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Abstract9

The idea that brains use probabilistic internal models of the world is a powerful10

explanation for a range of behavioural phenomena. Unclear is whether or how neu-11

rons represent such models in higher cortical regions, learn them, and use them in12

behaviour. To address these issues, we sought evidence for the learning of internal13

models by cortical neurons during a behavioural task. Using a sampling framework,14

we predicted that trial-evoked and sleeping population activity represent the inferred15

and expected probabilities generated from an internal model of the task, and would16

become more similar as the task was learnt. To test these predictions, we analysed17

population activity from rodent prefrontal cortex before, during, and after sessions of18

learning rules on a maze. Distributions of activity patterns converged between trials19

and post-learning sleep during successful rule learning. Learning induced changes were20

greatest for patterns predicting correct choice and expressed at the choice point of the21

maze, consistent with an updated internal model of the task. Our results suggest22

sample-based internal models are a general computational principle of cortex.23

Introduction24

How do we know what state the world is in? Behavioural evidence suggests brains solve this25

problem using probabilistic reasoning (Kording and Wolpert, 2004; Pouget et al., 2013).26

Such reasoning implies that brains represent and learn internal models for the statistical27

structure of the external world (Wolpert et al., 1995; Dayan and Abbot, 2001; Kording and28

Wolpert, 2004). With these models, neurons could represent uncertainty about the world29

with probability distributions, and update those distributions with new knowledge using30

the rules of probabilistic inference. Theoretical work has elucidated potential mechanisms31

for how cortical populations represent and compute with probabilities (Zemel et al., 1998;32

Ma et al., 2006; Buesing et al., 2011; Pouget et al., 2013; Kappel et al., 2015), and shown33

how computational models of inference predict aspects of cortical activity in sensory and34

decision-making tasks (e.g. Beck et al., 2008; Pouget et al., 2013). But experimental35

evidence for the neural basis of probabilistic reasoning, and the underlying internal models,36

is lacking.37

An experimentally-accessible proposal is the recent inference-by-sampling hypothesis38

(Fiser et al., 2010; Berkes et al., 2011). This proposes that cortical population activity39
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at some time t is a sample from an underlying probability distribution, which can be40

reconstructed by integrating over samples. Cortical activity evoked by external stimuli41

represents sampling from the model-generated “posterior” distribution that the world is42

in a particular state. Spontaneous cortical activity represents sampling of the model43

in the absence of external stimuli, forming a model-generated “prior” for the expected44

properties of the world. A key prediction is that the evoked and spontaneous population45

activity should converge over repeated experience, as the internal model adapts to match46

the relevant statistics of the external world. Just such a convergence has been observed47

in small populations from ferret V1 over development (Berkes et al., 2011). Unknown is48

whether neural inference is a general computational principle for cortex: whether it can49

be observed during learning, or in higher-order cortices, or during ongoing behaviour.50

A natural candidate to address these issues is the medial prefrontal cortex (mPFC).51

Medial PFC is necessary for learning new rules or strategies (Ragozzino et al., 1999; Rich52

and Shapiro, 2007), and changes in mPFC neuron firing times correlates with successful53

rule learning (Benchenane et al., 2010), suggesting that mPFC coding of task-related54

variables changes over learning. We thus hypothesised that mPFC encodes an internal55

model of a task, which is updated by task performance, and from which the statistical56

distributions of population activity are generated. To test these hypotheses, we analysed57

previously-recorded population activity from the medial prefrontal cortex of rats learning58

rules in a Y-maze task (Peyrache et al., 2009).59

Results60

Rats with implanted tetrodes learnt one of three rules on a Y-maze: go left, go right, or go61

to the randomly-lit arm (Figure 1A). Each recording session was a single day containing62

3 epochs totalling typically 1.5 hours: pre-task sleep/rest, behavioural testing on the63

task, and post-task sleep/rest. We focussed on ten sessions where the animal reached64

the learning criteria for a rule mid-session (Experimental Procedures; 15-55 neurons per65

session). In this way, we sought to isolate changes in population activity solely due to66

rule-learning.67

Theory sketch68

Here we outline our theoretical predictions for changes in population activity, derived from69

the inference-by-sampling hypothesis; a full account is given in Supplementary File 1. We70

sought to test the idea that the mPFC contains at least one internal model related to task71

performance, such as representing the relevant decision-variable (here, left or right) or the72

rule-dependent outcomes. Learning of the task should therefore update the internal model73

based on feedback from each trial’s outcome. We theorised that mPFC population activity74

on each trial was sampling from the posterior distribution generated from this model;75

and that “spontaneous” activity in slow-wave sleep (SWS), occurring in the absence of76

task-related stimuli and behaviour, samples the corresponding prior distribution (Figure77

1B). Consequently, updating the internal model from task feedback should be reflected in78

changes to the posterior and prior distributions generated from that model.79

By restricting our analyses to sessions with successful learning, we expected the post-80

task SWS activity to be sampling from an internal model that has learnt the correct rule.81

