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Abstract

Cortical population activity may represent sampling from an internal model. Using
data from rats learning rules on a maze task, we show that sampling rates of population
activity patterns in prefrontal cortex converge between waking and sleep over learning.
Sample rate changes were greatest for activity patterns predictive of correct choice and
expressed at the choice point. Our results suggest inference-by-sampling is a general
computational principle for cortex.

Cortical neurons collectively code and compute information1,2. The recent inference-
by-sampling hypothesis proposes that cortical population activity at some time t is a
sample from an underlying probability distribution3,4, which can be reconstructed by
integrating over samples. A key prediction is that the distribution during “spontaneous”
activity (representing the prior) and during evoked activity (representing the posterior)
converge over repeated experience. This convergence represents the updating of an internal
model to match the relevant statistics of the external world. Just such a convergence has
been observed in small populations from ferret V1 over development4. Unknown is the
extent to which this hypothesis is a general computational principle for cortex5,6: whether
it can be observed during learning, or in higher-order cortices, or during ongoing behaviour.

To address these issues, we analysed previously-recorded population activity from the
medial prefrontal cortex (mPFC) of rats learning rules in a Y-maze task7 (Fig. 1a). Medial
PFC is necessary for learning new rules or strategies8,9, and change in mPFC neuron firing
times correlates with successful rule learning10, suggesting PFC plays a role in building
an internal model of a task. We theorised that mPFC population activity on each trial
was sampling from the posterior distribution over (unknown) task parameters; and that
“spontaneous” activity in slow-wave sleep (SWS), occurring in the absence of task-related
stimuli and behaviour, samples the prior distribution. We focussed on ten sessions where
the animal reached the learning criterion for a rule mid-session (Methods), after at least
one full prior session with the same rule. In this way, we sought to isolate changes in
population activity solely due to rule-learning, assuming that prior experience allowed
learning of the basic task parameters, including stimuli and reward locations.

Activity patterns were characterised as a binary vector (or “word”) of active and
inactive neurons (Fig. 1b). Throughout we consider only “co-activation” patterns with
two or more active neurons (see Methods). Consistent with being samples from related
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posterior (in task) and prior (in sleep) distributions, each recorded population visited the
same highly limited sub-space of all possible activity patterns across sleep and behaviour
(Supplementary Figure 1)2,11.

We found that the task-evoked distribution of patterns after learning was more sim-
ilar to the distribution in post-task than in pre-task SWS (Fig. 1c-f). This increase in
similarity only occurred for rewarded trials, not for unrewarded trials (Fig. 1g). The
increase was robust to choice of activity pattern binsize (Supplementary Figure 2). To-
gether, these results are consistent with the convergence over learning of the posterior and
prior distributions represented by mPFC population activity.

Population firing rate differences between waking and sleep states, and increases in
SWS firing after task-learning, could account for the convergence of distributions12,13. To
control for this, we used the “raster” model12 to generate surrogate sets of spike-trains
that matched both the mean firing rates of each neuron, and matched the moment-to-
moment total population activity in each time-bin. These rate effects could not account
for the convergence (Fig. 1h).

In the inference-by-sampling hypothesis, the difference between the prior distributions
sampled in spontaneous activity before and after learning should reflect the changed coding
of the learnt parameter. Here this predicts that the activity patterns differing most in
sampling between pre- and post-task SWS should be those related to the learnt rule.
Remarkably, this is exactly what we find: the patterns most predictive of outcome (Fig.
2a) are also those that changed their sampling frequency the most between pre- and post-
task SWS (Fig. 2b,c).

Consistent with the predictive patterns playing a guiding role in behaviour, we further
found that they preferentially occurred around the choice point of the maze (Fig. 3a,b).
Particularly striking was that patterns strongly predictive of outcome rarely occurred in
the starting arm (Fig. 3a). Together, the selective sampling changes over learning to
outcome-specific (Fig. 2) and location-specific (Fig. 3) activity patterns show that the
convergence of distributions (Fig. 1) is not a statistical curiousity, but reflects the updating
of a behaviourally-relevant probability distribution.

Prefrontal cortex has been implicated in planning and working memory during spatial
navigation14–17. We find moment-to-moment samples of population activity converge over
learning of a spatial navigation task, consistent with an inference-by-sampling computation
underpinning task performance. Remarkably we observe this in precise activity patterns
down to 2 ms resolution. Previous work observed fine structure in stimulus-evoked popu-
lation activity patterns4,18,19; here in a behavioural task we have identified clues to what
such patterns encode – in this case, the decision rule. Our analyses suggest mPFC con-
structs a probabilistic internal model of task parameters, which is sampled online to guide
behaviour.

