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Abstract

Perception and decision rely on internal models of the world. In primary sensory
areas of cortex, joint activity of neural populations likely represents the statistical
structure of the external environment. Unknown is whether internal neural models
are a general computational principle of cortex, extending to learning, higher-order
cortices, and actions. We tested that generality by examining changes of population
activity patterns from rat prefrontal cortex in the course of learning rules in a maze.
The statistical distributions of activity patterns converged between waking and slow-
wave sleep during rule learning. Changes were greatest for patterns predicting correct
choice and expressed at the choice point. Together, our results are consistent with the
convergence over learning of inferred (in waking) and prior (in sleep) expectations of
a task derived from an internal model. The construction and use of an internal model
may be a recurring theme of cortical computation.

Highlights :

• Statistical distributions of activity patterns in PFC change over learning

• Reflecting a convergence between task-evoked and sleep distributions

• Updated patterns predict task outcome and occur at a choice point

• Suggesting PFC builds and uses an internal model based on samples

eTOC Blurb : Singh et al show that changes to the statistical distribution of population
activity in rat prefrontal cortex are consistent with the learning and use of an internal
model for task behaviour.

Introduction

Cortical neurons collectively code and compute information (Averbeck et al., 2006; Wohrer
et al., 2013). Collective coding in sensory cortex is often framed in terms of representing
probabilities, or probability distributions, by the joint activity of a population of cortical
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neurons (Zemel et al., 1998; Beck et al., 2008; Pouget et al., 2013). The recent inference-
by-sampling hypothesis proposes that cortical population activity at some time t is a
sample from an underlying probability distribution (Fiser et al., 2010; Berkes et al., 2011),
which can be reconstructed by integrating over samples. This probability distribution
represents an internal model of some aspect of the world, such as the presence of low-
level visual features. Cortical activity evoked by external stimuli represents sampling
from the model-generated “posterior” distribution that the world is in a particular state.
Spontaneous cortical activity represents sampling of the model in the absence of external
stimuli, forming a “prior” for the expected properties of the world. A key prediction
is that the evoked and spontaneous population activity should converge over repeated
experience, as the internal model adapts to match the relevant statistics of the external
world. Just such a convergence has been observed in small populations from ferret V1
over development (Berkes et al., 2011).

Theoretical work has shown that this sampling from a probability distribution is a
property of a wide range of cortical circuit models (Buesing et al., 2011; Habenschuss
et al., 2013), suggesting there is nothing unique about observing this phenomenon in V1.
Unknown is the extent to which this hypothesis is a general computational principle for
cortex: whether it can be observed during learning, or in higher-order cortices, or during
ongoing behaviour.

A natural candidate to address these issues is the medial prefrontal cortex (mPFC).
Medial PFC is necessary for learning new rules or strategies (Ragozzino et al., 1999; Rich
and Shapiro, 2007), and changes in mPFC neuron firing times correlates with success-
ful rule learning (Benchenane et al., 2010), suggesting mPFC plays a role in building an
internal model of a task. We thus hypothesised that successful rule-learning would cor-
relate with changes to the statistical distributions of population activity in mPFC. To
test this hypothesis, we analysed previously-recorded population activity from the medial
prefrontal cortex of rats learning rules in a Y-maze task (Peyrache et al., 2009).

Results

Rats with implanted tetrodes learnt one of three rules on a Y-maze: go left, go right, or
go to the randomly-lit arm (Fig. 1A). Each recording session was a single day containing
pre-task sleep/rest, behavioural testing on the task, and post-task sleep/rest, totalling
typically 1.5 hours. We focussed on ten sessions where the animal reached the learning
criterion for a rule mid-session (Experimental Procedures; 15-55 neurons per session). In
this way, we sought to isolate changes in population activity solely due to rule-learning,
assuming that prior experience allowed learning of the basic task parameters, including
stimuli and reward locations.

Theory sketch

We outline here our theoretical predictions for changes in population activity - a full
account is given in Supplemental Note - Theory. We sought to test the idea that the
mPFC contains at least one internal model related to rule-learning, such as representing
the relevant decision-variable (here, left or right) or the rule-dependent outcomes. The
inference-by-sampling hypothesis predicts that population activity during each trial was
sampling from the posterior distribution generated from this model. Similarly, it predicts
that “spontaneous” activity in slow-wave sleep (SWS), occurring in the absence of task-
related stimuli and behaviour, sampled the prior distribution generated from this model.
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Figure 1: Recording of activity pattern distributions during rule-learning. (A) Y-maze
task set-up (top); each session included the epochs of pre-task sleep/rest, task trials, and post-
task sleep/rest (bottom) - Fig. 4A gives a breakdown per session. One of three target rules for
obtaining reward was enforced throughout a session: go right; go left; go to the randomly-lit arm.
(B) The population activity of simultaneously recorded spike trains was represented as a binary
activity pattern in some small time-bin (here 2 ms). (C) Scatter plot of the joint frequency of every
occurring pattern in pre-task SWS (distribution P (Pre)) and task (distribution P (R)) epochs for
one session. (D) For the same session as (C), scatter plot of the joint frequency of every occurring
pattern in post-task SWS [P (Pre)] and task [P (R)] epochs.