To compare posterior distribution samples from the same internal model, we considered82

population activity during correct trials after the learning criteria were met – we call this83

distribution P (R). Our main prediction was thus that the distribution P (R) of activity84
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Figure 1: Activity pattern distributions during rule-learning. (A) Y-maze task set-up
(top); each session included the epochs of pre-task sleep/rest, task trials, and post-task sleep/rest
(bottom) - Figure 4A gives a breakdown per session. One of three target rules for obtaining reward
was enforced throughout a session: go right; go left; go to the randomly-lit arm. (B) Schematic of
theory. If prefrontal cortex encodes an internal model of the task, then activity during the task
is derived from the internal model plus the relevant external inputs: the distribution of activity
is thus the posterior distribution over the encoded task variables. During sleep, the distribution
of activity is derived entirely from the internal model, and thus is the prior distribution over the
encoded task variables. Updates to the internal model by task learning (creating Model∗) will
then change the prior distribution encoded during sleep (to Prior∗). The theoretical prediction
is then that the activity distribution in post-session sleep, derived from the model of the correct
rule, will be closer to the distribution on the correct trials, compared to the pre-session sleep.
(C) The population activity of simultaneously recorded spike trains was represented as a binary
activity pattern in some small time-bin (here 2 ms). (D) Scatter plot of the joint frequency of every
occurring pattern in pre-task SWS (distribution P (Pre)) and task (distribution P (R)) epochs for
one session. (E) For the same session as (D), scatter plot of the joint frequency of every occurring
pattern in post-task SWS [P (Post)] and task [P (R)] epochs.

during the correct trials would be more similar to the distribution in post-task SWS85

[P (Post)] than in pre-task SWS [P (Pre)]. Such a convergence of distributions would be86

evidence that a task-related internal model in mPFC was updated by feedback.87

Activity distributions converge between task and post-task sleep88

To test these hypotheses, we compared the statistical distributions of activity patterns89

between task and sleep epochs. Activity patterns were characterised as a binary vector (or90

“word”) of active and inactive neurons with a binsize of 2 ms (Figure 1C). Each recorded91

population of N neurons had the same sub-set of all 2N possible activity patterns in all92

epochs (Figure 1 - figure supplement 1) (Luczak et al., 2009; Wohrer et al., 2013). Such93

a common set of patterns is consistent with their being samples generated from the same94

form of internal model across both behaviour and sleep.95

For each pair of epochs, we computed the distances between the two corresponding96

distributions of activity patterns (Figure 1D,E). We first used the information-theory based97
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Kullback-Liebler divergence to measure the distance D(P |Q) between distributions P and98

Q in bits (Berkes et al., 2011). We found that in 9 of the 10 sessions the distribution P (R)99

of activity during the trials was closer to the distribution in post-task SWS [P (Post)] than100

in pre-task SWS [P (Pre)] (Figure 2A).101

On average the task-evoked distribution of patterns was 18.7 ± 6.2% closer to the102

post-task SWS distribution than the pre-task SWS distribution (Figure 2B), showing a103

convergence between task-evoked and post-task SWS distributions. Further, we found a104

robust convergence even at the level of individual sessions (Figure 2C).105

While the Kullback-Liebler divergence provides the most complete characterisation of106

the distance between two probability distributions, estimating it accurately from limited107

sample data has known issues (Panzeri et al., 2007). To check our results were robust,108

we re-computed all distances using the Hellinger distance, a non-parametric measure that109

provides a lower bound for the Kullback-Liebler divergence. Reassuringly, we found the110

same results: the distribution P (R) of activity during the trials was consistently closer111

to the distribution in post-task SWS [P (Post)] than in pre-task SWS [P (Pre)] (Figure112

2F-H; the mean convergence between task-evoked and post-task SWS distributions was113

21± 2.8%).114

The convergence between the task P (R) and post-task SWS P (Post) distributions was115

also robust to both the choice of activity pattern binsize (Figure 2 - figure supplement 1)116

and the choice of correct trials in the task distribution P (R) (Figure 2 - figure supplement117

2) .118

Together, these results are consistent with the convergence over learning of the poste-119

rior and prior distributions represented by mPFC population activity. They imply that120

mPFC encodes a task-related internal model that is updated by task feedback.121

Convergence is a consequence of changes to correlations, not firing rates122

Population firing rate differences between waking and sleep states, and increases in SWS123

firing after task-learning, could potentially account for the convergence of distributions124

(Okun et al., 2012; Fiser et al., 2013). To control for this, we used the “raster” model125

(Okun et al., 2012) to generate surrogate sets of spike-trains that matched both the mean126

firing rates of each neuron, and the distribution of total population activity in each time-bin127

(K = 0, 1, . . . , N spikes per bin). Consequently, the occurrence rates of particular activity128

patterns in the raster model are those predicted to arise from neuron and population firing129

rates alone.130

We found that firing rates could not account for the convergence between task and131

post-task SWS distributions. The data-derived distance D(Post|R) was always smaller132

than the distance D(Post − model|R) predicted by the raster model (Figure 3A). This133

was true whether we used Kullback-Liebler divergence or the Hellinger distance (Figure134

3C) to measure distances between distributions.135

Our activity patterns are built from single units, unlike previous work using multi-unit136

activity (Schneidman et al., 2006; Berkes et al., 2011; Okun et al., 2012; Tkacik et al.,137

2014; Ganmor et al., 2015), so we expect our patterns to be sparse with rare synchronous138

activity. Indeed our data are dominated by activity patterns with K = 0 and K = 1139

spikes (Figure 3 - figure supplement 1 . If all patterns were K = 0 or K = 1, the raster140

model spike trains would be exactly equivalent to the data. It is all the more surprising141

then that we found such a consistent lower distance for our data-derived distributions.142

It follows that the true difference between data and model is in the relative occurrence143

of co-activation patterns with K ≥ 2 spikes. To check this, we applied the same analysis144

to distributions built only from these co-activation patterns, drawn from data and from145
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Figure 2: Convergence of activity pattern distributions between the task and post-
task sleep. (A) Distances between the distributions of pattern frequencies in sleep and task
epochs; one dot per session. D(X|Y ): distance between pattern distributions in epochs X and
Y : Pre: pre-task SWS; Post: post-task SWS; R: correct task trials. (B) Scatter of convergence
across all sessions (circles). Convergence is D(Pre|R) − D(Post|R)/D(Pre|R). A value greater
than zero means that the activity pattern distribution in the task is closer to the distribution in
post-task SWS than the distribution in pre-task SWS. Black lines give mean ± 2 s.e.m. (C) Data
(dot) and 95% bootstrapped confidence interval (line) for the convergence of task and post-task
SWS activity pattern distributions for each session. Red: sessions with CIs above 0. (D) - (F) As
(A)-(C), using Hellinger distance. All P -values from 1-tailed Wilcoxon signrank test, with N=10
sessions.

