On each trial, a strategy is selected according to the highest sample drawn from each
distribution. The corresponding action, of selecting the left or right arm on the maze, is executed. Noise is
introduced here as a small probability of executing the opposite action (labelled ‘Mistake?’). Reward is
obtained, and the probability distribution for the chosen strategy is correspondingly updated (solid lines).
(B) Cumulative reward curve from an example simulation with reward for “go left”. The blue shading
identifies a virtual “learning” session, a group of trials around the identified learning trial (solid grey line; see
Methods). The dotted grey lines identify the trials occurring immediately before pre and post-training sleep,
whose distributions are then sampled in sleep. Red shading identifies an arbitrary later virtual session of
stable behaviour, with consistent accumulation of rewards; the grey lines here identify the mid-session and
putative pre- and post-session sleep. (C ) Corresponding trial-by-trial probability distributions for the
expected value of each strategy. Colour-scale gives probability; white lines indicate the learning and stable
session mid-points. (D) Corresponding trial-by-trial change in the mean of the probability distribution
updated on each trial. Shading conventions as per panel B. (E ) The distribution of changes to the mean
before and after the session mid-point, for the learning session (blue) and stable session (red). Error bars plot
means and standard deviations. (F ) Probability distributions for each strategy in pre- and post-training
sleep for the learning session (dashed: pre; solid:post). (G) Probability distributions for each strategy in pre-
and post-training sleep for the stable session (dashed: pre; solid:post).
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Fig 3. Firing rate distributions do not change between sleep epochs. (A) The distributions of firing rates in
the three epochs of one learning session. Firing rates within epochs have a long-tailed distribution, with low
firing rates dominating. (B) Histograms of each neuron’s change in firing rate between all pairs of epochs in
the same learning session. Changes between sleep epochs are small, and centred at zero. Changes between
sleep and waking can be considerably larger, and in either direction. (C ) The median firing rate in each sleep
epoch, by session. The red symbols indicate the only two sessions with a detectable shift in firing rates
between the sleep epochs at α = 0.05 (Signed-rank test; see SI Table for numbers of neurons per session.

Millisecond precision spike correlation patterns consistent with sampling 127

We first tested that mPfC population joint activity patterns in the learning sessions were consistent with 128

being samples from a probability distribution. Following previous work [7, 16, 17, 21], we defined the samples 129

as population-wide activity patterns on millisecond time-scales. Activity patterns were characterised as a 130

binary vector (or “word”) of active and inactive neurons within some small time window (Fig. 4A). Statistical 131

structure at millisecond time-scales has been characterised for populations in the retina [21–24] and primary 132

visual cortex [16,25], but not for higher-order cortices. We thus first demonstrate that mPFC activity patterns 133

on millisecond time-scales contain above-chance statistical structure. 134

We were primarily interested in co-activation patterns of more than one neuron firing together, as the 135

occurrences of each pattern with a single active neuron (a single “1”) can correlate strongly with that neuron’s 136

firing rate. We thus first determined the time-scales at which co-activation patterns appear. Figure 4B shows 137

that at low millisecond time-scales the proportion of activity patterns containing co-active neurons increases 138

by an order of magnitude when doubling the bin size. The smallest bin size with a non-negligible proportion 139

of co-activation patterns was 2 ms, with ∼ 1% (89731/7452300) of all patterns. This was also true for each 140

epoch considered separately (Fig. 4C -E ). We thus used a 2 ms bin size throughout, as this was the smallest 141

time-scale with consistent co-activation patterns. 142

Such co-activation patterns could be due to persistent, precise correlations between spike-times in different 143

neurons, or just due to coincident firing of otherwise independent neurons. We found that the proportion of 144

co-activation patterns in the data exceeded those predicted for independent neurons by a factor of 3 (Fig. 145

4B) at low millisecond time-scales. This was also true for each separate epoch (Fig. 4C -E ), extending up 146

to a factor of at least 6 for the task trials (Fig. 4D). These data rule out the possibility that the excess of 147

precise correlations was due to differences in brain state. 148

Our hypothesis that sleep and waking states represent distributions derived from the same internal model 149

requires not just precise patterns, but largely the same patterns. If the set of patterns markedly differed 150

between waking and sleep, then it would be implausible that they were drawn from the same underlying 151

internal model. We found that each recorded population of N neurons had the same sub-set of all 2N possible 152

activity patterns in all epochs (Fig. 4B). Such a common set of patterns is consistent with their being samples 153

generated from the same form of internal model across both behaviour and sleep. 154

Distributions of activity patterns change between sleep epochs during learning 155

With evidence that the joint population activity patterns in mPfC were both non-trivial and conserved 156

between epochs, we could test our main predictions. If activity patterns are samples from a probability 157

distribution, then two similar probability distributions will be revealed by the similar frequencies of sampling 158

each pattern [16]. Our first prediction is that the probability distributions encoded in sleep will change due 159

to learning during training (Fig. 5A). We thus test this prediction by comparing the distributions of patterns 160

in pre- and post-training sleep for the ten learning sessions (Fig. 5B). 161
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the bin size of 2 ms. In black we plot the corresponding proportion of co-activation patterns predicted if all
neurons were firing independently; these are obtained by shuffling the inter-spike intervals of each neuron
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plots: Proportion of co-activation patterns per epoch. Predicted proportions by independently-firing neurons
are in grey. Error bars of ±2 SEM are too small to see on this scale. (C ) Consistent sampling of activity
patterns across session epochs. Each circle is the proportion of all 2 ms activity patterns from the entire
session that appeared only in that epoch. Black bar and line give the median and interquartile range across
the 10 sessions. Note the log-scale, showing that the median proportion of unique patterns was less then
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Our prediction is that the distance D(Pre|Post) between these distributions should be greater than zero. 162

Due to the finite duration of the two sleep epochs, and so the limited sampling of each activity pattern, 163

identical underlying probability distributions will give rise to similar but not identical distributions of activity 164

patterns. We thus estimate the expected distances for identical distributions by bootstrap sampling within 165

each epoch, giving estimates of D(Pre|Pre∗) and D(Post|Post∗) for the distances between sets of patterns 166

drawn from identical underlying distributions. 167

In every learning session, we found the distance between sleep-epoch distributions D(Pre|Post) was 168

greater than within those epochs D(Pre|Pre∗) (Fig. 5C). We found similar results when we estimated 169

D(Pre|Pre∗) by randomly dividing the sleep epochs into two sets of samples and computing the distance 170

between the two (S1 Fig). In both cases, identical results were found when using post-training rather then 171

pre-training sleep as the control epoch (results not shown). Consistent with the hypothesis of updated internal 172

models sampled in post-training sleep, there is a systematic change in the population distribution of activity 173

patterns between sleep epochs. 174

Distributions in sleep are consistent with an internal model of the task 175

If activity pattern changes between sleep epochs either side of learning are caused by an updated internal 176

model in mPFC, then the changes to the distributions should be related to learning the task. Patterns that 177

changed their occurrence between sleep epochs should indicate the parts of the model that was updated. To 178

test this, we sought whether these updated patterns were encoding task variables. If not, then this would be 179

evidence against encoding of an internal model. 180

Distribution changes correlate with trial outcomes 181

If the hypothesised internal model is updated by trial outcome, so trial outcome should be correlated with 182

the consequent change in sampling of activity patterns. To test this, for each co-activation pattern, we found 183

its ability to predict a trial’s outcome by its rate of occurrence on that trial (Fig 6A). We then compared 184

this outcome prediction to the change in sampling between pre- and post-training sleep (Fig. 6B). As all 185

learning sessions were dominated by patterns that did not change between pre- and post-training sleep, 186

precluding a straightforward correlation analysis (S2 Fig), we discretised the distribution of changes as a 187

function of outcome prediction (Fig. 6C ). We found a strong correlation between the outcome prediction and 188

the likelihood of a pattern changing its sampling between the pre- and post-training sleep (Fig. 6D). This 189

correlation was highly robust to how we constructed the distributions of change between sleep epochs (Fig. 190

6E -G). The learnt internal model, as evidenced by the updated patterns sampled from it, was seemingly 191

encoding the task. 192

Distributions are sampled around the task decision point 193

As the rats were performing a navigation task, we could also verify that the hypothesised internal model was 194

sampled at a relevant location for performing the task. If good outcome prediction indicates patterns that are 195

indeed sampled from the relevant internal model for behavioural strategy, then we would expect these patterns 196

to occur at or close to the maze decision point, where the strategy is relevant. We thus checked the locations 197

of the co-activation patterns as a function of outcome prediction. We found that the outcome-predictive 198

activity patterns preferentially occurred around the choice point of the maze (Fig. 7). Particularly striking 199

was that patterns strongly predictive of outcome rarely occurred in the starting arm (Fig. 7A). Together, the 200

selective changes over learning to outcome-specific (Fig. 6) and location-specific (Fig. 7) activity patterns are 201

consistent with learning updating a behaviourally-relevant internal model, which is sampled in sleep. 202