Methods

Task and electrophysiological recordings The data analysed here were from ten
recording sessions in the study of ref.7. For full details on training, spike-sorting, and
histology please see ref.7. Four Long-Evans male rats with implanted tetrodes in prelimbic
cortex were trained on the Y-maze task (Fig. 1a). Each recording session consisted of a
20-30 minute sleep or rest epoch (pre-task epoch), in which the rat remained undisturbed
in a padded flowerpot placed on the central platform of the maze, followed by a task epoch,
in which the rat performed for 20-40 minutes, and then by a second 20-30 minute sleep
or rest epoch (post-task epoch). Every trial started when the rat reached the departure
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Figure 1: Convergence of activity pattern distributions between the task and post-
task sleep. a Y-maze task set-up (top); each session included the epochs of pre-task sleep,
task trials, and post-task sleep (bottom). One of three target rules for obtaining reward was
enforced throughout a session: go right; go left; go to the lit arm. b The population activity of
simultaneously recorded spike trains was represented as a binary activity pattern in some small
time-bin (here 2 ms). c Scatter plot of the joint frequency of every occurring pattern in pre-task
SWS and task epochs for one session. d Distances between the distributions of pattern frequencies
in sleep and task epochs; one dot per session. D(X|Y ): distance between pattern distributions
in epochs X and Y : Pre: pre-task SWS; Post: post-task SWS; R: correct task trials. e Median
and 95% bootstrapped CI for the relative convergence of task and post-task SWS activity pattern
distributions for each session. Convergence greater than zero means that the activity pattern
distribution in the task is closer to the distribution in post-task SWS than the distribution in pre-
task SWS. Red: sessions with CIs above 0. f Scatter of convergence across all sessions (circles).
Black lines give mean ± 2 s.e.m (convergence greater than zero at P = 0.0049). g Scatter of
convergence for correct against error trials for all sessions (difference in convergence greater than
zero at P = 0.019). h Distance between task and post-task sleep distributions D(Post|R) is always
smaller than predicted by firing rate changes alone D(Post − model|R). For model predictions,
dots and bars give means and 95% intervals.

arm and finished when the rat reached the end of one of the choice arms. Correct choice
was rewarded with drops of flavoured milk. Each rat had to learn the current rule by
trial-and-error, either: go to the left arm; go to the right arm; go to the lit arm. To
maintain consistent context across all sessions, the extra-maze light cues were lit in a
pseudo-random sequence across trials, whether they were relevant to the rule or not.

We analysed here data from the ten sessions in which the previously-defined learning
criterion trial was reached: the first trial of a block of at least three consecutive rewarded
trials after which the performance until the end of the session was above 80%. In later
sessions (not analysed here) the rats reached the criterion for changing the rule: ten
consecutive correct trials or one error out of 12 trials. Thus each rat learnt at least two
rules.

Tetrode recordings were spike-sorted only within each recording session for conservative
identification of stable single units. In the ten sessions we analyse here, the populations
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Figure 2: Coding of trial outcome by sampled activity patterns. a Example distributions
of a pattern’s frequency conditioned on trial outcome from one session. b For all co-activation
patterns in one session, the correlation between outcome prediction and change in pattern frequency
between pre- and post-task SWS. c Correlation of outcome prediction and change in pattern
occurrence between sleep epochs, over all ten sessions. Dots show median change values (for N=90
data-points each; Supplementary Fig. 3 shows that the regression is robust to all choices of N).
Red line is the best-fit linear regression (P < 0.0002, permutation test).
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Figure 3: Outcome predicting activity patterns are sampled at the choice area. a
Scatter plot of each pattern’s outcome prediction and sample locations in the maze (dot is median
position; grey line is interquartile range); all positions given as a proportion of the linearised maze
from start of departure arm. Red lines indicate the approximate centre (solid) and boundaries
(dashed) of the maze’s choice area. b Proportion of activity patterns whose interquartile range of
sample locations crosses the choice area (black dots and line). Grey region shows mean (line) and
95% range (shading) of proportions from permutation test.

ranged in size from 15-55 units.

Activity pattern distributions For a population of size N , we characterised popula-
tion activity from time t to t+δ as an N -length binary vector with each element being 1 if
at least one spike was fired by that neuron in that time-bin, and 0 otherwise. In the main
text we use a binsize of δ = 2 ms throughout, and report the results of using larger binsizes
in Supplementary Figure 2. We build patterns using the number of recorded neurons N ,
up to a maximum of 35 for computational tractability.

The probability distribution for these activity patterns was compiled by counting the
frequency of each pattern’s occurrence and normalising by the total number of pattern
occurrences.

Throughout the main text we consider only co-activation patterns consisting of two
or more active neurons. We do this to focus on genuine changes in population activity
patterns distinct from pure firing rate changes: patterns with only one active neuron could
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change in occurrence either because of changes in relative spike-timing of that (or other)
neurons, or because that neuron changed its firing rate. Moreover, when considering the
predictive coding (Fig. 2) and position (Fig. 3) properties of individual patterns, this
choice allows us to rule out pure firing rate codes. Our main results of convergence were
obtained despite this restriction: if we do include all patterns in our distributions, then we
find that the convergence between task and post-task sleep distributions is both stronger
and consistent across every session (Supplementary Figure 4).