the raster model fitted to the complete data. We found that the data-derived distance146

D(Post|R) was always smaller than the distance D(Post − model|R) predicted by the147

raster model (Figure 3B,D). Across all sessions, the model-predicted distance D(Post −148

model|R) was between 3% and 46% greater than the data-derived distance D(Post|R)149

using Kullback-Liebler divergence, indicating that much of the convergence between task150

and SWS distributions could not be accounted for by firing rates alone. Consequently, the151

changed distributions of activity patterns are due to changes in the correlations between152

neurons.153

Reassuringly, for these K ≥ 2 activity pattern distributions, all convergence results154

held (Figure 3 - figure supplement 2) despite the order-of-magnitude fewer sampled pat-155

terns.156

Convergence is not a recency effect157

We examined periods of SWS in order to most likely observe the sampling of a putative158

internal model in a static condition, with no external inputs and minimal learning. But as159

correct task trials more likely occur towards the end of a session, this raises the possibility160

that the closer match between task and post-task SWS distributions are a recency effect,161

due to some trace or reverberation in sleep of the most recent task activity.162

The time-scales involved make this unlikely. Bouts of SWS did not start until typically163
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Figure 3: Convergence is caused by changes in correlation, not firing rate. (A) The
distance between the task and post-task sleep distributions D(Post|R) is always smaller than
predicted by firing rate changes during sleep alone D(Post − model|R), as given by the raster
model. Black lines give mean ± 2 s.e.m in all panels. (B) As in (A), using only activity patterns
with K ≥ 2 spikes from data and model. (C)-(D) As (A)-(B), using Hellinger distance. All
P -values from 1-tailed Wilcoxon signrank test, with N=10 sessions.

8 minutes after the end of the task (mean 397s; S.D. 188 s; Figure 4A). Any reverberation164

would thus have to last at least that long to appear in the majority of post-task SWS165

distributions.166

The intervening period before the first bout of SWS contains quiet wakefulness and167

early sleep stages. If convergence was a recency effect, then we would expect that dis-168

tributions [P (Rest)] of activity patterns in this more-immediate “rest” epoch would also169

converge. We did not find this: across sessions, there was no evidence that the distribution170

in post-task rest [P (Rest)] consistently converged on the distribution during task trials171

[P (R)] (Figure 4B,C; mean convergence was −8.7 ± 18.7%). Not only is the observed172

convergence inconsistent with a recency effect, it seems also selective for activity in SWS.173

Distributions are updated by task-relevant activity patterns174

The above analysis rests on the idea that the distributions of activity patterns are derived175

from an internal model of the task. This predicts that individual patterns should correlate176

with some aspect of the task. We sought an unbiased way of testing this prediction, so177

considered the following. In our theory, the changes to the internal model over learning178

should be directly reflected in the differences between the prior distributions before and179

after learning. Consequently, if we compare the sampling of activity patterns in pre-task180

sleep to sampling in post-task sleep, then any patterns with changes in their sampling181

should be from the updated model. This means that these patterns should encode some182

aspect of the task.183

Remarkably, this is exactly what we found. For each co-activation pattern, we found184

its ability to predict a trial’s outcome by its rate of occurrence on that trial (Fig 5A). When185
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Figure 4: Convergence is not a recency effect. (A) Breakdown of each session into the
duration of its state components. The task epoch is divided into correct (red) and error (blue)
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one dot per session. D(X|Y ): distance between pattern distributions in epochs X and Y : Pre:
pre-task SWS; Rest: immediate post-task rest period; R: correct task trials. Compare to Figure
2A. (C) Results from panel (B) expressed as the convergence between the distributions in the task
and post-task rest period. We also re-plot here the convergence between the task and post-task
SWS distributions. (P -values from 1-tailed Wilcoxon signrank test, with N=10 sessions).

we compared this outcome prediction to the change in sampling between pre- and post-186

task sleep, we found a strong correlation between the two (Figure 5B-D). This correlation187

was highly robust (Figure 5E-G). The learnt internal model, as evidenced by the updated188

patterns sampled from it, was seemingly encoding the task.189

Outcome-predictive patterns occur around the choice point190

Consistent with the internal model being task-related, we further found that the outcome-191

predictive activity patterns preferentially occurred around the choice point of the maze192

(Figure 6A,B). Particularly striking was that patterns strongly predictive of outcome rarely193

occurred in the starting arm (Figure 6A). Together, the selective changes over learning194

to outcome-specific (Figure 5) and location-specific (Figure 6) activity patterns show that195

the convergence of distributions (Figure 1) is not a statistical curiosity, but is evidence for196

the updating of a behaviourally-relevant internal model.197

Discussion198

Prefrontal cortex has been implicated in both planning and working memory during spatial199

navigation (Baeg et al., 2003; Fujisawa et al., 2008; Ito et al., 2015; Spellman et al., 2015),200

and executive control in general (Miller, 2000; Sul et al., 2010). Our results suggests a201

probabilistic basis for these functions. We find that moment-to-moment patterns of mPFC202

population activity change their sampling rates during learning of a spatial navigation203

task. Consequently, the statistical distributions of patterns in spontaneous and task-204

evoked activity converge. Our analyses thus suggest mPFC encodes a probabilistic internal205