Activity distributions during learning converge between training and post-training 203

sleep 204

Our key prediction is that learning should cause not just a change but a stabilisation of the probability 205

distributions derived from the internal model. The above evidence shows change between sleep epochs, but 206

not the direction of change. To examine the direction of change, we consider the activity pattern distribution 207
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Fig 6. Coding of trial outcome by sampled activity patterns. (A) Example distributions of a pattern’s
frequency conditioned on trial outcome from one learning session. (B) For all co-activation patterns in one
learning session, a scatter plot of outcome prediction and (absolute) change in pattern frequency between pre-
and post-training sleep. Change is normalised to the maximum change in the session. (C ) Distributions of
the change in pattern frequency as a function of the patterns’ outcome prediction probability. Co-activation
patterns from all ten learning sessions were binned by outcome prediction into variable size bins containing
the same number of patterns. Each column is the cumulative probability density for the change in pattern
frequency between pre- and post-training sleep, over all patterns in that bin. Circles give the median
absolute change for each distribution. In this example, distributions were built using bins with 90
data-points each. Unbinned data are analysed in S2 Fig. (D) Correlation of outcome prediction and median
change in pattern occurrence between pre- and post-training sleep from C. Red line is a linear regression
(P < 0.0002, permutation test). (E )-(F ) As C-D, for the worst-case correlation observed, using 25
data-points per bin. (G) Robustness of correlation results. Solid dots plot the correlation coefficient R
between outcome prediction and median change in pattern frequency obtained for different binnings of the
data; green colour-scale is proportional to the number of patterns per bin (light to dark: few to many
patterns per bin, range 20-100). Asterisks indicate data points correspond to panels C-D and E-F. Lines
each give the entire range of R obtained from a 5000-repeat permutation test; none reach the equivalent data
point (dashed line shows equality), indicating all data correlations had P < 0.0002.

P (Learn) in the post-learning trials, and test whether D(Pre|Learn) > D(Post|Learn); that is, whether 208

the post-learning distributions and post-training sleep distributions converge (Fig. 8A). 209

We indeed found that the two distributions converged. In 9 of the 10 learning sessions the post-learning 210

distribution P (Learn) was closer to the distribution in post-training sleep [P (Post)] than in pre-training sleep 211

[P (Pre)] (Fig. 8B). On average the post-learning distribution of patterns was 20.5% (95% CI=[7.4,33.7])%]) 212

closer to the post-training than the pre-training sleep distribution (Fig. 8E). Together, these results are 213

consistent with the hypothesis that learning updates an internal model in mPfC, causing an increased stability 214

of the probability distributions encoded in joint population activity. 215

Convergence of the probability distributions in sleeping and waking is a key prediction of our theory, as it 216

supports both the prediction of increased stability of distributions over learning, and the hypothesis that sleep 217

is sampling from a prior distribution generated by the internal model. Consequently, we sought to thoroughly 218

check the robustness of this result. We used the Kullback-Liebler divergence to measure the distance D(X|Y ) 219

between two distributions (X,Y ) as it provides the most complete characterisation of that distance, but 220

estimating it accurately from limited sample data has known issues [26]. These issues are relevant here as we 221
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Fig 7. Outcome predicting activity patterns are sampled in the choice area. (A) Scatter plot of each
pattern’s outcome prediction and the positions of its occurrence in the maze (dot is median position; grey
line is interquartile range); all positions are given as a proportion of the linearised maze from the start of the
departure arm. Red lines indicate the approximate centre (solid) and boundaries (dashed) of the maze’s
choice area (cf Fig 1A). (B) Proportion of activity patterns whose interquartile range of positions enters the
choice area (black dots and line). The grey region shows the mean (line) and 95% range (shading) of
proportions from a permutation test. The data exceed the upper limit of expected proportions for all
outcome-predictive patterns.

had a relatively small number of activity patterns in P (Learn) (SI Table) due to the shortness of each trial 222

(Fig. 1B), and some sessions had activity patterns up to 35 neurons in length. 223

We checked that our results were robust to different choices for measuring distance and the size of 224

patterns. We re-computed all distances using the Hellinger distance, a non-parametric measure that provides 225

a lower bound for the Kullback-Liebler divergence. Reassuringly, we found the same results: the post-learning 226

distribution P (Learn) of activity patterns was consistently closer to the distribution in post-training [P (Post)] 227

than in pre-training sleep [P (Pre)] (S3 Fig; mean convergence 22.7%, 95% CI [15.4,29.9]%). Moreover, the 228

Kullback-Liebler and Hellinger distance measures strongly correlated across sessions (S3 Fig). Similarly, when 229

we re-constructed all distributions using a maximum of 15 neurons per pattern in each session, we found 230

the same results (S4 Fig; mean convergence 36.8%, 95% CI [24.6,49]% using Kullback-Liebler divergence). 231

Together, these checks suggest that the convergence was not an artifact of the issues in reliably estimating 232

the Kullback-Liebler divergence. 233

Another possible source of issues was the choice of a 2 ms bin size for the activity patterns. We found that 234

the convergence between the task P (Learn) and post-training sleep P (Post) distributions was robust to the 235

choice of activity pattern bin size across an order of magnitude from 2 to 20 ms (S5 Fig). Our results thus do 236

not depend on some arbitrary choice of bin size. Above a bin size of 50 ms, convergence was statistically 237

indistinguishable from zero, meaning that the pre- and post-training sleep distributions are equidistant, on 238

average, from the post-learning distribution. This suggests that the behaviourally relevant time-scales for 239

activity patterns are indeed on the order of a few milliseconds. 240

Activity distributions do not converge during stable behaviour 241

In contrast to the learning sessions, our theory predicts that stable behaviour throughout a session likely 242

represents at best minor changes to the underlying probability distributions in mPfC. Consequently, the 243

stable-trial distribution P (Stable) should be on average equidistant from those in pre- and post-training 244

sleep, such that there is no convergence: D(Pre|Stable) ≈ D(Post|Stable) (Fig. 8C). In our data, there 245

were 13 sessions with at least 90% of trials containing the same behavioural choice (left, right, or cued arm; 246

Fig. 1D). In only 7 of the 13 stable sessions was the trial distribution P (Stable) closer to the distribution in 247

post-training sleep [P (Post)] than in pre-training sleep [P (Pre)] (Fig. 8E ). On average the trial distribution 248

of patterns was not closer to the post-training than the pre-training sleep distribution (mean convergence: 249

11.7%, 95% CI: [-11.7,35.2]%) (Fig. 8E ). Lowering the threshold for identifying stable sessions to 85% trials 250

with the same choice, giving 17 sessions, did not change the results (mean convergence: 5.8%, 95% CI: 251
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Fig 8. Differing convergence of activity pattern distributions between training and post-training sleep for
learning and stable sessions. (A) Schematic of the theoretical prediction for the change in probability
distributions between training and sleep epochs of a learning session. Reinforcement during training will
change the internal model of the task, and these changes will be smaller after the correct strategy is acquired
by the animal. Consequently, the distributions of joint population activity in post-training sleep and
post-learning should be systematically closer than between those distributions in pre-training sleep and
post-learning. (B) Distances between the distributions of pattern frequencies in sleep and training epochs;
one dot per learning session. D(X|Y ): distance between pattern distributions in epochs X and Y : Pre:
pre-training SWS; Post: post-training SWS; L: post-learning trials. (C ) Schematic of the theoretical
prediction for the change in probability distributions between training and sleep epochs of a stable session.
Stable behavioural strategy implies a stable internal model in mPfC. Consequently, the distance between
distributions of joint population activity in post-training sleep and training should be similar to the distance
between the distributions in pre-training sleep and training. (D) Distances between the distributions of
pattern frequencies in sleep and training epochs in all stable sessions (here with at least 90% of trials with
the same choice). S: training trials. (E ) Scatter of convergence between post-training sleep and post-learning
trials across all learning and stable sessions (circles). Convergence is
[D(Pre|X)−D(Post|X)]/max{D(Pre|X), D(Post|X}, expressed as a percentage. A value greater than
zero means that the training-epoch distribution X of activity patterns is closer to the distribution in
post-training sleep than the distribution in pre-training sleep. Stable session results are plotted for both
thresholds of 90% (13 sessions) and 85% (17 sessions). Grey lines give means and 95% confidence intervals.
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[-13.6,25.2]%). Again, we found these results were robust to using the Hellinger distance (S3 Fig) and to using 252

smaller activity patterns (S4 Fig). Thus, joint population activity during stable behaviour was consistent 253

with the predicted lack of change to the internal model in mPfC. 254

Ruling out other causes of convergence 255

It seems remarkable that the sampling of temporally precise population activity patterns in prefrontal cortex 256

could systematically change during learning. While these changes are consistent with our theory, they could 257

also have a number of alternative explanations. Here we check three main alternatives: could they be 258

explained as a ”reverberation” of recent activity? By some form of selective replay of neural activity due to 259

reward? Or by the change in brain state between waking and sleeping? 260

Convergence is not a recency effect 261

We examined periods of slow-wave sleep in order to most likely observe the sampling of a putative internal 262

model in a static condition, with no external inputs and minimal learning. But as the post-learning trials 263

by definition occur towards the end of a learning session, this raises the possibility that the closer match 264

between training and post-training sleep distributions is a recency effect, due to some trace or reverberation 265

in sleep of the most recent task activity. 266

There are two bits of evidence against this explanation. First, the time-scales involved make this unlikely. 267

Bouts of slow-wave sleep did not start until typically 8 minutes after the end of the task (mean 397 s, S.D. 268