We know that mPFC activity changes over the course of rule-learning (Benchenane et al.,
2010), consistent with the idea that an internal model is updated by trial outcomes. As
we restricted our analyses to sessions with successful learning, we expect the post-task
SWS activity to be sampling from an internal model that has learnt the correct rule.
To compare posterior distribution samples from the same internal model, we consider
population activity during correct trials after the learning criteria were met – we call this
distribution P (R). Our main prediction was thus that the distribution P (R) of activity
during the trials would be more similar to the distribution in post-task SWS [P (Post)]
than in pre-task SWS [P (Pre)].

An attractive aspect of the inference-by-sampling hypothesis is that we do not need
to know the internal model to test for its existence. The convergence of distributions in
evoked and spontaneous activity is evidence of an updated internal model. Nonetheless,
we also sought clues about the internal model, by looking for rule-related encoding in the
population activity.

Activity distributions converge between task and post-task sleep

To test these hypotheses, we compared the statistical distributions of activity patterns
between task and sleep epochs. Activity patterns were characterised as a binary vector
(or “word”) of active and inactive neurons with a binsize of 2 ms (Fig. 1B). Consistent
with being samples from related posterior (in task) and prior (in sleep) distributions,
each recorded population visited the same highly limited sub-space of all possible activity
patterns across sleep and behaviour (Supplemental Figure 1) (Luczak et al., 2009; Wohrer
et al., 2013).

For each pair of epochs, we compute the distances between the two corresponding
distributions of activity patterns (Fig. 1C,D). Following previous work (Berkes et al.,
2011), we first used the information-theory based Kullback-Liebler divergence to measure
the distance D(P |Q) between distributions P and Q in bits. We found that in 9 of the 10
sessions the distribution P (R) of activity during the trials was closer to the distribution
in post-task SWS [P (Post)] than in pre-task SWS [P (Pre)] (Fig. 2A).

On average the task-evoked distribution of patterns was 18.7 ± 6.2% closer to the
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Figure 2: Convergence of activity pattern distributions between the task and post-
task sleep. (A) Distances between the distributions of pattern frequencies in sleep and task
epochs; one dot per session. D(X|Y ): distance between pattern distributions in epochs X and Y :
Pre: pre-task SWS; Post: post-task SWS; R: correct task trials. (B) Scatter of convergence across
all sessions (circles). Convergence is D(Pre|R)−D(Post|R)/D(Pre|R). A value greater than zero
means that the activity pattern distribution in the task is closer to the distribution in post-task
SWS than the distribution in pre-task SWS. Black lines give mean ± 2 s.e.m in all panels. (C)
Data (dot) and 95% bootstrapped confidence interval (line) for the relative convergence of task
and post-task SWS activity pattern distributions for each session. Red: sessions with CIs above
0. (D) - (F) As (A)-(C), using Hellinger distance. All P -values from 1-tailed Wilcoxon signrank
test, with N=10 sessions.

post-task SWS distribution than the pre-task SWS distribution (Fig. 2B), showing a
convergence between task-evoked and post-task SWS distributions. Further, we found a
robust convergence even at the level of individual sessions (Fig. 2C).

While the Kullback-Liebler divergence provides the most complete characterisation of
the distance between two probability distributions, estimating it accurately from limited
sample data has known issues (Panzeri et al., 2007). To check our results were robust,
we re-computed all distances using the Hellinger distance, a non-parametric measure that
provides a lower bound for the Kullback-Liebler divergence. Reassuringly, we found the
same results: the distribution P (R) of activity during the trials was consistently closer
to the distribution in post-task SWS [P (Post)] than in pre-task SWS [P (Pre)] (Fig.
2F-H; the mean convergence between task-evoked and post-task SWS distributions was
21± 2.8%).

The convergence between the task P (R) and post-task SWS P (Post) distributions was
also robust to both the choice of activity pattern binsize (Supplemental Figure 2) and the
choice of correct trials in the task distribution P (R) (Supplemental Figure 3).

Together, these results are consistent with the convergence over learning of the poste-
rior and prior distributions represented by mPFC population activity.
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Figure 3: Convergence is not accounted for by firing rate changes. (A) The distance
between the task and post-task sleep distributions D(Post|R) is always smaller than predicted by
firing rate changes during sleep alone D(Post−model|R), as given by the raster model. Black lines
give mean ± 2 s.e.m in all panels. (B) As in (A), using only activity patterns with K ≥ 2 spikes
from data and model. (C)-(D) As (A)-(B), using Hellinger distance. All P -values from 1-tailed
Wilcoxon signrank test, with N=10 sessions.

Convergence is not a consequence of firing rate changes

Population firing rate differences between waking and sleep states, and increases in SWS
firing after task-learning, could account for the convergence of distributions (Okun et al.,
2012; Fiser et al., 2013). To control for this, we used the “raster” model (Okun et al., 2012)
to generate surrogate sets of spike-trains that matched both the mean firing rates of each
neuron, and the distribution of total population activity in each time-bin (K = 0, 1, . . . , N
spikes per bin). Consequently, the occurrence rates of particular activity patterns in the
raster model are those predicted to arise from neuron and population firing rates alone.

We found that firing rates could not account for the convergence between task and
post-task SWS distributions. The data-derived distance D(Post|R) was always smaller
than the distance D(Post−model|R) predicted by the raster model (Fig. 3A). This was
true whether we used Kullback-Liebler divergence or the Hellinger distance (Fig. 3C) to
measure distances between distributions.