model of a task, which is updated by behavioural outcomes, and uses population-activity206

sampling as the basis for inference.207
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Figure 5: Coding of trial outcome by sampled activity patterns. (A) Example dis-
tributions of a pattern’s frequency conditioned on trial outcome from one session. (B) For all
co-activation patterns in one session, a scatter plot of outcome prediction and (absolute) change in
pattern frequency between pre- and post-task SWS. Change is normalised to the maximum change
in the session. (C) Distribution of change in pattern frequency according to outcome prediction
over all ten sessions. Colour intensity gives the cumulative probability of at least that change.
Circles give the median absolute change for each distribution. In this example, distributions were
built using bins with 90 data-points each. Unbinned data are analysed in Figure 5 - figure supple-
ment 1. (D) Correlation of outcome prediction and median change in pattern occurrence between
sleep epochs from (C), over all ten sessions. Red line is the best-fit linear regression (P < 0.0002,
permutation test). (E-F) As (C)-(D), for the worst-case correlation observed, with 25 data-points
per bin. (G) Robustness of correlation results. Solid dots plot the correlation coefficient R between
outcome prediction and median change in pattern frequency obtained for different binnings of the
data. Coloured dots correspond to panels C-D and E-F. Lines each give the entire range of R
obtained from a 5000-repeat permutation test; none reach the equivalent data point (dashed line
shows equality), indicating all data correlations had P < 0.0002.

Remarkably we observed the convergence of distributions using precise activity pat-208

terns down to 2 ms resolution. Using surrogate models, we showed that the convergence209

is due to changes in correlations between neurons, rather than changes in firing rates.210

Previous work observed fine structure in stimulus-evoked population activity patterns in211

retina (e.g. Schneidman et al., 2006; Tkacik et al., 2014) and V1 (Berkes et al., 2011). We212

extend these results to show that such fine time-scale correlation structure can be observed213

in cortical regions for executive control, and be evoked by tasks. Unexpectedly, we have214

shown that, despite their high temporal resolution, task information can be decoded from215

these patterns.216

How a cortical region encodes an internal model is an intriguing open question. A217

strong candidate is the relative strengths of the synaptic connections both into and within218

the encoding cortical circuit (Fiser et al., 2010; Buesing et al., 2011; Habenschuss et al.,219

2013; Kappel et al., 2015). The activity of a cortical circuit is strongly dependent on220

the pattern and strength of the connections between its neurons (e.g. Cossell et al., 2015;221

Okun et al., 2015). Consequently, defining the underlying model as the circuit’s synaptic222

network allows both model-based inference through synaptically-driven activity and model223
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Figure 6: Outcome predicting activity patterns are sampled in the choice area. (A)
Scatter plot of each pattern’s outcome prediction and sample locations in the maze (dot is me-
dian position; grey line is interquartile range); all positions given as a proportion of the linearised
maze from start of departure arm. Red lines indicate the approximate centre (solid) and bound-
aries (dashed) of the maze’s choice area (cf Fig 1A). (B) Proportion of activity patterns whose
interquartile range of sample locations enters the choice area (black dots and line). Grey region
shows mean (line) and 95% range (shading) of proportions from a permutation test. The data
exceed the upper limit of expected proportions for all outcome-predictive patterns.

learning through synaptic plasticity (Fiser et al., 2010).224

Our results are distinct from previous observations of task-specific replay during sleep225

in prefrontal cortex (Euston et al., 2007), including reports (Peyrache et al., 2009) using the226

same data analysed here. In contrast to the work here, replay accounts do not consider227

the statistical distributions of the observed patterns, nor identify the changed patterns228

(beyond example templates in Euston et al., 2007), nor relate them to task behaviour;229

moreover, replay is described for coincident activity on coarse time-scales greater than230

those used here by a factor of 50 (Peyrache et al., 2009) up to a factor of 10000 (Euston231

et al., 2007). They thus do not address the statistical changes to population-wide activity232

predicted by theories of probabilistic population coding.233

Our theory proposes that spontaneous neural activity during sleep is sampling a prior234

distribution generated from an internal model. We found that the set of activity patterns235

was remarkably conserved between sleeping and behaviour (Figure 1 - figure supplement236

1), despite the different global dynamics of cortex between these states (Destexhe et al.,237

1999; Steriade et al., 2001), consistent with activity being generated from the same in-238

ternal model in both states. This theory predicts that manipulating synaptic weights239

during sleep, changing the internal model, should change both the prior and the posterior240

distributions over task variables. Recent work has shown that inducing task-specific re-241

ward signals during sleep, likely altering synaptic weights, indeed immediately alters task242

behaviour on waking (de Lavilleon et al., 2015). Our results thus suggest that casting243

sleeping and waking activity as prior and posterior distributions generated from the same244

internal model could be a fruitful computational framework for relating cortical dynamics245

to behaviour.246

Materials and methods247

Task and electrophysiological recordings The data analysed here were from ten248

recording sessions in the study of (Peyrache et al., 2009). For full details on training,249

spike-sorting, and histology see (Peyrache et al., 2009). Four Long-Evans male rats with250
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implanted tetrodes in prelimbic cortex were trained on the Y-maze task (Figure 1A). Each251

recording session consisted of a 20-30 minute sleep or rest epoch (pre-task epoch), in which252

the rat remained undisturbed in a padded flowerpot placed on the central platform of the253

maze, followed by a task epoch, in which the rat performed for 20-40 minutes, and then254

by a second 20-30 minute sleep or rest epoch (post-task epoch). Every trial started when255

the rat reached the departure arm and finished when the rat reached the end of one of the256

choice arms. Correct choice was rewarded with drops of flavoured milk. Each rat had to257

learn the current rule by trial-and-error, either: go to the left arm; go to the right arm;258

go to the lit arm. To maintain consistent context across all sessions, the extra-maze light259

cues were lit in a pseudo-random sequence across trials, whether they were relevant to the260

rule or not.261

We analysed here data from the ten sessions in which the previously-defined learning262

criteria were met: the first trial of a block of at least three consecutive rewarded trials263

after which the performance until the end of the session was above 80%. In later sessions264