188 s; Fig. 1B). Any reverberation would thus have to last at least that long to appear in the majority of 269

post-training slow-wave sleep distributions. 270

Second, we find no evidence of convergence between the activity in training and the intervening period 271

before the first bout of slow-wave sleep. This “rest” epoch contains quiet wakefulness and early sleep stages. 272

If convergence was just a recency effect, then we would expect that distributions [P (Rest)] of activity patterns 273

in this more-immediate “rest” epoch would also converge with the post-learning distributions. We did 274

not find this: across sessions, there was no evidence that the distribution in post-training rest [P (Rest)] 275

consistently converged with the post-learning distribution [P (Learn)] (Fig. 9; mean convergence: -4.6%, 95% 276

CI: [-24.6,33.8]%). Thus the observed convergence is inconsistent with a recency effect. 277

Convergence is not a consequence of long runs of reward 278

A notable property of the learning sessions is that they contain long runs of successful trials. One alternative 279

explanation for the convergence is that the post-training sleep replays activity that correlated with successful 280

outcomes. If it did then the post-training sleep activity would be closer to the post-learning activity in the 281

training epoch as this was when most of the successful outcomes occurred. 282

To answer test this explanation for convergence, we made use of the 8 sessions in which the rats experienced 283

a rule change. As rule changes occurred only after 10 consecutive correct trials [15], these sessions contain 284

long, sequential runs of rewards at the start, rather than the end, of the session. Consequently, if the 285

post-training sleep is preferentially replaying activity that correlated with successful outcomes, then the 286

activity pattern distributions of pre-change correct trials [P (C)] and of post-task sleep [P (Post)] should also 287

converge: D(Pre|C) > D(Post|C). However, we found no convergence (mean: 4.4%, 95% CI: [-16.2,25.1]%); 288

Fig. 9). For the effect sizes observed for the learning sessions, there was sufficient power to recover the same 289

effect size at α = 0.05 with N = 8 sessions (KLD: learning session effect size d = 0.96, rule-change session 290

power = 0.7; Hellinger: d = 2.36, power ≈ 1), which argues against low power causing the lack of convergence 291

for the rule-change sessions. 292

Convergence is a consequence of changes to correlations, not just firing rates 293

Our convergence of distributions was measured across a change in brain state between waking and sleeping. 294

While within each state the occurrence of co-activation patterns exceeds chance by an order of magnitude 295

(Fig. 4C -E ), this still leaves open the possibility that the change in population firing rates between states 296

(Fig. 3) could artificially cause their activity pattern distributions to increase in similarity [20,27]. To control 297

for this, we used the “raster” model [20] to generate surrogate sets of spike-trains that matched both the mean 298
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Fig 9. Convergence is not a consequence of recency or rewards. (A) Distances between the distributions of
pattern frequencies in pre-training sleep and training epochs compared to the distances between post-training
rest and training epochs; one dot per learning session. R: rest epoch. L: post-learning trials. (B) Distances
between the distributions of pattern frequencies in pre-training sleep and pre-rule change epochs compared to
the distances between pre-training sleep and pre-rule change epochs. C: pre-rule change epoch. (C ) Results
from panels A-B expressed as convergence, and compared to the convergence of post-learning trials and
post-training sleep from panel C in Fig. 8. Grey lines give mean and 95% confidence intervals; P -values from
1-tailed Wilcoxon signrank test, with N=10 (Rest) and N = 8 (rule-change) sessions).

firing rates of each neuron, and the distribution of total population activity in each time-bin (K = 0, 1, . . . , N 299

spikes per bin). Consequently, the occurrence rates of particular activity patterns in the raster model are 300

those predicted to arise from neuron and population firing rates alone. 301

We fitted the raster model to the post-training sleep neuron and population firing rates. If the change in 302

population firing rate during SWS caused the convergence, then the raster model should exactly capture the 303

statistics of the SWS firing. This would predict that the distribution of activity patterns in the model and in 304

the data are approximately equivalent D(Model|Data) ≈ 0; and, consequently, that the convergence would 305

be explained if D(Post|Learn) ≈ D(Post−model|Learn). We found that the distance between data and 306

model-derived distributions in post-training sleep was always greater than baseline (Fig. 10A). Thus rate 307

changes alone cannot account for the convergence between the training and post-training sleep distributions. 308

Our activity patterns were built from single units, unlike previous work using multi-unit activity [16,20, 309

21, 23, 28], so we expected our patterns to be sparse with rare synchronous activity. Indeed our data are 310

dominated by activity patterns with no spikes or one spike (Fig. 4B -E ; we breakdown the distributions at 2 311

ms in S6 Fig). If all patterns had only no spikes or one spike, then the raster model spike trains would be 312

exactly equivalent to the data. Given the relative sparsity (∼ 1%) of co-activation patterns in our data, it is 313

all the more surprising then that we found such a consistent difference between the model and data-derived 314

distributions. 315

It follows that the true difference between data and model is in the relative occurrence of co-activation 316

patterns. To check this, we applied the same analysis to distributions built only from these co-activation 317

patterns, drawn from data and from the raster model fitted to the complete data. With the co-activation 318

patterns, we found that the distance between data and model-derived distributions in post-training sleep was 319

always greater than baseline (Fig. 10B). Consequently, we found that the data-derived distance D(Post|Learn) 320

was always smaller than the distance D(Post −model|Learn) predicted by the raster model (Fig. 10C ). 321

These results indicate that much of the convergence between training and post-training sleep distributions 322

could not be accounted for by firing rates alone; rather, the convergence is due to the selective changes of 323

specific co-activation patterns. 324
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Fig 10. Convergence is caused by changes in correlation, not population firing rate. (A) Distances between
model and data distributions for post-training sleep epochs (y-axis) for every learning session, compared to a
per-session estimate of baseline differences (x-axis), obtained by bootstrap sampling of patterns within the
post-training sleep epoch. Error bars give the mean and 95% confidence intervals on the bootstrapped
within-epoch distance D(Post|Post∗) [x-axis], and the 100 repeats of the raster model (y-axis). (B) As in A,
using only activity patterns with K ≥ 2 spikes from data and model. (C ) The distance between the task and
post-task sleep distributions D(Post|Learn) is always smaller than predicted by population firing rate
changes during sleep alone D(Model|Learn), as given by the raster model. Error bars give the mean and
95% confidence intervals over the 100 repeats of the raster model, too small to see on this scale. Inset: plot
of the difference between model mean and the data for each session: D(Model|Learn) - D(Post|Learn)

Discussion 325

We have found converging evidence that mPfC contains a probabilistic internal model of behaviour. Our 326

evidence rests on the hypothesis that neural populations represent probability distributions as samples, 327

encoded by the moment-to-moment patterns of joint activity. Such precise patterns appeared far above those 328

predicted by rates alone across sleeping and waking. Select patterns changed their frequency of occurrence in 329

sleep epochs that occurred either side of behavioural learning. This select sub-set predicted trial outcomes, and 330

appeared at the maze’s decision-point. And their change correlated with learning, such that the distribution 331

of patterns converged between sleep and post-learning trials. Our results thus match the predictions for how 332

learning by reinforcement should update a probabilistic internal model. Consequently, they are evidence that 333

mPfC population activity encodes an internal model of a task, and that this model is updated by learning. 334

Prefrontal cortex has been implicated in both planning and working memory during spatial navigation 335

[29–32], and executive control in general [33,34]. Our results suggests a probabilistic basis for these functions. 336

In particular, prefrontal cortex has been implicated in both the representation of current goals [35,36] and 337

strategies [37]. Both these functions are consistent with an internal model that relates sensory information to 338

the statistical structure of the world, and the use of that model to plan behaviour. 339

Further probing the hypothesis of internal models in mPfC 340

Our theoretical account makes further testable predictions that should reveal the extent to which it is useful. 341

The simplest and strongest prediction is that the probability distribution within a training epoch should 342

become more similar between consecutive sessions as the task is learnt (The SI Text demonstrates these 343

predictions in the probabilistic reinforcement learning model). Testing this prediction would require tracking 344

an identical population of neurons across multiple days of behavioural training. Confidently isolating an 345

identical group of neurons is just out of reach of current electrophysiological tools; but new technological 346

advances, such as ultra-high density probes [38], could make this prediction testable soon. 347

Another prediction that requires identical populations is that the distance between sleep distributions 348

in stable sessions should be smaller than the corresponding distance in learning sessions (Fig. 2F). This 349

would directly test the hypothesis that sleep samples from the prior distribution generated from the internal 350

model: as the internal model should not markedly change once the correct behaviour is acquired. We cannot 351

currently test this prediction, as again we would need the same set of neurons tracked across multiple days 352

of behavioural training. Indeed, the measured distances between distributions change as a function of the 353

number of neurons even when the neurons are taken from a single recording (S7 Fig), let alone between 354

different sets of neurons in consecutive sessions - we await the advent of stable electrophysiological recordings 355
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across multiple days. 356

Testing this stable-session prediction would also require a set of sessions in which the stable strategy was 357

also the correct strategy. Only then could one be confident that the stable behaviour should correspond to a 358

stable internal model, as the model and feedback match. Obtaining a match of stable behaviour and rule 359

would mean adjusting the task to leave the animals at asymptotic behaviour for multiple sessions, before 360

changing the rewarded rule. 361

What we may still learn if we are wrong 362

We are not unaware that there is an extensive theoretical apparatus underpinning the predictions we test 363

here. But this seems inevitable if systems neuroscience is to move towards an hypothesis-driven era, simply 364

due to the need to simultaneously account for behaviour, corresponding neural activity, and their coincident 365