Our activity patterns are built from single units, unlike previous work using multi-unit
activity (Schneidman et al., 2006; Berkes et al., 2011; Okun et al., 2012; Tkacik et al.,
2014; Ganmor et al., 2015), so we expect our patterns to be sparse with rare synchronous
activity. Indeed our data are dominated by activity patterns with K = 0 and K = 1 spikes
(Supplemental Figure 4). If all patterns were K = 0 or K = 1, the raster model spike
trains would be exactly equivalent to the data. It is all the more surprising then that we
found such a consistent lower distance for our data-derived distributions.

It follows that the true difference between data and model is in the relative occurrence
of co-activation patterns with K ≥ 2 spikes. To check this, we applied the same analysis
to distributions built only from K ≥ 2 patterns, drawn from data and from the raster
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model fitted to the complete data. For these co-activation patterns, we found that the
data-derived distance D(Post|R) was always smaller than the distance D(Post−model|R)
predicted by the raster model (Fig. 2B,D). Across all sessions, the model-predicted dis-
tance D(Post−model|R) was between 3% and 46% greater than the data-derived distance
D(Post|R) using Kullback-Liebler divergence, indicating that much of the convergence be-
tween task and SWS distributions could not be accounted for by firing rates alone.

Reassuringly, for these K ≥ 2 activity pattern distributions, all convergence results
held (Supplemental Figure 5) despite the order-of-magnitude fewer sampled patterns.

Convergence is not a recency effect

We examined periods of SWS in order to most likely observe the sampling of a putative
internal model in a static condition, with no external inputs and minimal learning. But as
correct task trials more likely occur towards the end of a session, this raises the possibility
that the closer match between task and post-task SWS distributions are a recency effect,
due to some trace or reverberation in sleep of the most recent task activity.

The time-scales involved make this unlikely. Bouts of SWS did not start until typically
8 minutes after the end of the task (mean 397s; S.D. 188 s; Fig. 4A). Any reverberation
would thus have to last at least that long to appear in the majority of post-task SWS
distributions.

The intervening period before the first bout of SWS contains quiet wakefulness and
early sleep stages. If convergence was a recency effect, then we would expect that dis-
tributions [P (Rest)] of activity patterns in this more-immediate “rest” epoch would also
converge. We did not find this: across sessions, there was no evidence that the distri-
bution in post-task rest [P (Rest)] consistently converged on the distribution during task
trials [P (R)] (Fig. 4B,C; mean convergence was −8.7± 18.7%). Not only is the observed
convergence inconsistent with a recency effect, it seems also selective for activity in SWS.

Distributions selectively updated by outcome-predictive patterns

Our evidence for the existence of some learnt internal model in mPFC is based on the
assumption that the model is rule-related. We sought to test this assumption by looking
for evidence of rule-related encoding within the distributions of activity patterns. To do
so, we examined the correlates of activity pattern occurrence with behaviour. To rule
out pure firing rate effects here, we excluded all patterns with K = 0 and K = 1 spikes,
considering only co-activation patterns with two or more active neurons.

In the inference-by-sampling hypothesis, the difference between the prior distributions
sampled in spontaneous activity before and after learning should reflect the updated model
of the world. Here this predicts that the activity patterns differing most in sampling
between pre- and post-task SWS should be those related to the learnt rule. Remarkably,
this was exactly what we found: the patterns most predictive of outcome (Fig. 5A) were
also those that changed their sampling frequency the most between pre- and post-task
SWS (Fig. 5B-G).

Outcome-predictive patterns occur around the choice point

Consistent with the internal model being rule-related, we further found that the outcome-
predictive activity patterns preferentially occurred around the choice point of the maze
(Fig. 6A,B). Particularly striking was that patterns strongly predictive of outcome rarely
occurred in the starting arm (Fig. 6A). Together, the selective sampling changes over
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Figure 4: Convergence is not a recency effect. (A) Breakdown of each session into the
duration of its state components. The task epoch is divided into correct (red) and error (blue)
trials, and inter-trial intervals (white spaces). Trial durations were typically 2-4 seconds, so are
thin lines on this scale. The pre- and post-task epochs contained quiet waking and light sleep
states (“Rest” period) and identified bouts of slow-wave sleep (“SWS”). Inset: duration of the
Rest period between the end of the last trial and the start of the first SWS bout (lines give mean
± 2 s.e.m.) (B) Distances between the distributions of pattern frequencies in different epochs;
one dot per session. D(X|Y ): distance between pattern distributions in epochs X and Y : Pre:
pre-task SWS; Rest: immediate post-task rest period; R: correct task trials. Compare to Fig. 2A.
(C) Results from panel (B) expressed as the convergence between the distributions in the task and
post-task rest period. We also re-plot here the convergence between the task and post-task SWS
distributions. (P -values from 1-tailed Wilcoxon signrank test, with N=10 sessions).

learning to outcome-specific (Fig. 5) and location-specific (Fig. 6) activity patterns show
that the convergence of distributions (Fig. 1) is not a statistical curiosity, but is evidence
for the updating of a behaviourally-relevant internal model.

Discussion

Prefrontal cortex has been implicated in both planning and working memory during spatial
navigation (Baeg et al., 2003; Fujisawa et al., 2008; Ito et al., 2015; Spellman et al., 2015).
We find that moment-to-moment samples of population activity converge over learning of
a spatial navigation task, consistent with an inference-by-sampling computation under-
pinning task performance. Remarkably we observe this in precise activity patterns down
to 2 ms resolution. Previous work observed fine structure in stimulus-evoked population
activity patterns (Schneidman et al., 2006; Berkes et al., 2011; Tkacik et al., 2014); here
in a behavioural task we have identified clues to what such patterns encode – in this case,
the decision rule.

