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Abstract

The inherent uncertainty of the world suggests that optimally-performing brains should use probabilistic
internal models to represent it. This idea has provided a powerful explanation for a range of behavioural
phenomena. But describing behaviour in probabilistic terms is not strong evidence that the brain itself
explicitly uses probabilistic models. We sought to test whether neurons represent such models in higher
cortical regions, learn them, and use them in behaviour. Using a sampling framework, we predicted that
trial-evoked and sleeping population activity represent the inferred and expected probabilities generated from
an internal model of a behavioural task, and would become more similar as the task was learnt. To test these
predictions, we analysed population activity from rodent prefrontal cortex before, during, and after sessions
of learning rules on a Y-maze. We found that population activity patterns occurred far in excess of chance
on millisecond time-scales. During successful learning, distributions of these activity patterns increased in
similarity between trials and post-learning sleep as predicted. Learning-induced changes were greatest for
patterns expressed at the maze’s choice point and predicting correct choice of maze arm to obtain reward,
consistent with an updated internal model of the task. Our results suggest sample-based internal models are
a general computational principle of cortex.

Author Summary

The cerebral cortex contains billions of neurons. The activity of one neuron is lost in this morass, so it is
thought that the co-ordinated activity of groups of neurons – “neural ensembles” – are the basic element of
cortical computation, underpinning sensation, cognition, and action. But what do these ensembles represent?
Here we show that ensemble activity in rodent prefrontal cortex represents samples from an internal model of
the world - a probability distribution that the world is in a specific state. We find that this internal model is
updated during learning about changes to the world, and is sampled during sleep. These results suggest that
probability-based computation is a generic principle of cortex.

Introduction 1

How do we know what state the world is in? Behavioural evidence suggests brains solve this problem using 2

probabilistic reasoning [1, 2]. Such reasoning implies that brains represent and learn internal models for the 3

statistical structure of the external world [1,3,4]. With these models, neurons could represent uncertainty 4

about the world with probability distributions, and update those distributions with new knowledge using 5

the rules of probabilistic inference. Theoretical work has elucidated potential mechanisms for how cortical 6

populations represent and compute with probabilities [5–9], and shown how computational models of inference 7

predict aspects of cortical activity in sensory and decision-making tasks [2, 9, 10]. But experimental evidence 8

that neurons represent probabilistic internal models is lacking. And it is unknown if internal models are 9

specific to sensorimotor control [2, 3, 9, 11] or are a general computational principle of cortex. 10
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Fig 1. Experimental protocol and theoretical predictions. (A) Y-maze task set-up (top); each session
included the epochs of pre-task sleep/rest, task trials, and post-task sleep/rest (bottom) - Fig. 7A gives a
breakdown per session. One of three target rules for obtaining reward was enforced throughout a session: go
right; go left; go to the randomly-lit arm. (B) Schematic of theory. If prefrontal cortex encodes an internal
model of the task, then activity during the task is derived from the internal model plus the relevant external
inputs: the distribution of activity is thus the posterior distribution over the encoded task variables. During
sleep, the distribution of activity is derived entirely from the internal model, and thus is the prior
distribution over the encoded task variables. Updates to the internal model by task learning (creating
Model∗) will then change the prior distribution encoded during sleep (to Prior∗). The theoretical prediction
is then that the activity distribution in post-task sleep, derived from the model of the correct rule, will be
closer to the distribution on the correct trials, compared to the pre-task sleep.

A natural candidate to address these issues is the medial prefrontal cortex (mPFC). Medial PFC is 11

necessary for learning new rules or strategies [12,13], and changes in mPFC neuron firing times correlates 12

with successful rule learning [14], suggesting that mPFC coding of task-related variables changes over learning. 13

We thus hypothesised that mPFC encodes an internal model of a task, which is updated by task performance, 14

and from which population activity is generated. 15

To test these hypotheses, we analysed population activity from the mPFC of rats learning rules in a 16

Y-maze [15]. We show here that moment-to-moment patterns of spiking activity in mPFC populations are 17

highly similar between sleeping and behavior, but the rate of occurrence of individual patterns changes during 18

learning. Consequently, activity patterns in sleep and in trials with correct performance converge. Patterns 19

that change their occurrence rate are predictive of task performance, consistent with their being samples 20

from an internal model [11]. These findings suggest mPFC represents and updates a sample-based internal 21

model of the maze rules. 22

Results 23

Rats with implanted tetrodes learnt one of three rules on a Y-maze: go left, go right, or go to the randomly-lit 24

arm (Fig. 1A). Each recording session was a single day containing 3 epochs totalling typically 1.5 hours: 25

pre-task sleep/rest, behavioural testing on the task, and post-task sleep/rest. We focussed on ten sessions 26

where the animal reached the learning criteria for a rule mid-session (Materials and Methods; 15-55 neurons 27

per session). In this way, we sought to isolate changes in population activity solely due to rule-learning. 28

Theoretical predictions 29

An experimentally-accessible proposal for testing the hypothesis of neural internal models is the recent 30

inference-by-sampling hypothesis [7, 11, 16, 17]. This proposes that cortical population activity at some 31

time t is a sample from an underlying probability distribution. Cortical activity evoked by external stimuli 32

represents sampling from the model-generated “posterior” distribution that the world is in a particular state. 33

Spontaneous cortical activity represents sampling of the model in the absence of external stimuli, forming 34

a model-generated “prior” for the expected properties of the world. A key prediction is that the evoked 35

and spontaneous population activity should converge over repeated experience, as the internal model adapts 36

to match the relevant statistics of the external world. Just such a convergence has been observed in small 37
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populations from ferret V1 over development [16]. Unknown is whether this framework generalises to higher 38

cortices and learning. 39

We derived theoretical predictions for changes in mPFC population activity from the inference-by-sampling 40

hypothesis (schematically illustrated in Fig. 1B ; see S1 File for an extended account). We sought to test the 41

idea that the mPFC contains at least one internal model related to task performance, such as representing 42

the relevant decision-variable (here, left or right) or the rule-dependent outcomes. Learning of the task should 43

therefore update the internal model based on feedback from each trial’s outcome. We theorised that mPFC 44

population activity on each trial was sampling from the posterior distribution generated from this model; 45

and that “spontaneous” activity in slow-wave sleep (SWS), occurring in the absence of task-related stimuli 46

and behaviour, samples the corresponding prior distribution (Fig. 1B). Consequently, updating the internal 47