(or not) changes upon learning. Compounding this complexity is the requirement that a testable theory 366

must posit a computational problem, an algorithm, and its neural implementation. Here we examine the 367

implications of those requirements, and what we may still learn from these results if the specific choices are 368

wrong in detail, but right in substance, or wrong in toto. 369

At the most abstract level, our hypothesis is that the mPfC encodes probabilistic internal models of 370

the world, that are updated by reinforcement. Our specific simulated model used abstract representations 371

of strategies as an illustration of probabilistic coding, but our hypotheses do not rest on knowing the 372

specific representations of behaviour in mPfC; they only require that the internal model is represented using 373

probabilities. The immediate prediction is that the encoded probability distributions will stabilise upon 374

successfully learning the relevant internal model. There are other theoretical ways in which neural populations 375

can encode probability distributions [2, 6, 39]. But few are amenable to direct testing by experiment without 376

numerous additional assumptions. Consequently, our hypothesis of internal models may still be true, even if 377

our specific implementation hypothesis is false. 378

But this is not very satisfactory. By choosing the specific sampling implementation for the probability 379

distributions, we have made our internal model hypothesis falsifiable in principle. Indeed, we have shown 380

here that population activity in other sets of sessions do not show the changes predicted by our model for 381

learning sessions (Figs. 8, 9), nor did the same learning sessions systematically converge for periods of awake, 382

resting activity (Fig. 9). Our data could thus falsify the sampling hypothesis. 383

We chose the sampling hypothesis for two reasons. First, there are good models for how a generic cortical 384

circuit can sample from an underlying probability distribution [7,17], making it a candidate computational 385

principle for cortex. Second, because the sampling hypothesis makes it easy to check for changes to the 386

hypothesised sampled probability distributions, by computing the distances between distributions of population 387

joint activity patterns. But with these strengths comes the technical issue that the theoretically best distance 388

estimator - the Kullback-Liebler divergence - is also the most difficult to measure accurately with finite 389

samples. To counteract this, we have extensively checked its behaviour (see also S7 Fig), and re-checked our 390

key results with a different, non-parametric distance measure. 391

Even if the general hypothesis of probabilistic internal models in prefrontal cortex turns out to be wrong, 392

our data provide constraints on the dynamics of cortex. Studies of prefrontal cortex coding generally assume 393

that information is conveyed by firing rates [31,32,40,41] or rate correlations [29,42,43]. By contrast, here 394

we show evidence of ensemble coding at highly precise time scales, of both outcome and position dependence. 395

We found it remarkable that we could extract anything of interest at this resolution, and checked these 396

results extensively, including the use of large-repeat permutation tests. Previously, such fine-scale structure 397

of stimulus-evoked population activity patterns has only been observed in the retina and V1 during passive 398

observation [16,21,23,24]. We extend these results to show that such fine time-scale correlation structure can 399

be observed in cortical regions for executive control, and be evoked by tasks. 400

Previous studies have observed strong similarities between spontaneous and evoked firing rates [44–47] 401

or firing sequences [19] in cortex. These findings imply that the underlying cortical circuit has similarly 402

constrained dynamics in both spontaneous and evoked states [48]. Extending these results, we found a highly 403

similar set of precisely-timed activity patterns across sleeping and task performance, which suggests that 404

cortical population activity is underpinned by similar dynamics in both states, and those dynamics can 405

reproduce patterns with high temporal precision. Maass and colleagues [7, 17] have shown that a range of 406

cortical network models can produce specific distributions of such precise activity patterns, provided they have 407

PLOS 15/24

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2017. ; https://doi.org/10.1101/027102doi: bioRxiv preprint 

https://doi.org/10.1101/027102
http://creativecommons.org/licenses/by-nc/4.0/


a source of noise (such as synaptic release failure) to produce stochastic wandering of the global activity level. 408

Our data support these models, and suggest that global activity oscillations during slow-wave sleep [49,50] 409

do not prevent the stochastic sampling of activity patterns, providing a target for future modelling studies. 410

Replay and resampling 411

Our proposal that the spontaneous activity of sleep is sampling from an internal model suggests an alternative 412

interpretation of “replay” phenomena [15,18]. Replay of neural activity during waking in a subsequent episode 413

of sleep has been inferred by searching for matches of patterns of awake activity in sleep activity. The better 414

match of waking activity with subsequent sleep than preceding sleep has been taken as evidence that replay 415

is encoding recent experience, perhaps to enable memory consolidation. However, our observation that the 416

distributions of patterns in stable sessions’ trials are not specifically sampled in post-training sleep (Fig. 8) is 417

incompatible with the simple replay of experience-related activity in sleep. 418

By contrast, our proposal suggests that the similarity between waking and sleep activity is due to the 419

stabilisation of the internal model, not recent experience per se. The similarity of the patterns in waking 420

and subsequent sleep is then caused by sampling from a similar model, not by explicitly recalling patterns 421

that occurred in waking activity. Indeed, if our proposal is true, then it suggests there may be situations 422

where we observe “pre-play” of waking activity in preceding sleep activity. Our observation that sessions 423

with stable behaviour show no convergence of waking and post-training sleep distributions is compatible with 424

this: in those sessions, pre- and post-training sleep distributions were equidistant on average from the waking 425

distribution, and so potentially both pre-play and replay could be observed. Our theory is thus suggesting 426

that replay may be a signature of resampling. 427

Implications for the probabilistic brains hypothesis 428

How a cortical region encodes an internal model is an open question. A strong candidate, assumed by the 429

sampling hypothesis, is the relative strengths of the synaptic connections both into and within the encoding 430

cortical circuit [7,8,11,17]. The activity of a cortical circuit is strongly dependent on the pattern and strength 431

of the connections between its neurons [51,52]. Consequently, defining the underlying model as the circuit’s 432

synaptic network allows both model-based inference through synaptically-driven activity and model learning 433

through synaptic plasticity [11]. 434

While the hypothesis that brains compute using probabilities is widely-discussed, most evidence for it 435

has been from observations of behaviour that is consistent with probabilistic inference. Strong evidence for 436

probabilistic brains requires detecting the representation and use of probability distributions in circuit-level 437

neural activity [39]. We have presented here initial experimental evidence that neural populations represent 438

probabilistic internal models, and update those models through learning. Our results advance the case that 439

probabilistic internal models are a candidate general computational principle of cortex. 440

Materials and Methods 441

Task and electrophysiological recordings 442

Four Long-Evans male rats with implanted tetrodes in prelimbic cortex were trained on the Y-maze task (Fig. 443

1A). Each recording session consisted of a 20-30 minute sleep or rest epoch (pre-training epoch), in which the 444

rat remained undisturbed in a padded flowerpot placed on the central platform of the maze, followed by a 445

training epoch, in which the rat performed for 20-40 minutes, and then by a second 20-30 minute sleep or 446

rest epoch (post-training epoch); see (Fig. 1B). Every trial started when the rat reached the departure arm 447

and finished when the rat reached the end of one of the choice arms. Correct choice was rewarded with drops 448

of flavoured milk. Each rat had to learn the current rule by trial-and-error, either: go to the right arm; go to 449

the cued arm; go to the left arm; go to the uncued arm. To maintain consistent context across all sessions, 450

the extra-maze light cues were lit in a pseudo-random sequence across trials, whether they were relevant to 451

the rule or not. 452

The data analysed here were from a total set of 50 experimental sessions taken from the study of [15], 453

representing a set of training sessions from naive until either the final training session, or until choice became 454
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habitual (consistent selection of one arm that was not the correct arm). The four rats respectively had 13, 13, 455

10, and 14 sessions. From these we have used here ten learning sessions, eight rule change sessions, and up to 456

17 “stable” sessions (see below). 457

Tetrode recordings were spike-sorted only within each recording session for conservative identification of 458

stable single units. In the sessions we analyse here, the populations ranged in size from 15-55 units. Spikes 459

were recorded with a resolution of 0.1 ms. For full details on training, spike-sorting, and histology see [15]. 460

Session selection and strategy analysis 461

We primarily analysed here data from the ten sessions in which the previously-defined learning criteria were 462

met: the first trial of a block of at least three consecutive rewarded trials after which the performance until 463

the end of the session was above 80%. In later sessions the rats reached the criterion for changing the rule: 464

ten consecutive correct trials or one error out of 12 trials. Thus each rat learnt at least two rules, with eight 465

rule-change sessions in total. 466

We also sought sessions in which the rats made stable choices of strategy. For each session, we computed 467

the probability P (rule) that the rat chose each of the three rules (left, right, cued arm) per trial. Whereas 468

P (left) and P (right) are mutually exclusive, P (cued− arm) is not, and has an expected value of 0.5 when 469

it is not being explicitly chosen because of the random switching of the light cue. A session was deemed to be 470

“stable” if P (rule) > θ for one of the rules. Here we tested both θ = 0.9 and θ = 0.85, giving N = 13 and 471

N = 17 sessions respectively. These also respectively included 2 and 4 of the rule-change sessions. For the 472

time-series in Fig. 1D,E, we estimated P (rule) in 7-trial windows, starting from the first trial, and sliding by 473

one trial. 474

Probabilistic reinforcement learning model 475

To illustrate the expected behaviour of a probabilistic internal model during learning, we constructed a 476