Our analyses suggest mPFC constructs a probabilistic internal model of a task. How
a cortical region encodes an internal model is an intriguing open question. A strong
candidate is the relative strengths of the synaptic connections both into and within the
encoding cortical circuit (Fiser et al., 2010; Habenschuss et al., 2013; Kappel et al., 2015).
The activity of a cortical circuit is strongly dependent on the pattern and strength of
the connections between its neurons (e.g. Cossell et al., 2015; Okun et al., 2015). Con-
sequently, defining the underlying model as the circuit’s synaptic network allows both
model-based inference through synaptically-driven activity and model learning through
synaptic plasticity (Fiser et al., 2010).

Our results are distinct from previous observations of task-specific replay during sleep
in prefrontal cortex (Euston et al., 2007), including reports (Peyrache et al., 2009) using the
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Figure 5: Coding of trial outcome by sampled activity patterns. (A) Example dis-
tributions of a pattern’s frequency conditioned on trial outcome from one session. (B) For all
co-activation patterns in one session, a scatter plot of outcome prediction and change in pattern
frequency between pre- and post-task SWS. Change is normalised to maximum change in the ses-
sion. (C) Distribution of change in pattern frequency according to outcome prediction over all ten
sessions. Colour intensity gives the cumulative probability of at least that change. White crosses
give the median absolute change for each distribution. In this example, distributions were built
using bins with 90 data-points each. Unbinned data are analysed in Supplemental Fig. 6. (D)
Correlation of outcome prediction and median change in pattern occurrence between sleep epochs
from (C), over all ten sessions. Red line is the best-fit linear regression (P < 0.0002, permutation
test). (E-F) As (C)-(D), for the worst-case correlation observed, with 25 data-points per bin. (G)
Summary of correlation results. Solid dots plot the correlation coefficient R between outcome
prediction and median change in pattern frequency obtained for different binnings of the data.
Coloured dots correspond to panels C-D and E-F. Lines each give the entire range of R obtained
from a 5000-repeat permutation test; none reach the equivalent data point (dashed line shows
equality), indicating all data correlations had P < 0.0002.

same data analysed here. In contrast to the work here, replay accounts do not consider
the statistical distributions of the observed patterns, nor identify the changed patterns
(beyond example templates in Euston et al., 2007), nor relate them to task behaviour;
moreover, replay is described for coincident activity on coarse time-scales greater than
those used here by a factor of 50 (Peyrache et al., 2009) up to a factor of 10000 (Euston
et al., 2007). They thus do not address the statistical changes to population-wide activity
predicted by theories of probabilistic population coding.

Even if the inference-by-sampling interpretation of the statistical changes turns out
to be wrong (Okun et al., 2012; Pouget et al., 2013), our results have demonstrated fine
time-scale changes in mPFC population activity, driven by learning during behaviour.
These data thus provide further informative constraints on theories of cortical computation
(Pouget et al., 2013; Luczak et al., 2015).
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Scatter plot of each pattern’s outcome prediction and sample locations in the maze (dot is me-
dian position; grey line is interquartile range); all positions given as a proportion of the linearised
maze from start of departure arm. Red lines indicate the approximate centre (solid) and bound-
aries (dashed) of the maze’s choice area (cf Fig 1A). (B) Proportion of activity patterns whose
interquartile range of sample locations enters the choice area (black dots and line). Grey region
shows mean (line) and 95% range (shading) of proportions from a permutation test. The data
exceed the upper limit of expected proportions for all outcome-predictive patterns.

Methods

Task and electrophysiological recordings The data analysed here were from ten
recording sessions in the study of (Peyrache et al., 2009). For full details on training,
spike-sorting, and histology see (Peyrache et al., 2009). Four Long-Evans male rats with
implanted tetrodes in prelimbic cortex were trained on the Y-maze task (Fig. 1A). Each
recording session consisted of a 20-30 minute sleep or rest epoch (pre-task epoch), in which
the rat remained undisturbed in a padded flowerpot placed on the central platform of the
maze, followed by a task epoch, in which the rat performed for 20-40 minutes, and then
by a second 20-30 minute sleep or rest epoch (post-task epoch). Every trial started when
the rat reached the departure arm and finished when the rat reached the end of one of the
choice arms. Correct choice was rewarded with drops of flavoured milk. Each rat had to
learn the current rule by trial-and-error, either: go to the left arm; go to the right arm;
go to the lit arm. To maintain consistent context across all sessions, the extra-maze light
cues were lit in a pseudo-random sequence across trials, whether they were relevant to the
rule or not.

We analysed here data from the ten sessions in which the previously-defined learning
criterion trial was reached: the first trial of a block of at least three consecutive rewarded
trials after which the performance until the end of the session was above 80%. In later
sessions (not analysed here) the rats reached the criterion for changing the rule: ten
consecutive correct trials or one error out of 12 trials. Thus each rat learnt at least two
rules.

Tetrode recordings were spike-sorted only within each recording session for conservative
identification of stable single units. In the ten sessions we analyse here, the populations
ranged in size from 15-55 units.