model from task feedback should be reflected in changes to the posterior and prior distributions generated 48

from that model. 49

By restricting our analyses to sessions with successful learning, we expected the post-task SWS activity to 50

be sampling from an internal model that has learnt the correct rule. To compare posterior distribution samples 51

from the same internal model, we considered population activity during correct trials after the learning 52

criteria were met – we call this distribution P (R). Our main prediction was thus that the distribution P (R) 53

of activity during the correct trials would be more similar to the distribution in post-task SWS [P (Post)] 54

than in pre-task SWS [P (Pre)]. Such a convergence of distributions would be evidence that a task-related 55

internal model in mPFC was updated by feedback. 56

Millisecond precision spike correlation patterns in mPFC 57

Following previous work [7,16–18], we defined the samples as population-wide activity patterns on millisecond 58

time-scales. Activity patterns were characterised as a binary vector (or “word”) of active and inactive 59

neurons within some small time window (Fig. 2A). Statistical structure at millisecond time-scales has 60

been characterised for populations in the retina [18–21] and primary visual cortex [16, 22], but not for 61

higher-order cortices. We thus first demonstrate that mPFC activity patterns on millisecond time-scales 62

contain above-chance statistical structure. 63

We were primarily interested in co-activation patterns of more than one neuron firing together, as the 64

relative occurrence of patterns with single neurons (a single “1”) represents firing rates. We thus first 65

determined the time-scales at which co-activation patterns appear. Figure 2B shows that at low millisecond 66

time-scales, the proportion of activity patterns containing co-active neurons increases by an order of magnitude 67

when doubling the binsize. The smallest binsize with a non-negligible proportion of co-activation patterns 68

was 2 ms, with ∼ 1% (89731/7452300) of all patterns. This was also true for each epoch considered separately 69

(Fig. 2C -E ). We thus used a 2 ms binsize throughout, as this was the smallest time-scale with consistent 70

co-activation patterns. 71

Such co-activation patterns could be due to persistent, precise correlations between spike-times in different 72

neurons, or just due to coincident firing of otherwise independent neurons. We found that the proportion of 73

co-activation patterns in the data exceeded those predicted for independent neurons by a factor of 3 (Fig. 74

2B) at low millisecond time-scales. This was also true for each separate epoch (Fig. 2C -E ), extending up 75

to a factor of at least 6 for the task trials (Fig. 2D), ruling out the possibility that the excess of precise 76

correlations was due to differences in brain state. 77

Our hypothesis that sleep and waking states respectively represent a prior and posterior distribution 78

from the same model requires not just precise patterns, but largely the same patterns. If the set of patterns 79

markedly differed between waking and sleep, then it would be implausible that they were drawn from the 80

same underlying model. We found that each recorded population of N neurons had the same sub-set of all 81

2N possible activity patterns in all epochs (Fig. 2B). Such a common set of patterns is consistent with their 82

being samples generated from the same form of internal model across both behaviour and sleep. 83

Together, these results show that there is above-chance statistical structure in mPFC population activity, 84

on time-scales of milliseconds, and with consistent patterns of activity between sleeping and waking epochs. 85

Consequently, the population activity here is consistent with the requirements of samples from an underlying 86

probability distribution. 87
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Fig 2. Activity pattern distributions during rule-learning. (A) The population activity of simultaneously
recorded spike trains was represented as a binary activity pattern in some small time-bin (here 2 ms). (B)
Proportion of co-activation patterns at each binsize (red line). Grey line indicates the proportion of ∼ 1% at
the binsize of 2 ms. In black we plot the corresponding proportion of co-activation patterns predicted if all
neurons were firing independently; these are obtained by shuffling the inter-spike intervals of each neuron
and recomputing the activity patterns. (C )-(E ) Proportion of co-activation patterns per epoch. Predicted
proportions by independently-firing neurons are in grey. (F ) Consistent sampling of activity patterns across
session epochs. Each circle is the proportion of activity patterns (at 2 ms) that appeared only in that epoch
of the session. Black bar and line give the median and interquartile range across the 10 sessions. Note the
log-scale, showing that the median proportion of unique patterns was less then 0.1% in all three epochs of
the session.
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Fig 3. Comparing distributions of activity patterns. (A) Scatter plot of the joint frequency of every
occurring pattern in pre-task SWS (distribution P (Pre)) and task (distribution P (R)) epochs for one session.
(B) For the same session as (A), scatter plot of the joint frequency of every occurring pattern in post-task
SWS [P (Post)] and task [P (R)] epochs.

Activity distributions converge between task and post-task sleep 88

To test our theoretical predictions, we compared the statistical distributions of activity patterns between task 89

and sleep epochs. If activity patterns are samples from a probability distribution, then two similar probability 90

distributions will be revealed by the similar frequencies of sampling each pattern [16]. For each pair of epochs, 91

we thus computed the distances between the two corresponding distributions of activity patterns (Fig. 3). We 92

first used the information-theory based Kullback-Liebler divergence to measure the distance D(P |Q) between 93

distributions P and Q in bits [16]. We found that in 9 of the 10 sessions the distribution P (R) of activity 94

during the trials was closer to the distribution in post-task SWS [P (Post)] than in pre-task SWS [P (Pre)] 95

(Fig. 4A). 96

On average the task-evoked distribution of patterns was 18.7±6.2% closer to the post-task SWS distribution 97

than the pre-task SWS distribution (Fig. 4B), showing a convergence between task-evoked and post-task 98

SWS distributions. Further, we found a robust convergence even at the level of individual sessions (Fig. 4C ). 99

The convergence was also robust to the choice of correct trials in the task distribution P (R) (S1 Fig). 100

Together, these results are consistent with the convergence over learning of the posterior and prior 101

distributions represented by mPFC population activity. They imply that mPFC encodes a task-related 102

internal model that is updated by task feedback. 103

Robustness of the convergence 104

It seems remarkable that the sampling of temporally precise population activity patterns in prefrontal cortex 105

could systematically change during learning. To check the robustness of this result, we recomputed all analyses 106

twice. We used a different distance measure to check that the results were stable to issues in estimating the 107

probability distributions; and we checked whether our results were dependent on our choice of binsize. 108