Bayesian reinforcement learning model of the Y-maze task. We modelled the trial-by-trial behaviour as a 477

Bayesian multi-arm bandit problem [53], where the agent’s task on each trial was to chose which strategy to 478

adopt, based on a probabilistic estimate of the value of each strategy. We use this simplified representation 479

as a proxy for more complex models with probability distributions over the uncertain values of individual 480

actions and the transitions they cause between states in the maze, which collectively make a strategy. 481

Here we report results from modelling three strategies: go to the left arm; go to the right arm; and go to 482

the cued arm. For each strategy x, the agent maintained a posterior probability distribution over the value of 483

choosing that strategy Vx ∈ [0, 1], given by a Beta distribution P (Vx) with parameters (αx, βx). On each 484

trial t, the winning strategy was chosen using Thompson sampling: a random value ζx was sampled from 485

the probability distribution P (Vx) for each strategy, and the strategy s with the highest sampled value was 486

chosen. The corresponding action was then chosen: left, right, or cued arm (where, as per the experiment, 487

the cued arm was randomly chosen on each trial). There was a small probability η of a mistake in choosing 488

the corresponding action: if a mistake was made, then the opposite action was chosen (being the uncued arm 489

for the cued-arm strategy). We used η = 0.2 for the simulations reported here. This was implemented to 490

include noise into the decision process, providing a better replication of the rats’ behaviour (see SI Text). 491

Having taken the action, the agent received reward according to the current rule (left, right, or cued arm), 492

with R = 1 if the action corresponded to the rule, and R = 0 otherwise. The reward was then used to update 493

the probability distribution P (Vs) of the chosen strategy s. 494

The full Bayesian update of the posterior should be proportional to P (Vs|R = r) ∝ P (R = r|Vs)P (Vs), 495

where P (R = r|Vs) is the likelihood function for the outcome r given the probability distribution over the 496

strategy’s value, and P (Vs) is the prior distribution over that value. 497

In simulation, we make use of the standard result that, assuming a binomial likelihood function P (R = r|Vs) 498

because each trial is a Bernoulli trial, then the Beta distribution P (Vs) is the conjugate prior. Consequently, 499

Bayesian updating is obtained by just updating the parameters of P (R = r|Vs) by (α+ r, β + (1− r)) [53,54]. 500

Distributions P (Vx) for trial 1 was set to the uniform distribution (α = 1, β = 1). 501

To make comparisons with the behavioural data, we made proxy estimates of learning trials, and then 502

virtual “sessions” around those trials. For each simulation, the nominal “learning trial” was identified as the 503

trial in the cumulative reward curve corresponding to the greatest inflection in reward rate. To do this, we 504
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fitted a piecewise linear slope around each trial t, with one line fitted to eleven trials before and including t, 505

and one line fitted to eleven trials after and including t. The trial tl with the greatest increase in slope from 506

the before to the after line was selected as the “learning” trial. 507

A virtual session was given by the 14 trials before and after the chosen learning trial, giving a session 508

length of 29 trials. The trials corresponding to the beginning (tpre) and end (tpost) of this virtual session 509

were deemed the pre- and post-training “sleep” epochs for the model. 510

Activity pattern distributions 511

For a population of size N , we characterised population activity from time t to t+ δ as an N -length binary 512

vector with each element being 1 if at least one spike was fired by that neuron in that time-bin, and 0 513

otherwise. In the main text we predominantly use a bin size of δ = 2 ms; Fig. 8 shows the robustness of 514

the main results to the choice of bin size. We build patterns using the number of recorded neurons N , up 515

to a maximum of 35 for computational tractability. The probability distribution for these activity patterns 516

was compiled by counting the frequency of each pattern’s occurrence and normalising by the total number 517

of pattern occurrences. The number of neurons used in each analysis is listed in the SI Table; where we 518

needed to use less than the total number of recorded neurons, we ranked them according to their coefficient 519

of variation of their firing rate between the three epochs, and choose the M least variable; in practice this 520

sampled neurons from across the full range of firing rates. 521

To test the predicted proportion of co-activation patterns by independently firing neurons, we shuffled 522

inter-spike intervals for each neuron independently, then reconstruct the activity patterns at the chosen 523

bin size. This procedure keeps the same inter-spike interval distribution for each neuron, but disrupts any 524

correlation between neurons. As both the training and sleep epochs were broken up into chunks (of trials and 525

SWS bouts, respectively), we only shuffled inter-spike intervals within each chunk. We repeated the shuffling 526

20 times, and in Fig. 4C -E we plot for the shuffled data the means and error bars of ± 2 s.e.m. (too small to 527

see on the scales of the axes). 528

Comparing distributions 529

We quantified the distance D(P |Q) between probability distributions P and Q using both the Kullback-Liebler 530

divergence (KLD) and the Hellinger distance. 531

The KLD is an information theoretic measure to compare the similarity between two probability distri- 532

butions. Let P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn) be two discrete probability distributions, for n 533

distinct possibilities – for us, these are all possible individual activity patterns. The KLD is then defined as 534

DKLD(P |Q) =
∑n
i=1 pi log2(piqi ). We normalised this by unit time (2 ms bins except where noted) to obtain 535

the information rate in bits/s. 536

There are 2N distinct possible activity patterns in a recording with N neurons. Most of these activity 537

patterns are never observed, so for computational tractability we exclude the activity patterns that are not 538

observed in either of the epochs we compare. The empirical frequency of the remaining activity patterns 539

is biased due to the limited length of the recordings [26]. To counteract this bias, we use the Bayesian 540

estimator and quadratic bias correction exactly as described in [16]. The Berkes estimator assumes a 541

Dirichlet prior and multinomial likelihood to calculate the posterior estimate of the KLD; we use their code 542

(github.com/pberkes/neuro-kl) to compute the estimator. We then compute a KLD estimate using all S 543

activity patterns, and using S/2 and S/4 patterns randomly sampled without replacement. By fitting a 544

quadratic polynomial to these three KLD estimates, we can then use the intercept term of the quadratic 545

fit as an estimate of the KLD if we had access to recordings of infinite length [26,55]. This final estimate 546

varies according to the patterns sub-sampled in order to fit the quadratic; however, in our data the variation 547

introduced by the sub-sampling is negligible on the scale of the distances measured (S7 FigC). 548

We attempted here to characterise the population’s joint activity as fully as possible, by making use 549

of as many simultaneously recorded individual neurons as possible. We capped our activity patterns to a 550

maximum of N = 35 neurons; but this still means that, for some populations, a full estimation of KLD using 551

the above Bayesian estimator would mean enumerating all 235 patterns every time we computed a KLD 552

estimate. This is computationally intractable; moreover, in extensively checking the results and the raster 553

model (see below) we produced thousands of KLD calculations for each population. So we sought a practical 554

PLOS 18/24

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2017. ; https://doi.org/10.1101/027102doi: bioRxiv preprint 

https://doi.org/10.1101/027102
http://creativecommons.org/licenses/by-nc/4.0/


solution, and set P = 0 for all activity patterns that were not in both distributions being compared. Our 555

data shows only a tiny fraction of activity patterns that appear in one distribution and do not appear in 556

the other, so we expected the disagreement between KLD computed using the full enumeration of all 2N 557

patterns and using P = 0 to be small, and not to qualitatively affect results. We tested this explicitly for a 558

full enumeration using N = 15 for all learning-session populations, and found that setting P = 0 did not 559

qualitatively affect the results, nor showed a systematic bias in the distances measured by either approach 560

(S7 FigD). We note that this is not, in general, a safe assumption: we can only do this here because of the 561

very low proportion of unique patterns in each compared distribution. Moreover, we checked the main results 562

throughout with a different measure of inter-distribution distance - the Hellinger distance - that did not rely 563

on any bias-correcting estimators or priors. 564

The Hellinger distance for two discrete distributions P and Q is DH(P |Q) = 1
2

∑n
i=1(
√
pi −

√
qi)

2. To a 565

first approximation, this measures for each pair of probabilities (pi, qi) the distance between their square-roots. 566

In this form, DH(P |Q) = 0 means the distributions are identical, and DH(P |Q) = 1 means the distributions 567

are mutually singular: all positive probabilities in P are zero in Q, and vice-versa. The Hellinger distance is 568

a lower bound for the KLD: 2DH(P |Q) ≤ DKLD. We observed that, for our data, there was a consistently 569

strong correlation between the Hellinger distance and the KLD (S3 Fig), further suggesting that the issues in 570

estimating accurate KLD did not affect our main results. 571

To compare distances between sessions we computed a normalised measure of “convergence”. The 572

distance between a given pair of distributions could depend on many factors that differ between sessions, 573

including that each recorded population was a different size (S7 FigA,B), and how much of the relevant 574

population for encoding the internal model we recorded. Consequently, the key difference between the 575

distances D(Pre|X) − D(Post|X) also depends on these factors. To compare the difference in distances 576

across sessions, we computed a “convergence” score by normalising the difference by the scale of the maximum 577

distance between training and sleep epochs: [D(Pre|X)−D(Post|X)] /max{D(Post|X), D(Pre|X)}. We 578

express this as a percentage, giving a range of [−100, 100]%. Convergence greater than 0% indicates that the 579

distance between the training epoch P (X) and post-training sleep (P (Post)) distributions is smaller than 580

that between the training and pre-training sleep (P(Pre)) distributions. 581

Estimating equivalence between distributions with finite samples 582

Even if two underlying probability distributions are exactly the same, empirical measurements of samples 583

taken from them will not show exact equivalence [D(P |Q) = 0] due to finite sampling effects. We estimated 584

a baseline measure of equivalence for the activity distributions in the sleep epochs by bootstrapping the 585

activity patterns within each epoch. To do this, we drew two sets of patterns with replacement from the 586

set of empirically recorded patterns, and computed the distance between the two bootstrapped sets. This 587

emulates the finite-sampling problem within the empirical data. We also tested a more severe version where 588

the set of recorded activity patterns was split randomly in half and the distance computed between each half. 589