Activity pattern distributions For a population of size N , we characterised popula-
tion activity from time t to t+δ as an N -length binary vector with each element being 1 if
at least one spike was fired by that neuron in that time-bin, and 0 otherwise. In the main
text we use a binsize of δ = 2 ms throughout, and report the results of using larger binsizes
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in Supplemental Figure 2. We build patterns using the number of recorded neurons N , up
to a maximum of 35 for computational tractability. The probability distribution for these
activity patterns was compiled by counting the frequency of each pattern’s occurrence and
normalising by the total number of pattern occurrences.

Comparing distributions We quantified the distance D(P |Q) between probability dis-
tributions P and Q using both the Kullback-Liebler divergence (KLD) and the Hellinger
distance.

The KLD is an information theoretic measure to compare the similarity between two
probability distributions. Let P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn) be two discrete
probability distributions, for n distinct possibilities – for us, these are all possible individual
activity patterns. The KLD is then defined as d(P |Q) =

∑n
i=1 piln(piqi ). This measure

is not symmetric, so that in general d(P |Q) 6= d(Q|P ). Following prior work (Berkes
et al., 2011; Okun et al., 2012), we thus compute and report the symmetrised KLD:
D(P |Q) = (d(P |Q) + d(Q|P ))/2.

There are 2N distinct possible activity patterns in a recording with N neurons. Most
of these activity patterns are never observed, so we exclude the activity patterns that
are not observed in either of the epochs we compare. The empirical frequency of the
remaining activity patterns is biased due to the limited length of the recordings (Panzeri
et al., 2007). To counteract this bias, we use the Bayesian estimator and quadratic bias
correction exactly as described in (Berkes et al., 2011). The Berkes estimator assumes a
Dirichlet prior and multinomial likelihood to calculate the posterior estimate of the KLD;
we use their code (github.com/pberkes/neuro-kl) to compute the estimator. We then
compute a KLD estimate using all S activity patterns, and using S/2 and S/4 patterns
randomly sampled without replacement. By fitting a quadratic polynomial to these three
KLD estimates, we can then use the intercept term of the quadratic fit as an estimate
of the KLD if we had access to recordings of infinite length (Strong et al., 1998; Panzeri
et al., 2007).

The Hellinger distance for two discrete distributions P andQ isD(P |Q) = 1
2

∑n
i=1(
√
pi−√

qi)
2. To a first approximation, this measures for each pair of probabilities (pi, qi) the dis-

tance between their square-roots. In this form, D(P |Q) = 0 means the distributions are
identical, and D(P |Q) = 1 means the distributions are mutually singular: all positive
probabilities in P are zero in Q, and vice-versa. The Hellinger distance is a lower bound
for the KLD: 2D(P |Q) ≤ KLD.

However we computed the distances between pairs of distributions, to compare those
distances between sessions we computed a normalised measure of “convergence”. The
divergence between a given pair of distributions could depend on many factors that dif-
fer between sessions, including that each recorded population was a different size, and
how much of the relevant population for encoding the internal model we recorded. Conse-
quently, the key comparison between the divergences D(Pre|R)−D(Post|R) also depends
on these factors. To compare the difference in divergences across sessions, we computed
a “convergence” score by normalising by the scale of the divergence in the pre-task SWS:
((D(Pre|R)−D(Post|R)) /D(Pre|R). We express this as a percentage. Convergence
greater than 0% indicates that the distance between the task (R: correct trials) and post-
task SWS (Post) distributions is smaller than that between the task and pre-task SWS
(Pre) distributions.

Statistics Quoted measurement values are means ± s.e.m. All hypothesis tests used
the non-parametric Wilcoxon signtest for a one-sample test that the sample median for

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 24, 2016. ; https://doi.org/10.1101/027102doi: bioRxiv preprint 

https://doi.org/10.1101/027102
http://creativecommons.org/licenses/by-nc/4.0/


11

the population of sessions is greater than zero. In all cases N=10 sessions. Throughout
we plot mean values and their approximate 95% confidence intervals given by ± 2 s.e.m.

Bootstrapped confidence intervals (in Fig. 2C,F) for each session were constructed
using 1000 bootstraps of each epoch’s activity pattern distribution. Each bootstrap was
a sample-with-replacement of activity patterns from the data distribution X to get a
sample distribution X∗. For a given pair of bootstrapped distributions X∗, Y ∗ we then
compute their distance D∗(X∗|Y ∗). Given both bootstrapped distances D∗(Pre|R) and
D∗(Post|R), we then compute the bootstrapped convergence (D∗(Pre∗|R∗)−D∗(Post∗|R∗)) /D∗(Pre∗|R∗).

Raster model To control for the possibility that changes in activity pattern occurrence
were due solely to changes in the firing rates of individual neurons and the total population,
we used the raster model exactly as described in (Okun et al., 2012). For a given data-set
of spike-trains N and binsize δ, the raster model constructs a synthetic set of spikes such
that each synthetic spike-train has the same mean rate as its counterpart in the data, and
the distribution of the total number of spikes per time-bin matches the data. In this way,
it predicts the frequency of activity patterns that should occur given solely changes in
individual and population rates.

For Fig 3 we generated 1000 raster models per session using the spike-trains from the
post-task SWS in that session. For each generated raster model, we computed the distance
between its distribution of activity patterns and the data distribution for correct trials in
the task D(Post −model|R). This comparison gives the expected distance between task
and post-task SWS distributions due to firing rate changes alone. We plot the difference
between the mean D(Post−model|R) and the data D(Post|R) in Fig. 3.