(not analysed here) the rats reached the criterion for changing the rule: ten consecutive265

correct trials or one error out of 12 trials. Thus each rat learnt at least two rules.266

Tetrode recordings were spike-sorted only within each recording session for conservative267

identification of stable single units. In the ten sessions we analyse here, the populations268

ranged in size from 15-55 units.269

Activity pattern distributions For a population of size N , we characterised popula-270

tion activity from time t to t + δ as an N -length binary vector with each element being271

1 if at least one spike was fired by that neuron in that time-bin, and 0 otherwise. In272

the main text we use a binsize of δ = 2 ms throughout, and report the results of using273

larger binsizes in (Figure 2 - figure supplement 1) . We build patterns using the number274

of recorded neurons N , up to a maximum of 35 for computational tractability. The prob-275

ability distribution for these activity patterns was compiled by counting the frequency of276

each pattern’s occurrence and normalising by the total number of pattern occurrences.277

Comparing distributions We quantified the distance D(P |Q) between probability dis-278

tributions P and Q using both the Kullback-Liebler divergence (KLD) and the Hellinger279

distance.280

The KLD is an information theoretic measure to compare the similarity between two281

probability distributions. Let P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn) be two discrete282

probability distributions, for n distinct possibilities – for us, these are all possible individual283

activity patterns. The KLD is then defined as d(P |Q) =
∑n

i=1 piln(piqi ). This measure284

is not symmetric, so that in general d(P |Q) 6= d(Q|P ). Following prior work (Berkes285

et al., 2011; Okun et al., 2012), we thus compute and report the symmetrised KLD:286

D(P |Q) = (d(P |Q) + d(Q|P ))/2.287

There are 2N distinct possible activity patterns in a recording with N neurons. Most288

of these activity patterns are never observed, so we exclude the activity patterns that289

are not observed in either of the epochs we compare. The empirical frequency of the290

remaining activity patterns is biased due to the limited length of the recordings (Panzeri291

et al., 2007). To counteract this bias, we use the Bayesian estimator and quadratic bias292

correction exactly as described in (Berkes et al., 2011). The Berkes estimator assumes a293

Dirichlet prior and multinomial likelihood to calculate the posterior estimate of the KLD;294

we use their code (github.com/pberkes/neuro-kl) to compute the estimator. We then295

compute a KLD estimate using all S activity patterns, and using S/2 and S/4 patterns296

randomly sampled without replacement. By fitting a quadratic polynomial to these three297
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KLD estimates, we can then use the intercept term of the quadratic fit as an estimate298

of the KLD if we had access to recordings of infinite length (Strong et al., 1998; Panzeri299

et al., 2007).300

The Hellinger distance for two discrete distributions P andQ isD(P |Q) = 1
2

∑n
i=1(
√
pi−301 √

qi)
2. To a first approximation, this measures for each pair of probabilities (pi, qi) the dis-302

tance between their square-roots. In this form, D(P |Q) = 0 means the distributions are303

identical, and D(P |Q) = 1 means the distributions are mutually singular: all positive304

probabilities in P are zero in Q, and vice-versa. The Hellinger distance is a lower bound305

for the KLD: 2D(P |Q) ≤ KLD.306

However we computed the distances between pairs of distributions, to compare those307

distances between sessions we computed a normalised measure of “convergence”. The308

divergence between a given pair of distributions could depend on many factors that dif-309

fer between sessions, including that each recorded population was a different size, and310

how much of the relevant population for encoding the internal model we recorded. Conse-311

quently, the key comparison between the divergences D(Pre|R)−D(Post|R) also depends312

on these factors. To compare the difference in divergences across sessions, we computed313

a “convergence” score by normalising by the scale of the divergence in the pre-task SWS:314

((D(Pre|R)−D(Post|R)) /D(Pre|R). We express this as a percentage. Convergence315

greater than 0% indicates that the distance between the task (R: correct trials) and post-316

task SWS (Post) distributions is smaller than that between the task and pre-task SWS317

(Pre) distributions.318

Statistics Quoted measurement values are means ± s.e.m. All hypothesis tests used319

the non-parametric Wilcoxon signtest for a one-sample test that the sample median for320

the population of sessions is greater than zero. In all cases N=10 sessions. Throughout321

we plot mean values and their approximate 95% confidence intervals given by ± 2 s.e.m.322

Bootstrapped confidence intervals (in Figure 2C,F) for each session were constructed323

using 1000 bootstraps of each epoch’s activity pattern distribution. Each bootstrap was324

a sample-with-replacement of activity patterns from the data distribution X to get a325

sample distribution X∗. For a given pair of bootstrapped distributions X∗, Y ∗ we then326

compute their distance D∗(X∗|Y ∗). Given both bootstrapped distances D∗(Pre|R) and327

D∗(Post|R), we then compute the bootstrapped convergence (D∗(Pre∗|R∗)−D∗(Post∗|R∗)) /D∗(Pre∗|R∗).328