However, as this procedure is itself halving the number of patterns, it induces more variation by further finite 590

sampling; we plot these results in S1 Fig. 591

Outcome prediction 592

We examined the correlates of activity pattern occurrence with behaviour. To rule out pure firing rate effects, 593

we excluded all patterns with K = 0 and K = 1 spikes, considering only co-activation patterns K ≥ 2; that 594

is, those with two or more active neurons. 595

To check whether individual activity patterns coded for the outcome on each trial, we used standard 596

receiver-operating characteristic (ROC) analysis. For each pattern, we computed the distribution of its 597

occurrence frequencies separately for correct and error trials (as in the example of Fig. 6A). We then used 598

a threshold T to classify trials as error or correct based on whether the frequency on that trial exceeded 599

the threshold or not. We found the fraction of correctly classified correct trials (true positive rate) and the 600

fraction of error trials incorrectly classified as correct trials (false positive rate). Plotting the false positive 601

rates against the true positive rates for all values of T gives the ROC curve. The area under the ROC curve 602

gives the probability that a randomly chosen pattern frequency will be correctly classified as from a correct 603

trial; we report this as P (predict outcome). 604
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Relationship of sampling change and outcome prediction 605

Within each session, we computed the absolute change δi = |pi(pre)− pi(post)| in each pattern’s probability 606

of occurrence between pre- and post-training SWS. To combine data across sessions, for each session we 607

normalised all changes by the maximum change in that session: δ∗i = δi/maxi{δ}. Normalised change scores 608

were pooled over all learning sessions. Correlating these change scores against P (predict outcome) showed 609

that the better a pattern predicted trial outcome, the more it tended to change probability between pre- and 610

post-training SWS (S2 Fig). But as most patterns had little change and little prediction of outcome, this 611

correlation was skewed. 612

Consequently, to better characterise the distributions of change between pre- and post-session sleep, we 613

binned δ∗i using variable-width bins of P (predict outcome): each consecutive bin-width was chosen in order to 614

contain the same number of data-points in every bin. We computed the empirical cumulative distribution in 615

each bin, to visualise the distribution of changes in pattern probability between sleep epochs, and the change 616

in that distribution with P (predict outcome). To quantify this change, we regressed P (predict outcome) 617

against the median change in each bin; we used the mid-point of each variable-width bin as the value for 618

P (predict outcome). Our main claim is that prediction and change are dependent variables (Fig. 6C -G). 619

To test this claim, we compared the data correlation against the null model of independent variables, by 620

permuting the assignment of change scores to the activity patterns. For each permutation, we repeat the 621

binning and regression. We permuted 5000 times to get the sampling distribution of the correlation coefficient 622

R∗ predicted by the null model of independent variables. To check robustness, all analyses were repeated for 623

a range of fixed number of data-points per bin between 20 and 100. 624

Relationship of location and outcome prediction 625

The location of every occurrence of a co-activation pattern was expressed as a normalized position on the 626

linearised maze (0: start of departure arm; 1: end of the chosen goal arm). Our main claim is that activity 627

patterns strongly predictive of outcome occur predominantly around the choice point of the maze, and so 628

prediction and overlap of the choice area are dependent variables (Fig. 7B). To test this claim, we compared 629

this relationship against the null model of independent variables, by permuting the assignment of location 630

centre-of-mass (median and interquartile range) to the activity patterns. For each permutation, we compute 631

the proportion of patterns whose interquartile range overlaps the choice area, and bin as per the data. We 632

permuted 5000 times to get the sampling distribution of the proportions predicted by the null model of 633

independent variables: we plot the mean and 95% range of this sampling distribution as the grey region in 634

Fig. 7B. 635

Raster model 636

To control for the possibility that changes in activity pattern occurrence were due solely to changes in the 637

firing rates of individual neurons and the total population, we used the raster model exactly as described 638

in [20]. For a given data-set of spike-trains N and bin size δ, the raster model constructs a synthetic set 639

of spikes such that each synthetic spike-train has the same mean rate as its counterpart in the data, and 640

the distribution of the total number of spikes per time-bin matches the data. In this way, it predicts the 641

frequency of activity patterns that should occur given solely changes in individual and population rates. 642

For Fig. 10 we generated 1000 raster models per session using the spike-trains from the post-training 643

SWS in that session. For each generated raster model, we computed the distance D(Model|Data) between 644

the distribution of patterns for that model P (Model) and the corresponding data distribution P (Data) of 645

post-training SWS patterns. For each generated raster model, we then computed the distance between its 646

distribution of activity patterns and the data distribution for post-learning trials D(Post−model|Learn). 647

This comparison gives the expected distance between the training and post-training SWS distributions due 648

to firing rate changes alone. We plot the difference between the mean of D(Post−model|Learn) over the 649

1000 raster models and the data D(Post|Learn) in Fig. 10. 650
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Statistics 651

Quoted measurement values are mean x̄ and 95% confidence intervals for the mean [x̄−tα/2,nSE, x̄+tα/2,nSE], 652

where tα/2,n is the value from the t-distribution at α = 0.05 and given the number n of data-points used 653

to obtain x̄. All hypothesis tests used the non-parametric Wilcoxon signtest for a one-sample test that the 654

sample median for the population of sessions is greater than zero. We used this one-tailed test throughout 655

for the change in convergence, as the key prediction is that convergence is greater than 0% for the learning 656

sessions. For learning sessions, we have n = 10 sessions; for rule-changes (Fig. 9) we have n = 8 sessions. For 657

stable sessions we have n = 13 for θ = 0.9 and n = 17 for θ = 0.85. 658

Supporting Information 659

S1 Fig. Distribution changes between pre- and post-learning sleep tested against split data. 660

S2 Fig. Joint distribution of outcome prediction and change in sampling. 661

S3 Fig. Robustness of convergence between post-learning and post-training sleep distribu- 662

tions to the choice of distance measure. 663

S4 Fig. Robustness of convergence between post-learning and post-training sleep distribu- 664

tions to the number of neurons sampled per session. 665

S5 Fig. Robustness of learning-session convergence to the choice of bin size. 666

S6 Fig. Distributions of activity patterns at 2 ms bin size. 667

S7 Fig. Checking issues with the Kullback-Liebler divergence. 668

S1 Table. Numbers of neurons in each session and of activity patterns in each epoch. 669

S1 File. Behaviour and further predictions of the probabilistic reinforcement learning model. 670

Acknowledgments 671

We thank the Humphries lab (Javier Caballero, Mat Evans, Silvia Maggi) for discussions; Rasmus Petersen 672

for comments on the manuscript; and P. Berkes and M. Okun for respectively making their KL divergence 673

and raster model code publicly available. 674

References

1. Kording KP, Wolpert DM. Bayesian integration in sensorimotor learning. Nature. 2004;427:244–247.

2. Pouget A, Beck JM, Ma WJ, Latham PE. Probabilistic brains: knowns and unknowns. Nat Neurosci.
2013;16:1170–1178.

3. Wolpert DM, Ghahramani Z, Jordan MI. An internal model for sensorimotor integration. Science.
1995;269:1880–1882.

4. Dayan P, Abbot LF. Theoretical Neuroscience. anonymous, editor. Cambridge, MA: MIT Press; 2001.

5. Zemel RS, Dayan P, Pouget A. Probabilistic interpretation of population codes. Neural Comput.
1998;10:403–430.

PLOS 21/24

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2017. ; https://doi.org/10.1101/027102doi: bioRxiv preprint 

https://doi.org/10.1101/027102
http://creativecommons.org/licenses/by-nc/4.0/


6. Ma WJ, Beck JM, Latham PE, Pouget1 A. Bayesian inference with probabilistic population codes.
Nat Neurosci. 2006;9:1432–1438.

7. Buesing L, Bill J, Nessler B, Maass W. Neural dynamics as sampling: a model for stochastic computation
in recurrent networks of spiking neurons. PLoS Comput Biol. 2011;7:e1002211.

8. Kappel D, Habenschuss S, Legenstein R, Maass W. Network Plasticity as Bayesian Inference. PLoS
Comput Biol. 2015;11:e1004485.

9. Haefner RM, Berkes P, Fiser J. Perceptual Decision-Making as Probabilistic Inference by Neural
Sampling. Neuron. 2016;90:649–660.

10. Beck JM, Ma WJ, Kiani R, Hanks T, Churchland AK, Roitman J, et al. Probabilistic population
codes for Bayesian decision making. Neuron. 2008;60:1142–1152.

11. Fiser J, Berkes P, Orbán G, Lengyel M. Statistically optimal perception and learning: from behavior
to neural representations. Trends Cogn Sci. 2010;14:119–130.