While the Kullback-Liebler divergence provides the most complete characterisation of the distance between 109

two probability distributions, estimating it accurately from limited sample data has known issues [23]. To 110

check our results were robust, we re-computed all distances using the Hellinger distance, a non-parametric 111

measure that provides a lower bound for the Kullback-Liebler divergence. Reassuringly, we found the 112

same results: the distribution P (R) of activity during the trials was consistently closer to the distribution 113

in post-task SWS [P (Post)] than in pre-task SWS [P (Pre)] (Fig. 4F -H ; the mean convergence between 114

task-evoked and post-task SWS distributions was 21± 2.8%). 115

We found that the convergence between the task P (R) and post-task SWS P (Post) distributions was 116

robust to the choice of activity pattern binsize across an order of magnitude from 2 to 20 ms (Fig. 5). Our 117

results thus do not depend on some arbitrary choice of binsize. Above a binsize of 50 ms, convergence 118

was statistically indistinguishable from zero, meaning that the pre- and post-task SWS distributions are 119

equidistant, on average, from the task distribution. This suggests that the behaviourally relevant time-scales 120

for activity patterns are indeed on the order of a few milliseconds. 121
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Fig 4. Convergence of activity pattern distributions between the task and post-task sleep. (C ) Scatter plot
of the joint frequency of every occurring pattern in pre-task SWS (distribution P (Pre)) and task
(distribution P (R)) epochs for one session. (D) For the same session as C, scatter plot of the joint frequency
of every occurring pattern in post-task SWS [P (Post)] and task [P (R)] epochs. (A) Distances between the
distributions of pattern frequencies in sleep and task epochs; one dot per learning session. D(X|Y ): distance
between pattern distributions in epochs X and Y : Pre: pre-task SWS; Post: post-task SWS; R: correct task
trials. (B) Scatter of convergence across all sessions (circles). Convergence is
D(Pre|R)−D(Post|R)/D(Pre|R). A value greater than zero means that the activity pattern distribution
in the task is closer to the distribution in post-task SWS than the distribution in pre-task SWS. Black lines
give mean ± 2 s.e.m. (C ) Data (dot) and 95% bootstrapped confidence interval (line) for the convergence of
task and post-task SWS activity pattern distributions for each session. Black: sessions with intervals above 0.
(D) Distances between the distributions of pattern frequencies in sleep and task epochs during rule-change
sessions; one dot per session. Here the distribution P (R∗) is constructed from correct task trials before the
rule change. (E ) Result from panel D expressed as convergence. (F )-(J ) As A-E, using Hellinger distance.
All P -values from 1-tailed Wilcoxon signrank test, with N=10 learning sessions (panels A-C and F-H ) or
N = 7 rule-change sessions (panels D-E and I -J ).
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Wrong models lead to no convergence 122

Is this convergence of trial-evoked and post-task SWS distributions inevitable? To answer this, we made 123

use of the 7 sessions in which the rats experienced a rule change. As rule changes occurred only after 10 124

consecutive correct trials [15], these sessions are uniquely divided into periods when the internal model of 125

the task was right and when it was wrong. Once wrong, the rat needed to find the correct new model. 126

Consequently, our theory predicts that the prior distribution in post-task SWS sleep is not derived from the 127

same internal model as that used before the rule change. In other words, the posterior from the pre-change 128

trials and the prior from the spontaneous activity of post-task sleep are derived from different models, and 129

should not converge. 130

We tested this prediction by comparing the activity pattern distributions in pre-change correct trials 131

[P (R∗)] and in post-task SWS [P (Post)]. There was no convergence between the two distributions, when 132

measured using either Kullback-Liebler divergence (3.6 ± 11.7%; Fig. 4D-E ) or the Hellinger distance 133

(3.8± 9.3%; Fig. 4I -J ). For the effect sizes observed for the learning sessions, there was sufficient power to 134

recover the same effect size at α = 0.05 with N = 7 sessions (KLD: learning session effect size d = 0.96, 135

rule-change session power = 0.7; Hellinger: d = 2.36, power ≈ 1), which argues against low power causing 136

the lack of convergence. 137

Convergence is a consequence of changes to correlations, not just firing rates 138

Our convergence was measured across a change in brain state between waking and sleeping. While within 139

each state the occurrence of co-activation patterns exceeds chance by an order of magnitude (Fig. 2C -E ), 140

this still leaves open the possibility that the change in population firing rates between states could artificially 141

cause their activity pattern distributions to increase in similarity [24,25]. To control for this, we used the 142

“raster” model [24] to generate surrogate sets of spike-trains that matched both the mean firing rates of each 143

neuron, and the distribution of total population activity in each time-bin (K = 0, 1, . . . , N spikes per bin). 144

Consequently, the occurrence rates of particular activity patterns in the raster model are those predicted to 145

arise from neuron and population firing rates alone. 146

We fitted the raster model to the post-session SWS neuron and population firing rates, and compared 147

the data-derived distance D(Post|R) with the model-derived distance D(Post−model|R). If the change in 148

population firing rate during SWS caused the convergence, then the raster model should exactly capture the 149

statistics of the SWS firing and we would obtain D(Post|R) ≈ D(Post−model|R). 150

We found that firing rates could not account for the convergence between task and post-task SWS 151

distributions. The data-derived distance D(Post|R) was always smaller than the distance D(Post−model|R) 152

predicted by the raster model (Fig. 6A). This was true whether we used Kullback-Liebler divergence or the 153

Hellinger distance (Fig. 6C ) to measure distances between distributions. Consequently, the convergence 154

between the task and post-task SWS distributions is due to the selective repeat of specific activity patterns. 155

Our activity patterns were built from single units, unlike previous work using multi-unit activity [16,18, 156

20, 24, 26], so we expected our patterns to be sparse with rare synchronous activity. Indeed our data are 157

dominated by activity patterns with no spikes or 1 spike (Fig. 2B -E ; we breakdown the distributions at 158

2ms in S2 Fig). If all patterns had only 0 or 1 spike, then the raster model spike trains would be exactly 159

equivalent to the data. Given the relative sparsity (∼ 1%) of co-activation patterns in our data, it is all the 160

more surprising then that we found such a consistent lower distance for our data-derived distributions. 161

It follows that the true difference between data and model is in the relative occurrence of co-activation 162

patterns. To check this, we applied the same analysis to distributions built only from these co-activation 163

patterns, drawn from data and from the raster model fitted to the complete data. We found that the 164

data-derived distance D(Post|R) was always smaller than the distance D(Post−model|R) predicted by the 165

raster model (Fig. 6B -D). Across all sessions, the model-predicted distance D(Post−model|R) was between 166

3% and 46% greater than the data-derived distance D(Post|R) using Kullback-Liebler divergence, indicating 167

that much of the convergence between task and SWS distributions could not be accounted for by firing rates 168

alone. These results confirm that the convergence between the task and post-task SWS distributions is due 169

to the selective repeat of specific co-activation patterns. 170

Reassuringly, for these distributions of co-activation patterns, all convergence results held (S3 Fig) despite 171

the order-of-magnitude fewer sampled patterns compared to the full dataset. 172
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Fig 6. Convergence is caused by changes in correlation, not firing rate. (A) The distance between the task
and post-task sleep distributions D(Post|R) is always smaller than predicted by firing rate changes during
sleep alone D(Post−model|R), as given by the raster model. Black lines give mean ± 2 s.e.m in all panels.
(B) As in A, using only activity patterns with K ≥ 2 spikes from data and model. (C )-(D) As A-B, using
Hellinger distance. All P -values from 1-tailed Wilcoxon signrank test, with N=10 sessions.