Raster model To control for the possibility that changes in activity pattern occurrence329

were due solely to changes in the firing rates of individual neurons and the total population,330

we used the raster model exactly as described in (Okun et al., 2012). For a given data-set331

of spike-trains N and binsize δ, the raster model constructs a synthetic set of spikes such332

that each synthetic spike-train has the same mean rate as its counterpart in the data, and333

the distribution of the total number of spikes per time-bin matches the data. In this way,334

it predicts the frequency of activity patterns that should occur given solely changes in335

individual and population rates.336

For Fig 3 we generated 1000 raster models per session using the spike-trains from the337

post-task SWS in that session. For each generated raster model, we computed the distance338

between its distribution of activity patterns and the data distribution for correct trials in339

the task D(Post −model|R). This comparison gives the expected distance between task340

and post-task SWS distributions due to firing rate changes alone. We plot the difference341

between the mean D(Post−model|R) and the data D(Post|R) in Figure 3.342
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Outcome prediction We examined the correlates of activity pattern occurrence with343

behaviour. To rule out pure firing rate effects, we excluded all patterns with K = 0 and344

K = 1 spikes, considering only co-activation patterns with two or more active neurons.345

To check whether individual activity patterns coded for the outcome on each trial,346

we used standard receiver-operating characteristic (ROC) analysis. For each pattern, we347

computed the distribution of its occurrence frequencies separately for correct and error348

trials (as in the example of Figure 5A). We then used a threshold T to classify trials as error349

or correct based on whether the frequency on that trial exceeded the threshold or not. We350

found the fraction of correctly classified correct trials (true positive rate) and the fraction351

of error trials incorrectly classified as correct trials (false positive rate). Plotting the false352

positive rates against the true positive rates for all values of T gives the ROC curve. The353

area under the ROC curve gives the probability that a randomly chosen pattern frequency354

will be correctly classified as from a correct trial; we report this as P (predict outcome).355

Relationship of sampling change and outcome prediction Within each session,356

we computed the change in each pattern’s occurrence between pre- and post-task SWS.357

These were normalised by the maximum change within each session. Maximally changing358

patterns were candidates for those updated by learning during the task. Correlation359

between change in pattern sampling and outcome prediction was done on normalised360

changes pooled over all sessions. Change scores were binned using variable-width bins of361

P (predict outcome), each containing the same number of data-points to rule out power362

issues affecting the correlation. We regress P (predict outcome) against median change363

in each bin, using the mid-point of each bin as the value for P (predict outcome). Our364

main claim is that prediction and change are dependent variables (Figure 5C-G). To365

test this claim, we compared the data correlation against the null model of independent366

variables, by permuting the assignment of change scores to the activity patterns. For367

each permutation, we repeat the binning and regression. We permuted 5000 times to get368

the sampling distribution of the correlation coefficient R∗ predicted by the null model of369

independent variables. To check robustness, all analyses were repeated for a range of fixed370

number of data-points per bin between 20 and 100.371

Relationship of location and outcome prediction The location of every occurrence372

of a co-activation pattern was expressed as a normalized position on the linearised maze373

(0: start of departure arm; 1: end of the chosen goal arm). Our main claim is that374

activity patterns strongly predictive of outcome occur predominantly around the choice375

point of the maze, and so prediction and overlap of the choice area are dependent variables376

(Figure 6B). To test this claim, we compared this relationship against the null model of377

independent variables, by permuting the assignment of location centre-of-mass (median378

and interquartile range) to the activity patterns. For each permutation, we compute the379

proportion of patterns whose interquartile range overlaps the choice area, and bin as per380

the data. We permuted 5000 times to get the sampling distribution of the proportions381

predicted by the null model of independent variables: we plot the mean and 95% range of382

this sampling distribution as the grey region in Figure 6B.383
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Figure 1 - figure supplement 1.
Consistent sampling of activity patterns across session epochs. Each circle is the
proportion of activity patterns that appeared only in that epoch of the session. Black bar and
line give the median and interquartile range across the 10 sessions. Note the log-scale, showing
that the median proportion of unique patterns was less then 0.001 in all three epochs of the
session.
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Figure 2 - figure supplement 1.
Convergence of distributions over choice of pattern binsize. We plot here the de-
pendence of the convergence of task and post-task SWS distributions on the binsize used for
constructing the activity patterns. We see that the convergence of the distribution of patterns
on correct task trials is robust to an order of magnitude increase in binsize (the distribution at
the binsize of 2ms is plotted in Fig. 2B). Above a binsize of 50 ms, convergence is statistically
indistinguishable from zero, meaning that the pre- and post-task SWS distributions are equidis-
tant, on average, from the task distribution. This suggests there is statistical structure in fine
time-scale activity patterns that is not present on larger time-scales. Circles are convergence in
individual sessions using Kullback-Liebler divergence; black lines give mean ± 2 s.e.m. Above
each distribution is the P-value from a 1-tailed Wilcoxon signrank test, with N=10 sessions.
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Figure 2 - figure supplement 2.
Effect on convergence of including all correct trials. In the main text, we construct all
task-related distributions by considering only correct trials after the learning criterion trial (see
Supplementary Note - Theory). We examine here whether our results were strongly contingent
on that choice. (A) If we include all correct trials of a session, we find that convergence
between task and post-task SWS distributions is still present (P -values from 1-tailed Wilcoxon
signrank test, with N=10 sessions). Note that the convergence between task and post-task SWS
distributions is if anything greater for post-learning trials, even though that task distribution
is built from fewer samples, and so might be expected to be noisier. Black lines give mean ±
2 s.e.m. (B) Difference in convergence between using only post-learning or all correct trials
for each session. (P -values for from 1-tailed Wilcoxon paired-sample ranksum test, with N=10
sessions). Black lines give mean ± 2 s.e.m.
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Figure 3 - figure supplement 1.
Distributions of synchronous spiking in all activity patterns. (A)-(C) Distributions
of the number of unique recorded activity patterns containing exactly K spikes, for pre-task
SWS (A), correct task trials (B), and post-task SWS (C). Each line is the distribution for one
session. (D)-(E) As (A)-(C), plotted on a log-scale to visualise the tails of the distributions.
Co-activation patterns (K ≥ 2 synchronous spikes) form a small proportion of all patterns.
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Figure 3 - figure supplement 2.
Convergence between distributions of co-activation patterns. Analysis of distributions
restricted to patterns with two or more co-active neurons. (A) Distances between the distribu-
tions of pattern frequencies in sleep and task epochs; one dot per session. D(X|Y ): distance
between pattern distributions in epochs X and Y : Pre: pre-task SWS; Post: post-task SWS; R:
correct task trials. (B) Scatter of convergence across all sessions (circles). Convergence greater
than zero means that the activity pattern distribution in the task is closer to the distribution
in post-task SWS than the distribution in pre-task SWS. Black lines give mean ± 2 s.e.m. (C)
- (D) As (A)-(B), using Hellinger distance. All P -values from 1-tailed Wilcoxon signrank test,
with N=10 sessions.
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Figure 5 - figure supplement 1.
Joint distribution of outcome prediction and change in sampling. Here we plot every
co-activation pattern’s joint values of P (outcome) and the absolute normalised change in sam-
pling between pre- and post-task slow-wave sleep (N = 2353 patterns with K ≥ 2 spikes per
pattern across all 10 sessions). The linear regression in red indicates a clear relationship between
the two (R = 0.22, P < 10−27). Nonetheless, the majority of patterns do not markedly change
their sampling, nor are they predictive of outcome: 72% (1699/2353) have P (outcome) ≤ 0.6
and a change of less than 10%. Thus fitting a linear regression is not robust, as it is dominated
by fitting to this majority that do not change. Rather, it is clear that there is a distribution of
change for each P (outcome), which we analyse in the main text.
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Supplementary File 1 - Theory
Abhinav Singh, Adrien Peyrache and Mark D. Humphries