Outcome prediction To check whether individual activity patterns coded for the out-
come on each trial, we used standard receiver-operating characteristic (ROC) analysis.
For each pattern, we computed the distribution of its occurrence frequencies separately
for correct and error trials (as in the example of Fig. 5A). We then used a linear classifier
to compute coding of outcome: for a given frequency threshold T , we find the fraction
of correctly classified correct trials (true positive rate) and the fraction of error trials in-
correctly classified as correct trials (false positive rate). Plotting the false positive rates
against the true positive rates for all values of T gives the ROC curve. The area under
the ROC curve gives the probability that a randomly chosen pattern frequency will be
correctly classified as from a correct trial; we report this as P (predict outcome).

Relationship of sampling change and outcome prediction Within each session,
we computed the change in each pattern’s occurrence between pre- and post-task SWS.
These were normalised by the maximum change within each session. Maximally changing
patterns were candidates for those updated by learning during the task. Correlation
between change in pattern sampling and outcome prediction was done on normalised
changes pooled over all sessions. Change scores were binned using variable-width bins of
P (predict outcome), each containing the same number of data-points to rule out power
issues affecting the correlation. We regress P (predict outcome) against median change in
each bin, using the mid-point of each bin as the value for P (predict outcome). Our main
claim is that prediction and change are dependent variables (Fig. 5C-G). To test this claim,
we compared the data correlation against the null model of independent variables, by
permuting the assignment of change scores to the activity patterns. For each permutation,
we repeat the binning and regression. We permuted 5000 times to get the sampling
distribution of the correlation coefficient R∗ predicted by the null model of independent
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variables. To check robustness, all analyses were repeated for a range of fixed number of
data-points per bin between 20 and 100.

Relationship of location and outcome prediction The location of every occurrence
of an activity pattern was expressed as normalized position on the linearised maze (0: start
of departure arm; 1: end of the chosen goal arm). Our main claim is that activity patterns
strongly predictive of outcome occur predominantly around the choice point of the maze,
and so prediction and overlap of the choice area are dependent variables (Fig. 6B). To test
this claim, we compared this relationship against the null model of independent variables,
by permuting the assignment of location centre-of-mass (median and interquartile range)
to the activity patterns. For each permutation, we compute the proportion of patterns
whose interquartile range overlaps the choice area, and bin as per the data. We permuted
5000 times to get the sampling distribution of the proportions predicted by the null model
of independent variables: we plot the mean and 95% range of this sampling distribution
as the grey region in Figure 6B.
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Figure S1: Related to Figure 2. Consistent sampling of activity patterns across session
epochs. Each circle is the proportion of activity patterns that appeared only in that epoch of
the session. Black bar and line give the median and interquartile range across the 10 sessions.
Note the log-scale, showing that the median proportion of unique patterns was less then 0.001
in all three epochs of the session.
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Figure S2: Related to Figure 2. Convergence of distributions over choice of pattern
binsize. We plot here the dependence of the convergence of task and post-task SWS distribu-
tions on the binsize used for constructing the activity patterns. We see that the convergence of
the distribution of patterns on correct task trials is robust to an order of magnitude increase
in binsize (the distribution at the binsize of 2ms is plotted in Fig. 2B). Above a binsize of 50
ms, convergence is statistically indistinguishable from zero, meaning that the pre- and post-task
SWS distributions are equidistant, on average, from the task distribution. This suggests there is
statistical structure in fine time-scale activity patterns that is not present on larger time-scales.
Circles are convergence in individual sessions using Kullback-Liebler divergence; black lines give
mean ± 2 s.e.m. Above each distribution is the P-value from a 1-tailed Wilcoxon signrank test,
with N=10 sessions.
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Figure S3: Related to Figure 2. Effect on convergence of including all correct trials. In
the main text, we construct all task-related distributions by considering only correct trials after
the learning criterion trial (see Supplementary Note - Theory). We examine here whether our
results were strongly contingent on that choice. (A) If we include all correct trials of a session,
we find that convergence between task and post-task SWS distributions is still present (P -values
from 1-tailed Wilcoxon signrank test, with N=10 sessions). Note that the convergence between
task and post-task SWS distributions is if anything greater for post-learning trials, even though
that task distribution is built from fewer samples, and so might be expected to be noisier. Black
lines give mean ± 2 s.e.m. (B) Difference in convergence between using only post-learning or
all correct trials for each session. (P -values for from 1-tailed Wilcoxon paired-sample ranksum
test, with N=10 sessions). Black lines give mean ± 2 s.e.m.
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Figure S4: Related to Figure 3. Distributions of synchronous spiking in all activity
patterns. (A)-(C) Distributions of the number of unique recorded activity patterns containing
exactly K spikes, for pre-task SWS (A), correct task trials (B), and post-task SWS (C). Each
line is the distribution for one session. (D)-(E) As (A)-(C), plotted on a log-scale to visualise
the tails of the distributions. Co-activation patterns (K ≥ 2 synchronous spikes) form a small
proportion of all patterns.
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Figure S5: Related to Figure 3. Convergence between distributions of co-activation
patterns. Analysis of distributions restricted to patterns with two or more co-active neurons.
(A) Distances between the distributions of pattern frequencies in sleep and task epochs; one dot
per session. D(X|Y ): distance between pattern distributions in epochs X and Y : Pre: pre-task
SWS; Post: post-task SWS; R: correct task trials. (B) Scatter of convergence across all sessions
(circles). Convergence greater than zero means that the activity pattern distribution in the
task is closer to the distribution in post-task SWS than the distribution in pre-task SWS. Black
lines give mean ± 2 s.e.m. (C) - (D) As (A)-(B), using Hellinger distance. All P -values from
1-tailed Wilcoxon signrank test, with N=10 sessions.
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Figure S6: Related to Figure 5. Joint distribution of outcome prediction and change
in sampling. Here we plot every co-activation pattern’s joint values of P (outcome) and the
absolute normalised change in sampling between pre- and post-task slow-wave sleep (N = 2353
patterns with K ≥ 2 spikes per pattern across all 10 sessions). The linear regression in red
indicates a clear relationship between the two (R = 0.22, P < 10−27). Nonetheless, the majority
of patterns do not markedly change their sampling, nor are they predictive of outcome: 72%
(1699/2353) have P (outcome) ≤ 0.6 and a change of less than 10%. Thus fitting a linear
regression is not robust, as it is dominated by fitting to this majority that do not change.
Rather, it is clear that there is a distribution of change for each P (outcome), which we analyse
in the main text.