12. Ragozzino ME, Detrick S, Kesner RP. Involvement of the prelimbic-infralimbic areas of the rodent
prefrontal cortex in behavioral flexibility for place and response learning. J Neurosci. 1999;19:4585–4594.

13. Rich EL, Shapiro ML. Prelimbic/infralimbic inactivation impairs memory for multiple task switches,
but not flexible selection of familiar tasks. J Neurosci. 2007;27:4747–4755.

14. Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y, Battaglia FP, et al. Coherent theta
oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning.
Neuron. 2010;66:921–936.

15. Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP. Replay of rule-learning related
neural patterns in the prefrontal cortex during sleep. Nat Neurosci. 2009;12:916–926.

16. Berkes P, Orbán G, Lengyel M, Fiser J. Spontaneous cortical activity reveals hallmarks of an optimal
internal model of the environment. Science. 2011;331:83–87.

17. Habenschuss S, Jonke Z, Maass W. Stochastic computations in cortical microcircuit models. PLoS
Comput Biol. 2013;9:e1003311.

18. Euston DR, Tatsuno M, McNaughton BL. Fast-forward playback of recent memory sequences in
prefrontal cortex during sleep. Science. 2007;318:1147–1150.
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Figure S1: Distributions of joint activity patterns change between pre- and post-
learning sleep. Distances between pre- and post-training sleep distributions (y-axis) for every
learning session, compared to a per-session estimate of baseline differences (x-axis). Here the
baseline difference was obtained by randomly dividing patterns within the pre-training sleep
epoch into two equal groups, and computing the distance D(Pre|Pre∗) between the two groups.
Note that this further reduces the number of sampled patterns used to calculate the two dis-
tributions, and so further increases the variance in estimating the Kullback-Liebler divergence.
All symbols lie above the diagonal. Error bars give the mean and its 95% confidence interval
over 100 repeats of randomly choosing the two groups to compute D(Pre|Pre∗); on this scale,
the bars are the size of the symbols. Identical results were obtained when using D(Post|Post∗).
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Figure S2: Joint distribution of outcome prediction and change in sampling. Here
we plot every co-activation pattern’s joint values of P (predict outcome) and the absolute nor-
malised change in sampling between pre- and post-training slow-wave sleep (N = 2353 patterns
with K ≥ 2 spikes per pattern across all 10 sessions). The linear regression in red indicates a
clear relationship between the two (R = 0.22, P < 10−27). Nonetheless, the majority of patterns
do not markedly change their sampling, nor are they predictive of outcome: 72% (1699/2353)
have P (predict outcome) ≤ 0.6 and a change of less than 10%. Thus fitting a linear regression
is not robust, as it is dominated by fitting to this majority that do not change. Rather, it is
clear that there is a distribution of change for each P (predict outcome), which we analyse in
the main text.
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Figure S3: Robustness of learning and stable session predictions to distance
measures. Here we re-test the main predictions from Figure 8 of the main text, using
the non-parametric Hellinger distance instead of the Kullback-Liebler divergence. All re-
sults are qualitatively the same. (A) Distances between the distributions of pattern fre-
quencies in sleep and training epochs; one dot per learning session. D(X|Y ): distance be-
tween pattern distributions in epochs X and Y : Pre: pre-training SWS; Post: post-training
SWS; L: post-learning trials. (B) Distances between the distributions of pattern frequen-
cies in sleep and training epochs in all stable sessions (here with at least 90% of trials
with the same choice). S: training trials. (C ) Scatter of convergence between post-training
sleep and post-learning trials across all learning and stable sessions (circles). Convergence
is [D(Pre|X)−D(Post|X)] /max{D(Post|X), D(Pre|X)}, expressed as a percentage. Stable
session results are plotted for both thresholds of 90% (13 sessions) and 85% (17 sessions). Grey
lines give means and 95% confidence intervals. All P-values are from a 1-tailed Wilcoxon sign-
rank test, with N=10 learning sessions. (D) The correlation between Hellinger distances and
corresponding Kulback-Liebler divergences (KLD) between the sleep and training epochs, pool-
ing the D(Pre|L) and D(Post|L) measurements (Hellinger distances from panel A; Kulback-
Liebler divergences from Figure 8, panel B). Spearman’s rank, N = 20; one outlier omitted
from the plot for clarity but included in the correlation. Note the KLD is not converted into
an information rate here, so that it can be directly compared to the Hellinger distance. (E )
The correlation between Hellinger distances and corresponding Kulback-Liebler divergences be-
tween the pre- and post-training sleep epochs, pooled over learning and stable sessions (for the
threshold of 85%). Spearman’s rank, N = 27.
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Figure S4: Robustness of learning and stable session predictions to number of neu-
rons. Here we re-test the main predictions from Figure 8 of the main text, using N = 15
neurons per session to increase the reliability of the Kulback-Liebler divergence. All re-
sults are qualitatively the same. (A) Distances between the distributions of pattern fre-
quencies in sleep and training epochs; one dot per learning session. D(X|Y ): distance be-
tween pattern distributions in epochs X and Y : Pre: pre-training SWS; Post: post-training
SWS; L: post-learning trials. (B) Distances between the distributions of pattern frequen-
cies in sleep and training epochs in all stable sessions (here with at least 90% of trials
with the same choice). S: training trials. (C ) Scatter of convergence between post-training
sleep and post-learning trials across all learning and stable sessions (circles). Convergence is
D(Pre|X)−D(Post|X)/max{D(Pre|X), D(Post|X)}, expressed as a percentage. Stable ses-
sion results are plotted for both the thresholds of 90% (13 sessions) and 85% (17 sessions).
Grey lines give mean and 95% confidence intervals. All P-values are from a 1-tailed Wilcoxon
signrank test, with N=10 learning sessions. (D) - (F ) As panels A-C, using Hellinger distance.
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Figure S5: Robustness of learning-session convergence to the choice of bin size.
The dependence of the learning session convergence of post-training sleep and post-learning
distributions on the bin size used for constructing the activity patterns. Convergence computed
using Kullback-Liebler divergence: D(Pre|X)−D(Post|X)/max{D(Pre|X), D(Post|X)}, ex-
pressed as a percentage. (A) Bin size dependence of convergence for the full population, up
to a maximum of 35 neurons per pattern. Circles are individual learning sessions (N = 10);
black lines give means and 95% confidence intervals. All P-values are from a 1-tailed Wilcoxon
signrank test. (B) As panel A, but using a maximum of 15 neurons per population.
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Figure S6: Distributions of synchronous spiking in all activity patterns at 2 ms
bin size. (A)-(C ) Distributions of the number of unique recorded activity patterns containing
exactly K spikes, for pre-task SWS (A), correct task trials (B), and post-task SWS (C ). Each
line is the distribution for one session. (D)-(F ) As A-C, plotted on a log-scale to visualise
the tails of the distributions. Co-activation patterns (K ≥ 2 synchronous spikes) form a small
proportion of all patterns.
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Figure S7: Checking issues in estimating distances between distributions. (A) The
Kullback-Liebler distance between sleep epochs D(Pre|Post) in the learning sessions, as a
function of the maximum number of neurons per pattern (15 or 35). When using a maximum of
35, 8/10 sessions used their full recorded population. (B) As A, for the Hellinger distance. (C )
Effects of variation in estimating the Kullback-Liebler distance. Here we plot the variation in the
convergence score for each of the learning sessions over 100 repeated calculations of the Kullback-
Liebler distance; symbols give mean distances; error bars plot two standard deviations - on this
scale, they are approximately the width of the symbols. (D) Comparison of the convergence
estimates for the learning sessions when using the full prior estimator of the unobserved portion
of the activity pattern probability distribution (y-axis), and when using our approximation (x-
axis). Here we use a maximum of 15 neurons per session, to allow tractable calculation of the
full estimator.
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1

S1 File: Behaviour and further predictions of the probabilis-
tic reinforcement learning model
Abhinav Singh, Adrien Peyrache and Mark D. Humphries

Here we first demonstrate the general principle that posterior distributions stabilise
over learning. We then discuss further predictions that arise from the Bayesian reinforce-
ment learning model, which are testable in principle in future experiments. Finally, we
further explore the behaviour of the Bayesian reinforcement learning model, to illustrate
insights into the rats’ behaviour on the Y-maze task.

Expected stabilisation of posterior distributions with learn-
ing

Estimating the probability distribution of some unknown value vt (of, for example, a state
or action) at time t, given all the rewards (r1, r2, . . . , rt) up to time t, can be computed
recursively using Bayes’ theorem:

P (vt|r1, r2, . . . , rt) ∝ P (rt|vt)P (vt|r1, r2, . . . , rt−1), (1)

where the posterior distribution P (vt|r1, r2, . . . , rt−1) for step t − 1 becomes the prior
distribution for step t. In general, given that r is stationary and given sufficient t, then the
difference between the posterior and the prior δ = P (vt|r1, r2, . . . , rt)−P (vt|r1, r2, . . . , rt−1)
will become arbitrarily small. In other words, the posterior distribution will stabilise in
any recursive Bayesian estimation.

We show now that this stabilisation of distributions is predicted to happen once our
Bayesian reinforcement learning model has learnt the current rule. Once learnt, the agent
will experience a long run of sustained rewards, with two consequences:

1. For the Beta distribution Px(v) modelling the correct strategy x this will mean a
continuously increasing αx, with βx approximately fixed. As a result, we expect
αx � βx

2. The other Beta distributions, modelling the incorrect strategies, will be rarely up-
dated (as they are only updated when selected). These distributions will thus be
approximately stable.