Convergence is not a recency effect 173

We examined periods of SWS in order to most likely observe the sampling of a putative internal model in a 174

static condition, with no external inputs and minimal learning. But as correct task trials more likely occur 175

towards the end of a learning session, this raises the possibility that the closer match between task and 176

post-task SWS distributions is a recency effect, due to some trace or reverberation in sleep of the most recent 177

task activity. 178

The time-scales involved make this unlikely. Bouts of SWS did not start until typically 8 minutes after 179

the end of the task (mean 397 s, S.D. 188 s; Fig. 7A). Any reverberation would thus have to last at least that 180

long to appear in the majority of post-task SWS distributions. 181

The intervening period before the first bout of SWS contains quiet wakefulness and early sleep stages. 182

If convergence was a recency effect, then we would expect that distributions [P (Rest)] of activity patterns 183

in this more-immediate “rest” epoch would also converge with the task distributions. We did not find this: 184

across sessions, there was no evidence that the distribution in post-task rest [P (Rest)] consistently converged 185

with the distribution during task trials [P (R)] (Fig. 7B -C ; mean convergence was −8.7± 18.7%). Thus the 186

observed convergence is inconsistent with a recency effect. 187

Distributions are updated by task-relevant activity patterns 188

The above analysis rests on the idea that the distributions of activity patterns are derived from an internal 189

model of the task. This predicts that individual patterns should correlate with some aspect of the task. We 190

sought an unbiased way of testing this prediction, so considered the following. In our theory, the changes to 191

the internal model over learning should be directly reflected in the differences between the prior distributions 192

before and after learning. Consequently, if we compare the sampling of activity patterns in pre-task sleep to 193

sampling in post-task sleep, then any patterns with changes in their sampling should be from the updated 194

model. This means that these patterns should encode some aspect of the task. 195

Remarkably, this is exactly what we found. For each co-activation pattern, we found its ability to predict 196

a trial’s outcome by its rate of occurrence on that trial (Fig 8A). When we compared this outcome prediction 197
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Fig 7. Convergence is not a recency effect. (A) Breakdown of each learning session into the duration of its
state components. The task epoch is divided into correct (red) and error (blue) trials, and inter-trial
intervals (white spaces). Trial durations were typically 2-4 seconds, so are thin lines on this scale. The pre-
and post-task epochs contained quiet waking and light sleep states (“Rest” period) and identified bouts of
slow-wave sleep (“SWS”). Inset: duration of the Rest period between the end of the last trial and the start
of the first SWS bout (lines give mean ± 2 s.e.m.) (B) Distances between the distributions of pattern
frequencies in different epochs; one dot per session. D(X|Y ): distance between pattern distributions in
epochs X and Y : Pre: pre-task SWS; Rest: immediate post-task rest period; R: correct task trials. Compare
to Fig. 4A. (C ) Results from panel B expressed as the convergence between the distributions in the task and
post-task rest period. We also re-plot here the convergence between the task and post-task SWS
distributions from Fig. 4B. (P -values from 1-tailed Wilcoxon signrank test, with N=10 sessions).

to the change in sampling between pre- and post-task sleep, we found a strong correlation between the two 198

(Fig. 8B -D). This correlation was highly robust (Fig. 8E -G). The learnt internal model, as evidenced by the 199

updated patterns sampled from it, was seemingly encoding the task. 200

Outcome-predictive patterns occur around the choice point 201

Consistent with the internal model being task-related, we further found that the outcome-predictive activity 202

patterns preferentially occurred around the choice point of the maze (Fig. 9). Particularly striking was that 203

patterns strongly predictive of outcome rarely occurred in the starting arm (Fig. 9A). Together, the selective 204

changes over learning to outcome-specific (Fig. 8) and location-specific (Fig. 9) activity patterns show that 205

the convergence of distributions (Fig. 4) is not a statistical curiosity, but is evidence for the updating of a 206

behaviourally-relevant internal model. 207

Discussion 208

We find that moment-to-moment patterns of mPFC population activity change their sampling rates during 209

learning of a spatial navigation task. Consequently, the statistical distributions of patterns in spontaneous 210

and task-evoked activity converge. These changes match our theoretical predictions from a probabilistic 211

sampling framework. Our analyses thus suggest mPFC encodes a probabilistic internal model of a task, which 212

is updated by behavioural outcomes. 213

Prefrontal cortex has been implicated in both planning and working memory during spatial navigation 214

[27–30], and executive control in general [31,32]. Our results suggests a probabilistic basis for these functions. 215

In particular, prefrontal cortex has been implicated in both the representation of current goals [33,34] and 216

strategies [35]. Both these functions are consistent with an internal model that relates sensory information to 217

the statistical structure of the world, and the use of that model to plan behaviour. 218

How a cortical region encodes an internal model is an open question. A strong candidate is the relative 219

strengths of the synaptic connections both into and within the encoding cortical circuit [7, 8, 11, 17]. The 220

activity of a cortical circuit is strongly dependent on the pattern and strength of the connections between its 221
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Fig 8. Coding of trial outcome by sampled activity patterns. (A) Example distributions of a pattern’s
frequency conditioned on trial outcome from one session. (B) For all co-activation patterns in one session, a
scatter plot of outcome prediction and (absolute) change in pattern frequency between pre- and post-task
SWS. Change is normalised to the maximum change in the session. (C ) Distribution of change in pattern
frequency according to outcome prediction over all ten sessions. Colour intensity gives the cumulative
probability of at least that change. Circles give the median absolute change for each distribution. In this
example, distributions were built using bins with 90 data-points each. Unbinned data are analysed in S4 Fig.
(D) Correlation of outcome prediction and median change in pattern occurrence between sleep epochs from
C, over all ten sessions. Red line is the best-fit linear regression (P < 0.0002, permutation test). (E )-(F ) As
C-D, for the worst-case correlation observed, with 25 data-points per bin. (G) Robustness of correlation
results. Solid dots plot the correlation coefficient R between outcome prediction and median change in
pattern frequency obtained for different binnings of the data. Coloured dots correspond to panels C-D and
E-F. Lines each give the entire range of R obtained from a 5000-repeat permutation test; none reach the
equivalent data point (dashed line shows equality), indicating all data correlations had P < 0.0002.