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 24, 2016. ; https://doi.org/10.1101/027102doi: bioRxiv preprint 

https://doi.org/10.1101/027102
http://creativecommons.org/licenses/by-nc/4.0/


1

Supplemental Note - Theory
Abhinav Singh, Adrien Peyrache and Mark D. Humphries

Neural inference

How do we know the current state of the world given some input from it? Our input is
both limited in time and noisy, so our estimates are inherently uncertain. Consequently,
we have an inference problem: what is our best guess of the current state of the world
given some finite, noisy input? We can state this problem as being equivalent to inferring
the probability distribution

P (state|input,model) (1)

at some given moment in time t; in words, this is the probability of currently being in
a given state, out of all possible states, given both the available input and some internal
model of the world. Using Bayes’ theorem, we can make this dependence on input and
model explicit:

P (state|input,model)︸ ︷︷ ︸
posterior

∝ P (input|state,model)︸ ︷︷ ︸
likelihood

P (state|model)︸ ︷︷ ︸
prior

(2)

The prior is the internal estimate of the current state before the observation input, the
posterior is the estimate of the current state after observing input, and the improvement in
the estimate arises from the new information available in input that is processed through
the likelihood. All these are dependent on the model of the world we are using. This
internal model specifies how we interpret the inputs in the likelihood, and generate the
prior probabilities. If we change the model, we change these two operations, and so change
our estimates of the current state of the world. We can think of the model as specifying
what we expect to be relevant in the input, and what states we expect to be in.

One goal of learning is thus to update the internal model to match the statistical
properties of the world. The better the model, the better we will be able to predict the
state of the external world. But as we can only access directly the inputs generated from
those states, formally we say that learning seeks to maximise P (input|model) over all
possible inputs at all times t by changing the parameters of the model. A model which
always generates maximum values for P (input|model) is the best possible learnt internal
model of the external world. Obtaining such a model necessarily means that we have
experienced all possible states giving rise to those inputs, so that the prior P (state|model)
is always accurate, and we obtain no new information from the likelihood. Consequently,
the posterior probability becomes always proportional to the prior probability. A measure
of learning is thus how close the prior and posterior distributions have become.

Inference-by-sampling

The inference-by-sampling theory (Fiser et al., 2010; Berkes et al., 2011) proposes that
the model is encoded by the particular set and weight of connections in a neural circuit.
In this view, the posterior distribution is encoded by the activity of the circuit evoked by
some input. Crucially, it predicts that the prior distribution is encoded by spontaneous
activity of the same circuit, as this is solely sampling the model.

If the circuit is the model, then the theory predicts that the circuit’s instantaneous
population activity is a sample from a probability distribution - from the posterior when
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receiving external input, from the prior in spontaneous activity. Some downstream neu-
rons, receiving these samples as a consecutive sequence of inputs, can reconstruct the
probability distribution just by summing their inputs over time.

For simplicity, Berkes et al. (2011) consider the instantaneous population activity as
some binary vector indicating whether each neuron was active or inactive in a very small
time window. This representation makes the distributions easy to measure experimentally.

Learning updates synaptic weights, altering the encoded model. The prediction that
posterior and prior distributions converge over learning is thus neurally equivalent to the
convergence between the distributions of evoked and spontaneous population activity.

Evidence for inference-by-sampling in visual cortices

These ideas were developed in the context of visual processing, and particularly with
reference to V1. In this context, the “state” of the world is the current view, and the
input is the information received by the retina. The proposed purpose of inference in V1
is to infer the most likely low level visual features – edges, for example – present in the
current view, given the input to the retina. V1’s internal model is then a statistical model
of the low-level features, which can be built over a life-time’s experience of the world.

Consequently, Berkes and colleagues (Berkes et al., 2011) tested the construction of
this internal model by recording from area V1 at different stages of development in the
ferret. Natural images were used to probe the current posterior distribution supported
by the model, and darkness was used to probe the current prior distribution. Over de-
velopment, the activity distribution evoked by natural images increased its similarity to
the distribution during darkness. This increase was robust to a series of controls for si-
multaneous changes in firing rate statistics (Berkes et al., 2011; Okun et al., 2012; Fiser
et al., 2013). Their results are consistent with the inference-by-sampling interpretation in
which the internal model is updated by experience with the world, so that the posterior
and prior distributions converge.

Inference-by-sampling in higher cortices over learning during
behaviour

These results could not address learning separately from development. Further, unknown is
whether inference-by-sampling can be observed in higher-order cortices, or during ongoing
behaviour.