Neural inference

How do we know the current state of the world given some input from it? Our input is
both limited in time and noisy, so our estimates are inherently uncertain. Consequently,
we have an inference problem: what is our best guess of the current state of the world
given some finite, noisy input? We can state this problem as being equivalent to inferring
the probability distribution

P (state|input,model) (1)

at some given moment in time t; in words, this is the probability of currently being in
a given state, out of all possible states, given both the available input and some internal
model of the world. Using Bayes’ theorem, we can make this dependence on input and
model explicit:

P (state|input,model)︸ ︷︷ ︸
posterior

∝ P (input|state,model)︸ ︷︷ ︸
likelihood

P (state|model)︸ ︷︷ ︸
prior

(2)

The prior is the internal estimate of the current state before the observation input, the
posterior is the estimate of the current state after observing input, and the improvement in
the estimate arises from the new information available in input that is processed through
the likelihood. All these are dependent on the model of the world we are using. This
internal model specifies how we interpret the inputs in the likelihood, and generate the
prior probabilities. If we change the model, we change these two operations, and so change
our estimates of the current state of the world. We can think of the model as specifying
what we expect to be relevant in the input, and what states we expect to be in.

One goal of learning is thus to update the internal model to match the statistical
properties of the world. The better the model, the better we will be able to predict the
state of the external world. But as we can only access directly the inputs generated from
those states, formally we say that learning seeks to maximise P (input|model) over all
possible inputs at all times t by changing the parameters of the model. A model which
always generates maximum values for P (input|model) is the best possible learnt internal
model of the external world. Obtaining such a model necessarily means that we have
experienced all possible states giving rise to those inputs, so that the prior P (state|model)
is always accurate, and we obtain no new information from the likelihood. Consequently,
the posterior probability becomes always proportional to the prior probability. A measure
of learning is thus how close the prior and posterior distributions have become.

Inference-by-sampling

The inference-by-sampling theory (Fiser et al., 2010; Berkes et al., 2011) proposes that
the model is encoded by the particular set and weight of connections in a neural circuit.
In this view, the posterior distribution is encoded by the activity of the circuit evoked by
some input. Crucially, it predicts that the prior distribution is encoded by spontaneous
activity of the same circuit, as this is solely sampling the model.

If the circuit is the model, then the theory predicts that the circuit’s instantaneous
population activity is a sample from a probability distribution - from the posterior when
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receiving external input, from the prior in spontaneous activity. Some downstream neu-
rons, receiving these samples as a consecutive sequence of inputs, can reconstruct the
probability distribution just by summing their inputs over time.

For simplicity, Berkes et al. (2011) consider the instantaneous population activity as
some binary vector indicating whether each neuron was active or inactive in a very small
time window. This representation makes the distributions easy to measure experimentally.

Learning updates synaptic weights, altering the encoded model. The prediction that
posterior and prior distributions converge over learning is thus neurally equivalent to the
convergence between the distributions of evoked and spontaneous population activity.

Evidence for inference-by-sampling in visual cortices

These ideas were developed in the context of visual processing, and particularly with
reference to V1. In this context, the “state” of the world is the current view, and the
input is the information received by the retina. The proposed purpose of inference in V1
is to infer the most likely low level visual features – edges, for example – present in the
current view, given the input to the retina. V1’s internal model is then a statistical model
of the low-level features, which can be built over a life-time’s experience of the world.

Consequently, Berkes and colleagues (Berkes et al., 2011) tested the construction of
this internal model by recording from area V1 at different stages of development in the
ferret. Natural images were used to probe the current posterior distribution supported
by the model, and darkness was used to probe the current prior distribution. Over de-
velopment, the activity distribution evoked by natural images increased its similarity to
the distribution during darkness. This increase was robust to a series of controls for si-
multaneous changes in firing rate statistics (Berkes et al., 2011; Okun et al., 2012; Fiser
et al., 2013). Their results are consistent with the inference-by-sampling interpretation in
which the internal model is updated by experience with the world, so that the posterior
and prior distributions converge.