neurons [36,37]. Consequently, defining the underlying model as the circuit’s synaptic network allows both 222

model-based inference through synaptically-driven activity and model learning through synaptic plasticity [11]. 223

Sampling and replay 224

Our results are distinct from previous observations of task-specific replay during sleep in prefrontal cortex [38], 225

including reports [15] using the same data analysed here. We observed a convergence of waking and sleep 226

activity pattern distributions using precise activity patterns down to 2 ms resolution. Using surrogate models, 227

we showed that the convergence is due to the persistence of specific correlations between neurons, rather 228

than changes in firing rates. Finally, we showed that the updated activity patterns were just those that could 229

predict task performance. 230

In contrast to the work here, replay accounts infer the recurrence of similar activity. They do not identify 231

the changed patterns, nor relate them to task behaviour. Moreover, replay is described for coincident activity 232

on coarse time-scales greater than those used here by a factor of 50 (ref. [15]) up to a factor of 10000 233

(ref. [38]). We found that there was no apparent convergence of activity pattern distributions when examining 234

coincident activity at 50ms resolution and above (Fig. 5). Finally, our observation that patterns during 235

correct performance on rule-change sessions are not specifically sampled in post-session SWS (Fig. 4D,E ) is 236

incompatible with the simple replay of experience-related activity in sleep. Current empirical observations of 237

replay thus do not predict our observed changes in activity pattern distributions. 238
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Fig 9. Outcome predicting activity patterns are sampled in the choice area. (A) Scatter plot of each
pattern’s outcome prediction and sample locations in the maze (dot is median position; grey line is
interquartile range); all positions given as a proportion of the linearised maze from start of departure arm.
Red lines indicate the approximate centre (solid) and boundaries (dashed) of the maze’s choice area (cf Fig
1A). (B) Proportion of activity patterns whose interquartile range of sample locations enters the choice area
(black dots and line). Grey region shows mean (line) and 95% range (shading) of proportions from a
permutation test. The data exceed the upper limit of expected proportions for all outcome-predictive
patterns.

Activity distributions in sleeping and waking 239

Our theory proposes that spontaneous neural activity during sleep is sampling a prior distribution generated 240

from an internal model. We found that the set of activity patterns was remarkably conserved between sleeping 241

and behaviour (Fig. 2B), consistent with activity being generated from the same internal model in both 242

states. This theory predicts that manipulating synaptic weights during sleep, changing the internal model, 243

should change both the prior and the posterior distributions over task variables. Recent work has shown 244

that inducing task-specific reward signals during sleep, likely altering synaptic weights, indeed immediately 245

alters task behaviour on waking [39]. Our results thus suggest that casting sleeping and waking activity as 246

prior and posterior distributions generated from the same internal model could be a fruitful computational 247

framework for relating cortical dynamics to behaviour. 248

Population activity patterns constrain cortical dynamics 249

We used the inference-by-sampling framework to guide our analysis by deriving from it specific hypotheses to 250

be tested. But even if the sampling interpretation of the activity patterns will turn out to be wrong, our 251

main observations provide constraints on theories of cortical coding and dynamics. 252

Studies of prefrontal cortex coding generally assume that information is conveyed by firing rates [29,30, 253

40, 41] or rate correlations [27, 42, 43]. By contrast, here we show evidence of ensemble coding at highly 254

precise time scales, of both outcome and position dependence. We found it remarkable that we could extract 255

anything of interest at this resolution, and checked these results extensively, including the use of large-repeat 256

permutation tests. Previously, such fine-scale structure of stimulus-evoked population activity patterns has 257

only been observed in the retina during passive observation [18,20, 21]. We extend these results to show that 258

such fine time-scale correlation structure can be observed in cortical regions for executive control, and be 259

evoked by tasks. 260

Previous studies have observed strong similarities between spontaneous and evoked firing rates [44–47] 261

or firing sequences [48] in cortex. These findings imply that the underlying cortical circuit has similarly 262

constrained dynamics in both spontaneous and evoked states [49]. Extending these results, we found a highly 263

similar set of precisely-timed activity patterns across sleeping and task performance, which suggests that 264

cortical population activity is underpinned by similar dynamics in both states, and those dynamics can 265

reproduce patterns with high temporal precision. Maass and colleagues [7, 17] have shown that a range of 266

cortical network models can produce specific distributions of such precise activity patterns, provided they have 267

a source of noise (such as synaptic release failure) to produce stochastic wandering of the global activity level. 268
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Our data support these models, and suggest that global activity oscillations during slow-wave sleep [50,51] 269

do not prevent the stochastic sampling of activity patterns, providing a target for future modelling studies. 270

Materials and Methods 271

Task and electrophysiological recordings 272

The data analysed here were from ten learning sessions and seven rule change sessions in the study of [15]. 273

For full details on training, spike-sorting, and histology see [15]. Four Long-Evans male rats with implanted 274

tetrodes in prelimbic cortex were trained on the Y-maze task (Fig. 1A). Each recording session consisted 275

of a 20-30 minute sleep or rest epoch (pre-task epoch), in which the rat remained undisturbed in a padded 276

flowerpot placed on the central platform of the maze, followed by a task epoch, in which the rat performed 277

for 20-40 minutes, and then by a second 20-30 minute sleep or rest epoch (post-task epoch). Every trial 278

started when the rat reached the departure arm and finished when the rat reached the end of one of the 279

choice arms. Correct choice was rewarded with drops of flavoured milk. Each rat had to learn the current rule 280

by trial-and-error, either: go to the left arm; go to the right arm; go to the lit arm. To maintain consistent 281

context across all sessions, the extra-maze light cues were lit in a pseudo-random sequence across trials, 282

whether they were relevant to the rule or not. 283

We primarily analysed here data from the ten sessions in which the previously-defined learning criteria 284

were met: the first trial of a block of at least three consecutive rewarded trials after which the performance 285

until the end of the session was above 80%. In later sessions the rats reached the criterion for changing the 286

rule: ten consecutive correct trials or one error out of 12 trials. Thus each rat learnt at least two rules, with 287

seven rule-change sessions in total. 288

Tetrode recordings were spike-sorted only within each recording session for conservative identification 289

of stable single units. In the 17 sessions we analyse here, the populations ranged in size from 15-55 units. 290