So we can see the explicit stabilisation of Px(v) by calculating its change in mean and
variance as a function of the number of rewards α. The mean of Px(v) is:

E(v) =
α

α+ β
, (2)

so the change in mean with increasing accumulated rewards is:

dE(v)

dα
=

β

(α+ β)2
. (3)

It is easy to see that as α� β, so dE(v)→ 0 (Fig. P1A-B).
The variance of Px(v) is

V ar(v) =
αβ

(α+ β)2(α+ β + 1)
, (4)
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Figure P1: Stabilisation of probability distributions with reward. Here we illustrate the
changes over cumulative reward in the scale and shape of the probability distribution Px(v) over the
expected value of option x. All have β = 5. (A) Mean of P (v) as a function of accumulated rewards.
This shows how a linear increase in α - by the increase in rewards - gives an asymptotically stable
estimate of the mean E(v). (B) Change in mean of P (v) as a function of accumulated rewards.
(C ) Variance of P (v) as a function of accumulated rewards. (D) Change in variance of P (v).

so the change in variance with increasing accumulated rewards is:

dV ar(v)

dα
=
β(−2α2 − α(β + 1) + β(β + 1))

(α+ β)3(α+ β + 1)2
(5)

Thus as α� β, so dV ar(v) ≈ (−2α2 − α)/α5; given the dominance of raising to the fifth
power in the denominator, this also ensures dV ar(v)→ 0 (Fig. P1C-D).

Further testable predictions of the Bayesian reinforcement
learning model

Here we illustrate the two further predictions of the model, outlined in the Discussion.
Testing these predictions requires future experiments.

The strongest prediction is that the probability distribution within a training epoch
should become more similar between consecutive sessions as the task is learnt. Figure
P2B shows how the distribution P (v) for the correct strategy changes from session to
session, becoming increasingly similar. If the joint activity of the population encodes this
distribution, then the activity distributions should also become increasingly similar. An
analytical challenge here is to estimate the distributions given data from all trials within
a session.

Another, perhaps more experimentally amenable, prediction is that the distance be-
tween sleep distributions in stable sessions should be smaller than the corresponding dis-
tance in learning sessions. Figure P2C shows how the distribution P (v) for the correct
strategy changes between hypothetical pre- and post-training sleep, such that the differ-
ence between the two sleep epochs becomes negligible in later sessions of stable behaviour.
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Figure P2: Further predictions of the Bayesian reinforcement learning model. Here
we illustrate further predictions of a probabilistic internal model, amenable to testing in future
experiments. (A) Cumulative reward curve for an agent learning the rule “go left”. The curve is
divided into arbitrary behavioural sessions (solid lines and colour shading); dashed lines indicate
the mid-points of the behavioural sessions. (B) Mid-session distributions of P (v) for the strategy
“go left”. Over learning, the within-session estimate of the P (v) distribution is predicted to
stabilise, and so becoming more similar between sessions. (C ) Start (grey) and end (orange)
session distributions of P (v) for the strategy “go left”, as a proxy for the distributions accessible
in sleep before and after training. Over learning, the distributions in sleep should converge.

As noted in the Discussion, testing this prediction would require tracking an identical
population of neurons across multiple days of behavioural training. In addition, both pre-
dictions would benefit from a different task design where the rule is not changed as soon as
the animal has reached asymptotic performance. If instead the animal is left at asymptote
for multiple behavioural sessions then reliable estimates of the activity distributions can
be computed, and compared between sessions to test the hypothesised convergence to sta-
bility. One caveat with this approach is the increased risk of inducing habitual behaviour
in the animals, making learning future rules more difficult.

Further behaviour of the Bayesian reinforcement learning
model

Decoupling of strategy and action choice

Our Bayesian reinforcement learning model includes a noise term that selects the action
(choosing the left or right arm) opposite to the chosen strategy with some small probability
η. Without this term (i.e. η = 0), a noiseless agent learns rapidly, uniformly, and near-
perfectly (Fig. P3A-B), in stark contrast to the observed rat behaviour.

The noise term thus simulates two things. First, a multi-armed bandit model cannot
capture the complexity of learning the full task, so the missing complexity, and consequent
“mistakes” from the perspective of the experimenter, are simulated by the noise term.
Second, even if the hypothesised prefrontal cortex internal model was somehow learnt
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Figure P3: Further behaviour of the Bayesian reinforcement learning model. (A)
Cumulative reward curve for a noiseless agent learning the rule “go left”. (B) Corresponding
changes to the probability distributions P (v), over the value of each strategy. (C ) Cumulative
reward curve for an agent experiencing a rule change, from “go left” to “go to the cued arm”.
The curve plateaus after the rule change (red line), as the current strategy is incorrect. (D)
Corresponding changes to the probability distributions P (v) for the left and cued-arm strategies.
Note that the new true value of the “go left” is not learnt, slowing the switch to the new strategy
compared to initial learning. (E ) Trial-by-trial strategy selection. Successful learning of the
initially correct “go left” rule is evident by the dominance of selecting “go left” after about trial 27;
similarly, successful learning of the new “cued arm” rule is evident by the emergence of selecting
the “cued arm” strategy after about trial 175. Note though the persistence of selecting the wrong
strategy (“go left”) for many trials after the rule change.

perfectly, other neural systems also control behaviour [1–3]. Consequently, selection of an
action need pay no heed to this particular system; from the perspective of any one action
selection system, “noise” is inevitable.

There are interesting avenues here for further exploration. Our set-up of the Bayesian
multi-armed bandit model treats the strategies as independent; consequently the chosen
strategy only is updated, and the noise term means it can be updated by the wrong action,
even if the strategy is correct. An alternative approach would be to treat the strategy
selection as a sequential decision-making problem, with all strategies updated by whether
there is evidence for them or not; in a Bayesian framework, this would require something
like the multi-sequential probability ratio test [4–6]. Such an approach would not though
change the basic prediction that the probability distributions stabilise over learning.

Learning a new rule

Our Bayesian reinforcement learning model also throws some light on what happens to
the rat’s behaviour after the rule has changed. Figure P3C shows that, as expected,
the performance of the agent declines after the rule is changed: reward is obtained more
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slowly until the new, correct strategy is acquired. The Bayesian model predicts that this
acquisition of a new rule can take considerably longer than the acquisition of the first rule
from a naive state. This is because the stable probability distribution originally acquired
- P (v) for “go left” in this example - can only change slowly with new evidence against it:
the absence of a reward on each trial increments β for the Beta distribution, but as α� β,
so the mean changes very slowly (Eq. 2). Consequently it takes many more trials for the
probability distribution over the expected value of the new, correct strategy to dominate
(Fig. P3D).

This slow change means that the simulated agent shows stable selection of the previous,
now wrong, strategy for many trials after the rule-change (Fig. P3D). We saw exactly
this behaviour in the rat: 4 of the 8 rule change sessions showed the selection of the
wrong, previous strategy for more than 85% of trials. The model explains this behaviour
as the dominance of the prior strategy. That this dominance did not occur in all rule-
change sessions suggests that the probability distributions for the pre-change rule were at
different levels of stability. Thus it is not straightforward to make predictions for how the
probability distributions should behave during the rule-change sessions.
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Neurons Pre-training SWS Post-learning trials Post-training SWS Rest

23 281001 57419 193500 315508
20 65007 49029 165519 350335
20 270012 34910 99488 282512
35 240992 20417 461972 92504
35 558510 43682 322499 131011
31 362007 26713 330485 206006
23 351996 50058 414982 205510
12 433009 29612 266493 204506
25 388006 50995 568512 105997
27 371013 64785 453993 90008

Table S1: Learning sessions: neurons and patterns. The Neurons column give the number of
neurons used from each of the ten learning sessions to build the activity patterns; eight used all
recorded neurons, two were capped at 35. The other columns give the total number of activity
patterns in each epoch.

Neurons Pre-training SWS All trials Post-training SWS

21 433009 42006 266493
19 377028 70435 468512
35 262999 76452 262511
35 341040 40062 250509
35 166511 70159 389510
35 104998 66319 16998
35 286491 66880 260521
35 109992 46539 209005
21 127997 71266 302997
19 346530 449624 448510
22 238523 30048 139999
17 521982 66071 330505
29 154498 144571 214992
12 107994 111723 204010
19 441977 108721 168996
21 90498 86011 112500
22 99508 97662 81003

Table S2: Stable sessions: neurons and patterns. The Neurons column give the number of
neurons used from each of the 17 stable sessions (using the threshold of 85%) to build the
activity patterns; nine used all recorded neurons, six were capped at 35. The other columns
give the total number of activity patterns in each epoch.
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Neurons Pre-training SWS Pre-rule change trials Post-training SWS

19 273998 11163 170015
17 307511 49901 155486
23 261520 46241 203479
35 262999 18058 262511
35 166511 22933 389510
23 345519 43629 365490
29 154498 59996 214992
12 107994 26773 204010

Table S3: Rule-change sessions: neurons and patterns. The Neurons column give the number
of neurons used from each of the eight rule-change sessions to build the activity patterns; six
used all recorded neurons, two were capped at 35. The other columns give the total number of
activity patterns in each epoch.
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