Inference-by-sampling in higher cortices over learning during
behaviour

These results could not address learning separately from development. Further, unknown is
whether inference-by-sampling can be observed in higher-order cortices, or during ongoing
behaviour.

There is no a priori reason to expect that inference-by-sampling would be restricted
to primary sensory cortices. Much has been written about the generic nature of the
cortical microcircuit (Thomson and Lamy, 2007; Harris and Shepherd, 2015), so we might
reasonably expect that, if an internal model is encoded by the neural circuit in V1, so
other similar cortical circuits in other regions encode other internal models.

Compelling support for this has come from modelling work by Maass and colleagues
(Buesing et al., 2011; Habenschuss et al., 2013). Their models have shown how a wide range
of plausible cortical circuit models all produce the necessary dynamics to sample from a
statistical model encoded by the circuit’s connections (Buesing et al., 2011; Habenschuss
et al., 2013). Moreover, the models also replicate key properties of the firing statistics in
cortex, including the close-to-Poisson irregularity of firing patterns. These suggest that
the inference-by-sampling hypothesis is indeed a plausible generic computation for cortex.
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Inference of state is also a generic operation. Nothing in Equation 2 limits its ap-
plication to sensory information. We might consider “state” in the sense used in the
reinforcement learning literature (Sutton and Barto, 1998), as a generic description of
the current values of variables of the external world. Indeed, in forms of reinforcement
learning that depend on simulation of future actions, “state” in this context can even refer
to the simulated values of variables in the external world - for which we would use the
internal model to simulate possible outcomes. During behaviour, we might thus expect
that an internal model is learnt about the statistical dependence of outcomes on decisions
in particular contexts.

The power of the inference-by-sampling hypothesis is that we do not need to know the
internal model to test for its existence. We need not specify an exact model to test the
convergence of distributions in evoked and spontaneous activity, but such a convergence
is evidence of an updated internal model.

Consequently, to test the generality of the inference-by-sampling hypothesis, we sought
to test the convergence of distributions over learning using data from the medial prefrontal
cortex (mPfC) of rats learning rules in a Y-maze task (Peyrache et al., 2009). By looking
at these data for a change to some internal model in mPFC, we are assuming only that
the model is related to the rule, but not any specific form of model. It could encode the
set of task states and their transitions; it could encode the current sequence of required
actions; it could be a statistical model of outcomes. Supporting this assumption, we know
mPFC is necessary for successful acquisition of new rules (Ragozzino et al., 1999; Rich
and Shapiro, 2007), and that mPFC pyramidal neurons change their firing patterns during
acquisition of the rules used here (Benchenane et al., 2010).

Even if the interpretation of the convergence of distributions in the inference-by-
sampling framework turns out to be incorrect, the observation of such a convergence
between waking and spontaneous activity over learning still offers compelling clues to the
nature of cortical computation.

What distributions to compare?

Nonetheless, the inference-by-sampling theory places limits on exactly which activity dis-
tributions to compare. In the Berkes et al. (2011) study, this decision was made simple
by the elegant experimental design. As they monitored V1 over development, so it was
reasonable to expect the internal model to adapt to the statistics of the world over a life-
time. Their tests at different developmental stages were samples of the current posterior
and prior distributions supported by the model. We would not expect significant changes
to the internal model during their testing, as it was short on the time-scale of the develop-
mental changes, and so they could compare their entire recorded distributions of evoked
and spontaneous activity. In other words, they were able to compare two distributions
from the same, static model.

Our data on rats learning rules in a Y-maze allow us to address if learning of the
internal model can be observed. But learning on short time-scales brings the confounding
issue that learning the model is happening online, while we are monitoring activity. So
what distributions should we compare?

We chose the 10 training sessions in which the rat clearly acquired the present rule, so
we could be reasonably sure that we would observe changes that correlated with learning.
We reasoned that neural activity in clearly identified sleep periods before and after the
session was a clear candidate for spontaneous activity, as it occurred in the absence of
external sensory input. We used slow-wave sleep periods to clearly delineate the presence
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of sleep. As the rats acquired the rule in that session then, if mPfC indeed encodes rule
acquisition, we expect that the spontaneous activity in sleep after the session is drawn
from the internal model related to the correct rule.

We can only be sure that during behaviour this correct-rule model would be sampled on
correct trials. This does not imply that mPfC activity is causal for decisions on those trials
- even in a monitoring or goal-encoding role, mPfC activity would reflect whether or not
the correct decision was made. The mPfC activity on error trials is unconstrained by the
theory. Consequently, we can only be sure that, if the inference-by-sampling hypothesis is
true, then the distribution of samples on correct trials would converge, on average, to the
distribution in sleep after learning.

The final, subtle constraint is that overt behavioural signs of learning likely indicates
ongoing synaptic plasticity. For example, on the same Y-maze, some pyramidal neurons
in mPfC change the timing of their spikes in relation to the hippocampal theta rhythm,
indicating local circuit plasticity (Benchenane et al., 2010). If so, then the internal model is
changing during behaviour. But the internal model putatively sampled in the post-session
sleep will be stable. To thus minimise the confound of these changes during behaviour,
and compare static posterior and prior distributions (as per Berkes et al., 2011), we sought
to identify where the internal model updating may have finished. A useful proxy for this is
the asymptotic behavioural performance. We thus used the trial at which the rat reached
the learning criteria as the indicator of relative stability in the internal model. All correct
trials from this trial onwards were then used to construct the activity distribution during
the task - we call this distribution P (R) in the main text, and distances measured between
it and some other distribution P (X) we call D(X|R).
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