Spikes were recorded with a resolution of 0.1 ms. 291

Activity pattern distributions 292

For a population of size N , we characterised population activity from time t to t+ δ as an N -length binary 293

vector with each element being 1 if at least one spike was fired by that neuron in that time-bin, and 0 294

otherwise. In the main text we predominantly use a binsize of δ = 2 ms; Fig. 5 shows the robustness of the 295

main results to the choice of binsize. We build patterns using the number of recorded neurons N , up to a 296

maximum of 35 for computational tractability. The probability distribution for these activity patterns was 297

compiled by counting the frequency of each pattern’s occurrence and normalising by the total number of 298

pattern occurrences. 299

To test the predicted proportion of co-activation patterns by independently firing neurons, we shuffled 300

inter-spike intervals for each neuron independently, then reconstruct the activity patterns at the chosen 301

binsize. This procedure keeps the same inter-spike interval distribution for each neuron, but disrupts any 302

correlation between neurons. As both the task and sleep epochs were broken up into chunks (of trials and 303

SWS bouts, respectively), we only shuffled inter-spike intervals within each chunk. We repeated the shuffling 304

20 times, and in Fig. 2C -E we plot for the shuffled data the means and error bars of ± 2 s.e.m. (too small to 305

see on the scales of the axes). 306

Comparing distributions 307

We quantified the distance D(P |Q) between probability distributions P and Q using both the Kullback-Liebler 308

divergence (KLD) and the Hellinger distance. 309

The KLD is an information theoretic measure to compare the similarity between two probability distri- 310

butions. Let P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn) be two discrete probability distributions, for n 311

distinct possibilities – for us, these are all possible individual activity patterns. The KLD is then defined as 312

d(P |Q) =
∑n

i=1 piln(pi

qi
). This measure is not symmetric, so that in general d(P |Q) 6= d(Q|P ). Following 313

prior work [16,24], we thus compute and report the symmetrised KLD: D(P |Q) = (d(P |Q) + d(Q|P ))/2. 314
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There are 2N distinct possible activity patterns in a recording with N neurons. Most of these activity 315

patterns are never observed, so we exclude the activity patterns that are not observed in either of the epochs 316

we compare. The empirical frequency of the remaining activity patterns is biased due to the limited length of 317

the recordings [23]. To counteract this bias, we use the Bayesian estimator and quadratic bias correction 318

exactly as described in [16]. The Berkes estimator assumes a Dirichlet prior and multinomial likelihood to 319

calculate the posterior estimate of the KLD; we use their code (github.com/pberkes/neuro-kl) to compute the 320

estimator. We then compute a KLD estimate using all S activity patterns, and using S/2 and S/4 patterns 321

randomly sampled without replacement. By fitting a quadratic polynomial to these three KLD estimates, we 322

can then use the intercept term of the quadratic fit as an estimate of the KLD if we had access to recordings 323

of infinite length [23,52]. 324

The Hellinger distance for two discrete distributions P and Q is D(P |Q) = 1
2

∑n
i=1(
√
pi−
√
qi)

2. To a first 325

approximation, this measures for each pair of probabilities (pi, qi) the distance between their square-roots. In 326

this form, D(P |Q) = 0 means the distributions are identical, and D(P |Q) = 1 means the distributions are 327

mutually singular: all positive probabilities in P are zero in Q, and vice-versa. The Hellinger distance is a 328

lower bound for the KLD: 2D(P |Q) ≤ KLD. 329

To compare distances between sessions we computed a normalised measure of “convergence”. The 330

divergence between a given pair of distributions could depend on many factors that differ between sessions, 331

including that each recorded population was a different size, and how much of the relevant population 332

for encoding the internal model we recorded. Consequently, the key comparison between the divergences 333

D(Pre|R) − D(Post|R) also depends on these factors. To compare the difference in divergences across 334

sessions, we computed a “convergence” score by normalising by the scale of the divergence in the pre-task 335

SWS: ((D(Pre|R)−D(Post|R)) /D(Pre|R). We express this as a percentage. Convergence greater than 0% 336

indicates that the distance between the task (R: correct trials) and post-task SWS (Post) distributions is 337

smaller than that between the task and pre-task SWS (Pre) distributions. 338

Statistics 339

Quoted measurement values are means ± s.e.m. All hypothesis tests used the non-parametric Wilcoxon 340

signtest for a one-sample test that the sample median for the population of sessions is greater than zero. For 341

learning sessions, we have N = 10 sessions; for rule-changes (Fig. 4) we have N = 7 sessions. Throughout we 342

plot mean values and their approximate 95% confidence intervals given by ± 2 s.e.m. 343

Bootstrapped confidence intervals (in Fig. 4C,H ) for each session were constructed using 1000 bootstraps of 344

each epoch’s activity pattern distribution. Each bootstrap was a sample-with-replacement of activity patterns 345

from the data distribution X to get a sample distribution X∗. For a given pair of bootstrapped distributions 346

X∗, Y ∗ we then compute their distance D∗(X∗|Y ∗). Given both bootstrapped distances D∗(Pre|R) and 347

D∗(Post|R), we then compute the bootstrapped convergence (D∗(Pre∗|R∗)−D∗(Post∗|R∗)) /D∗(Pre∗|R∗). 348

Raster model 349

To control for the possibility that changes in activity pattern occurrence were due solely to changes in the 350

firing rates of individual neurons and the total population, we used the raster model exactly as described 351

in [24]. For a given data-set of spike-trains N and binsize δ, the raster model constructs a synthetic set 352

of spikes such that each synthetic spike-train has the same mean rate as its counterpart in the data, and 353

the distribution of the total number of spikes per time-bin matches the data. In this way, it predicts the 354

frequency of activity patterns that should occur given solely changes in individual and population rates. 355

For Fig 6 we generated 1000 raster models per session using the spike-trains from the post-task SWS in 356

that session. For each generated raster model, we computed the distance between its distribution of activity 357

patterns and the data distribution for correct trials in the task D(Post−model|R). This comparison gives 358

the expected distance between task and post-task SWS distributions due to firing rate changes alone. We 359

plot the difference between the mean D(Post−model|R) and the data D(Post|R) in Fig. 6. 360
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Outcome prediction 361