There is no a priori reason to expect that inference-by-sampling would be restricted
to primary sensory cortices. Much has been written about the generic nature of the
cortical microcircuit (Thomson and Lamy, 2007; Harris and Shepherd, 2015), so we might
reasonably expect that, if an internal model is encoded by the neural circuit in V1, so
other similar cortical circuits in other regions encode other internal models.

Compelling support for this has come from modelling work by Maass and colleagues
(Buesing et al., 2011; Habenschuss et al., 2013). Their models have shown how a wide range
of plausible cortical circuit models all produce the necessary dynamics to sample from a
statistical model encoded by the circuit’s connections (Buesing et al., 2011; Habenschuss
et al., 2013). Moreover, the models also replicate key properties of the firing statistics in
cortex, including the close-to-Poisson irregularity of firing patterns. These suggest that
the inference-by-sampling hypothesis is indeed a plausible generic computation for cortex.
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Inference of state is also a generic operation. Nothing in Equation 2 limits its ap-
plication to sensory information. We might consider “state” in the sense used in the
reinforcement learning literature (Sutton and Barto, 1998), as a generic description of
the current values of variables of the external world. Indeed, in forms of reinforcement
learning that depend on simulation of future actions, “state” in this context can even refer
to the simulated values of variables in the external world - for which we would use the
internal model to simulate possible outcomes. During behaviour, we might thus expect
that an internal model is learnt about the statistical dependence of outcomes on decisions
in particular contexts.

The power of the inference-by-sampling hypothesis is that we do not need to know the
internal model to test for its existence. We need not specify an exact model to test the
convergence of distributions in evoked and spontaneous activity, but such a convergence
is evidence of an updated internal model.

Consequently, to test the generality of the inference-by-sampling hypothesis, we sought
to test the convergence of distributions over learning using data from the medial prefrontal
cortex (mPfC) of rats learning rules in a Y-maze task (Peyrache et al., 2009). By looking
at these data for a change to some internal model in mPFC, we are assuming only that
the model is related to the rule, but not any specific form of model. It could encode the
set of task states and their transitions; it could encode the current sequence of required
actions; it could be a statistical model of outcomes. Supporting this assumption, we know
mPFC is necessary for successful acquisition of new rules (Ragozzino et al., 1999; Rich
and Shapiro, 2007), and that mPFC pyramidal neurons change their firing patterns during
acquisition of the rules used here (Benchenane et al., 2010).

Even if the interpretation of the convergence of distributions in the inference-by-
sampling framework turns out to be incorrect, the observation of such a convergence
between waking and spontaneous activity over learning still offers compelling clues to the
nature of cortical computation.

What distributions to compare?

Nonetheless, the inference-by-sampling theory places limits on exactly which activity dis-
tributions to compare. In the Berkes et al. (2011) study, this decision was made simple
by the elegant experimental design. As they monitored V1 over development, so it was
reasonable to expect the internal model to adapt to the statistics of the world over a life-
time. Their tests at different developmental stages were samples of the current posterior
and prior distributions supported by the model. We would not expect significant changes
to the internal model during their testing, as it was short on the time-scale of the develop-
mental changes, and so they could compare their entire recorded distributions of evoked
and spontaneous activity. In other words, they were able to compare two distributions
from the same, static model.

Our data on rats learning rules in a Y-maze allow us to address if learning of the
internal model can be observed. But learning on short time-scales brings the confounding
issue that learning the model is happening online, while we are monitoring activity. So
what distributions should we compare?

We chose the 10 training sessions in which the rat clearly acquired the present rule, so
we could be reasonably sure that we would observe changes that correlated with learning.
We reasoned that neural activity in clearly identified sleep periods before and after the
session was a clear candidate for spontaneous activity, as it occurred in the absence of
external sensory input. We used slow-wave sleep periods to clearly delineate the presence
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of sleep. As the rats acquired the rule in that session then, if mPfC indeed encodes rule
acquisition, we expect that the spontaneous activity in sleep after the session is drawn
from the internal model related to the correct rule.

We can only be sure that during behaviour this correct-rule model would be sampled on
correct trials. This does not imply that mPfC activity is causal for decisions on those trials
- even in a monitoring or goal-encoding role, mPfC activity would reflect whether or not
the correct decision was made. The mPfC activity on error trials is unconstrained by the
theory. Consequently, we can only be sure that, if the inference-by-sampling hypothesis is
true, then the distribution of samples on correct trials would converge, on average, to the
distribution in sleep after learning.

The final, subtle constraint is that overt behavioural signs of learning likely indicates
ongoing synaptic plasticity. For example, on the same Y-maze, some pyramidal neurons
in mPfC change the timing of their spikes in relation to the hippocampal theta rhythm,
indicating local circuit plasticity (Benchenane et al., 2010). If so, then the internal model is
changing during behaviour. But the internal model putatively sampled in the post-session
sleep will be stable. To thus minimise the confound of these changes during behaviour,
and compare static posterior and prior distributions (as per Berkes et al., 2011), we sought
to identify where the internal model updating may have finished. A useful proxy for this is
the asymptotic behavioural performance. We thus used the trial at which the rat reached
the learning criteria as the indicator of relative stability in the internal model. All correct
trials from this trial onwards were then used to construct the activity distribution during
the task - we call this distribution P (R) in the main text, and distances measured between
it and some other distribution P (X) we call D(X|R).
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