We examined the correlates of activity pattern occurrence with behaviour. To rule out pure firing rate effects, 362

we excluded all patterns with K = 0 and K = 1 spikes, considering only co-activation patterns with two or 363

more active neurons. 364

To check whether individual activity patterns coded for the outcome on each trial, we used standard 365

receiver-operating characteristic (ROC) analysis. For each pattern, we computed the distribution of its 366

occurrence frequencies separately for correct and error trials (as in the example of Fig. 8A). We then used 367

a threshold T to classify trials as error or correct based on whether the frequency on that trial exceeded 368

the threshold or not. We found the fraction of correctly classified correct trials (true positive rate) and the 369

fraction of error trials incorrectly classified as correct trials (false positive rate). Plotting the false positive 370

rates against the true positive rates for all values of T gives the ROC curve. The area under the ROC curve 371

gives the probability that a randomly chosen pattern frequency will be correctly classified as from a correct 372

trial; we report this as P (predict outcome). 373

Relationship of sampling change and outcome prediction 374

Within each session, we computed the change in each pattern’s occurrence between pre- and post-task SWS. 375

These were normalised by the maximum change within each session. Maximally changing patterns were 376

candidates for those updated by learning during the task. Correlation between change in pattern sampling 377

and outcome prediction was done on normalised changes pooled over all sessions. Change scores were binned 378

using variable-width bins of P (predict outcome), each containing the same number of data-points to rule out 379

power issues affecting the correlation. We regress P (predict outcome) against the median change in each bin, 380

using the mid-point of each bin as the value for P (predict outcome). Our main claim is that prediction and 381

change are dependent variables (Fig. 8C -G). To test this claim, we compared the data correlation against the 382

null model of independent variables, by permuting the assignment of change scores to the activity patterns. 383

For each permutation, we repeat the binning and regression. We permuted 5000 times to get the sampling 384

distribution of the correlation coefficient R∗ predicted by the null model of independent variables. To check 385

robustness, all analyses were repeated for a range of fixed number of data-points per bin between 20 and 100. 386

Relationship of location and outcome prediction 387

The location of every occurrence of a co-activation pattern was expressed as a normalized position on the 388

linearised maze (0: start of departure arm; 1: end of the chosen goal arm). Our main claim is that activity 389

patterns strongly predictive of outcome occur predominantly around the choice point of the maze, and so 390

prediction and overlap of the choice area are dependent variables (Fig. 9B). To test this claim, we compared 391

this relationship against the null model of independent variables, by permuting the assignment of location 392

centre-of-mass (median and interquartile range) to the activity patterns. For each permutation, we compute 393

the proportion of patterns whose interquartile range overlaps the choice area, and bin as per the data. We 394

permuted 5000 times to get the sampling distribution of the proportions predicted by the null model of 395

independent variables: we plot the mean and 95% range of this sampling distribution as the grey region in 396

Fig. 9B. 397

Supporting Information 398

S1 Fig. Effect on convergence of the choice of correct trials in P (R). 399
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S1 File: Extended discussion of the theoretical predictions
Abhinav Singh, Adrien Peyrache and Mark D. Humphries

Neural inference

How do we know the current state of the world given some input from it? Our input is
both limited in time and noisy, so our estimates are inherently uncertain. Consequently,
we have an inference problem: what is our best guess of the current state of the world
given some finite, noisy input? We can state this problem as being equivalent to inferring
the probability distribution

P (state|input,model) (1)

at some given moment in time t; in words, this is the probability of currently being in
a given state, out of all possible states, given both the available input and some internal
model of the world. Using Bayes’ theorem, we can make this dependence on input and
model explicit:

P (state|input,model)︸ ︷︷ ︸
posterior

∝ P (input|state,model)︸ ︷︷ ︸
likelihood

P (state|model)︸ ︷︷ ︸
prior

(2)

The prior is the internal estimate of the current state before the observation input, the
posterior is the estimate of the current state after observing input, and the improvement in
the estimate arises from the new information available in input that is processed through
the likelihood. All these are dependent on the model of the world we are using. This
internal model specifies how we interpret the inputs in the likelihood, and generate the
prior probabilities. If we change the model, we change these two operations, and so change
our estimates of the current state of the world. We can think of the model as specifying
what we expect to be relevant in the input, and what states we expect to be in.

One goal of learning is thus to update the internal model to match the statistical
properties of the world. The better the model, the better we will be able to predict the
state of the external world. But as we can only access directly the inputs generated from
those states, formally we say that learning seeks to maximise P (input|model) over all
possible inputs at all times t by changing the parameters of the model. A model which
always generates maximum values for P (input|model) is the best possible learnt internal
model of the external world. Obtaining such a model necessarily means that we have
experienced all possible states giving rise to those inputs, so that the prior P (state|model)
is always accurate, and we obtain no new information from the likelihood. Consequently,
the posterior probability becomes always proportional to the prior probability. A measure
of learning is thus how close the prior and posterior distributions have become.

Inference-by-sampling

The inference-by-sampling theory (Fiser et al., 2010; Berkes et al., 2011) proposes that
the model is encoded by the particular set and weight of connections in a neural circuit.
In this view, the posterior distribution is encoded by the activity of the circuit evoked by
some input. Crucially, it predicts that the prior distribution is encoded by spontaneous
activity of the same circuit, as this is solely sampling the model.

If the circuit is the model, then the theory predicts that the circuit’s instantaneous
population activity is a sample from a probability distribution - from the posterior when
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receiving external input, from the prior in spontaneous activity. Some downstream neu-
rons, receiving these samples as a consecutive sequence of inputs, can reconstruct the
probability distribution just by summing their inputs over time.

For simplicity, Berkes et al (Berkes et al., 2011) considered the instantaneous popula-
tion activity as some binary vector indicating whether each neuron was active or inactive
in a very small time window. This representation makes the distributions easy to measure
experimentally.

Learning updates synaptic weights, altering the encoded model. The prediction that
posterior and prior distributions converge over learning is thus neurally equivalent to the
convergence between the distributions of evoked and spontaneous population activity.

Evidence for inference-by-sampling in visual cortices

These ideas were developed in the context of visual processing, and particularly with
reference to V1. In this context, the “state” of the world is the current view, and the
input is the information received by the retina. The proposed purpose of inference in V1
is to infer the most likely low level visual features – edges, for example – present in the
current view, given the input to the retina. V1’s internal model is then a statistical model
of the low-level features, which can be built over a life-time’s experience of the world.

Consequently, Berkes and colleagues (Berkes et al., 2011) tested the construction of
this internal model by recording from area V1 at different stages of development in the
ferret. Natural images were used to probe the current posterior distribution supported
by the model, and darkness was used to probe the current prior distribution. Over de-
velopment, the activity distribution evoked by natural images increased its similarity to
the distribution during darkness. This increase was robust to a series of controls for si-
multaneous changes in firing rate statistics (Berkes et al., 2011; Okun et al., 2012; Fiser
et al., 2013). Their results are consistent with the inference-by-sampling interpretation in
which the internal model is updated by experience with the world, so that the posterior
and prior distributions converge.

Inference-by-sampling in higher cortices over learning during
behaviour

These results could not address learning separately from development. Further, unknown is
whether inference-by-sampling can be observed in higher-order cortices, or during ongoing
behaviour.

There is no a priori reason to expect that inference-by-sampling would be restricted to
primary sensory cortices. Much has been written about the generic nature of the cortical
microcircuit (Thomson & Lamy, 2007; Harris & Shepherd, 2015), so we might reasonably
expect that, if an internal model is encoded by the neural circuit in V1, so other similar
cortical circuits in other regions encode other internal models.

Compelling support for this has come from modelling work by Maass and colleagues
(Buesing et al., 2011; Habenschuss et al., 2013). Their models have shown how a wide range
of plausible cortical circuit models all produce the necessary dynamics to sample from a
statistical model encoded by the circuit’s connections (Buesing et al., 2011; Habenschuss
et al., 2013). Moreover, the models also replicate key properties of the firing statistics in
cortex, including the close-to-Poisson irregularity of firing patterns. These suggest that
the inference-by-sampling hypothesis is indeed a plausible generic computation for cortex.
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Inference of state is also a generic operation. Nothing in Equation 2 limits its ap-
plication to sensory information. We might consider “state” in the sense used in the
reinforcement learning literature (Sutton & Barto, 1998), as a generic description of the
current values of variables of the external world. Indeed, in forms of reinforcement learn-
ing that depend on simulation of future actions, “state” in this context can even refer
to the simulated values of variables in the external world - for which we would use the
internal model to simulate possible outcomes. During behaviour, we might thus expect
that an internal model is learnt about the statistical dependence of outcomes on decisions
in particular contexts.

The power of the inference-by-sampling hypothesis is that we do not need to know the
internal model to test for its existence. We need not specify an exact model to test the
convergence of distributions in evoked and spontaneous activity, but such a convergence
is evidence of an updated internal model.

Consequently, to test the generality of the inference-by-sampling hypothesis, we sought
to test the convergence of distributions over learning using data from the medial prefrontal
cortex (mPfC) of rats learning rules in a Y-maze task (Peyrache et al., 2009). By looking
at these data for a change to some internal model in mPFC, we are assuming only that
the model is related to the rule, but not any specific form of model. It could encode the
set of task states and their transitions; it could encode the current sequence of required
actions; it could be a statistical model of outcomes. Supporting this assumption, we know
mPFC is necessary for successful acquisition of new rules (Ragozzino et al., 1999; Rich
& Shapiro, 2007), and that mPFC pyramidal neurons change their firing patterns during
acquisition of the rules used here (Benchenane et al., 2010).

Even if the interpretation of the convergence of distributions in the inference-by-
sampling framework turns out to be incorrect, the observation of such a convergence
between waking and spontaneous activity over learning still offers compelling clues to the
nature of cortical computation.

What distributions to compare?

Nonetheless, the inference-by-sampling theory places limits on exactly which activity dis-
tributions to compare. In the Berkes et al. (Berkes et al., 2011) study, this decision was
made simple by the elegant experimental design. As they monitored V1 over development,
so it was reasonable to expect the internal model to adapt to the statistics of the world
over a lifetime. Their tests at different developmental stages were samples of the current
posterior and prior distributions supported by the model. We would not expect signifi-
cant changes to the internal model during their testing, as it was short on the time-scale
of the developmental changes, and so they could compare their entire recorded distribu-
tions of evoked and spontaneous activity. In other words, they were able to compare two
distributions from the same, static model.

Our data on rats learning rules in a Y-maze allow us to address if learning of the
internal model can be observed. But learning on short time-scales brings the confounding
issue that learning the model is happening online, while we are monitoring activity. So
what distributions should we compare?

We chose the 10 training sessions in which the rat clearly acquired the present rule, so
we could be reasonably sure that we would observe changes that correlated with learning.
We reasoned that neural activity in clearly identified sleep periods before and after the
session was a clear candidate for spontaneous activity, as it occurred in the absence of
external sensory input. We used slow-wave sleep periods to clearly delineate the presence
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of sleep. As the rats acquired the rule in that session then, if mPfC indeed encodes rule
acquisition, we expect that the spontaneous activity in sleep after the session is drawn
from the internal model related to the correct rule.

We can only be sure that during behaviour this correct-rule model would be sampled on
correct trials. This does not imply that mPfC activity is causal for decisions on those trials
- even in a monitoring or goal-encoding role, mPfC activity would reflect whether or not
the correct decision was made. The mPfC activity on error trials is unconstrained by the
theory. Consequently, we can only be sure that, if the inference-by-sampling hypothesis is
true, then the distribution of samples on correct trials would converge, on average, to the
distribution in sleep after learning.

The final, subtle constraint is that overt behavioural signs of learning likely indicates
ongoing synaptic plasticity. For example, on the same Y-maze, some pyramidal neurons
in mPfC change the timing of their spikes in relation to the hippocampal theta rhythm,
indicating local circuit plasticity (Benchenane et al., 2010). If so, then the internal model is
changing during behaviour. But the internal model putatively sampled in the post-session
sleep will be stable. To thus minimise the confound of these changes during behaviour,
and compare static posterior and prior distributions (as per Berkes et al., 2011), we sought
to identify where the internal model updating may have finished. A useful proxy for this is
the asymptotic behavioural performance. We thus used the trial at which the rat reached
the learning criteria as the indicator of relative stability in the internal model. All correct
trials from this trial onwards were then used to construct the activity distribution during
the task - we call this distribution P (R) in the main text, and distances measured between
it and some other distribution P (X) we call D(X|R).
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