Comparing distributions We quantified the distance D(P |Q) between probability dis-
tributions P and Q using the standard Hellinger distance. Given we have two discrete
probability distributions P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn), the Hellinger dis-

tance is D(P |Q) =
√∑n

i=1(
√
pi −

√
qi)2. To a first approximation, this measures for each

pair of probabilities (pi, qi) the Euclidean distance between their square-roots. In this
form, D(P |Q) = 0 means the distributions are identical, and D(P |Q) =

√
2 means the

distributions are mutually singular: all positive probabilities in P are zero in Q, and
vice-versa.

To compare the distances between pairs of distributions, we compute convergence as
100× (D(Pre|R)−D(Post|R)) /D(Pre|R). Convergence greater than 0% indicates that
the distance between the task (R: correct trials) and post-task SWS (Post) distributions
is smaller than that between the task and pre-task SWS (Pre) distributions.

Our main goal was to compare the distribution of activity patterns occurring during
task trials (while the animal was putatively learning) with the distributions in pre- and
post-task SWS. Under the inference-by-sampling hypothesis, we expect the distribution
in the task is closer to that in post-task SWS, reflecting the updated prior distribution
from which the population is sampling during spontaneous activity. If mPFC is playing a
role in rule-learning, then we would expect that patterns who change sampling frequency
due to learning would only unambiguously appear on correct trials. Consequently, the
convergence between distributions could be confounded by correct arm choices made by
chance without learning the rule: in these trials, sampled activity patterns are not causal
for the correct choice, and their sampling rate would not be matched in the “spontaneous”
distribution after successful learning. To control for this, we constructed distributions for
correct trials from all correct trials after the learning criterion trial, which attempts to iden-
tify the time-point at which the animal has clearly learnt the correct rule. Similarly, only
error trials before the learning criterion trial were included in the error-trial distribution.
Consistent with this confound, when including all correct trials in our task distribution,
incorporating likely success by random choice, we see a weakening of convergence between
task and post-task SWS distributions (Supplementary Fig. 5).

Statistics Bootstrapped confidence intervals (in Fig. 1e) for each session were con-
structed using 1000 bootstraps of each epoch’s distribution. Each bootstrap was a sample-
with-replacement of activity patterns from the data distribution X to get a sample distri-
bution X∗. For a given pair of bootstrapped distributions X∗, Y ∗ we then compute their
distance D∗(X∗|Y ∗). Given both bootstrapped distances D∗(Pre|R) and D∗(Post|R), we
then compute the bootstrapped convergence (D∗(Pre∗|R∗)−D∗(Post∗|R∗)) /D∗(Pre∗|R∗).

All hypothesis tests used the non-parametric Wilcoxon ranksum test for either: a one-
sample test that the sample median is greater than zero (Fig. 1f; Supplementary Figures
4 and 5); or a paired-sample test that the difference in sample medians is greater than
zero (Fig. 1g). Equivalent results were obtained using t-tests despite low power.
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Raster model To control for the possibility that changes in activity pattern occurrence
were due solely to changes in the firing rates of individual neurons and the total population,
we used the raster model - see ref.12 for details. For a given data-set of spike-trains
N and binsize δ, the raster model constructs a synthetic set of spikes such that each
synthetic spike-train has the same mean rate as its counterpart in the data, and the
distribution of the total number of spikes per time-bin matches the data. In this way,
it predicts the frequency of activity patterns that should occur given solely changes in
individual and population rates. For Fig 3g, we generated 1000 raster models per session
using the spike-trains from the post-task SWS in that session. For each generated raster
model, we computed the distance between its distribution of activity patterns and the data
distribution for correct trials in the task. This comparison gives the expected distance
between task and post-task SWS distributions due to firing rate changes alone. We plot
the mean and 95% interval of that distance over the 1000 raster models (Fig. 1h).

Outcome prediction To check whether individual activity patterns coded for the out-
come on each trial, we used standard receiver-operating characteristic (ROC) analysis.
For each pattern, we computed the distribution of its occurrence frequencies separately
for correct and error trials (as in the example of Fig. 2a). We then used a linear classifier
to compute coding of outcome: for a given frequency threshold T , we find the fraction
of correctly classified correct trials (true positive rate) and the fraction of error trials in-
correctly classified as correct trials (false positive rate). Plotting the false positive rates
against the true positive rates for all values of T gives the ROC curve. The area under
the ROC curve gives the probability that a randomly chosen pattern frequency will be
correctly classified as from a correct trial; we report this as P (predict outcome).

Relationship of sampling change and outcome prediction Within each session,
we computed the change in each pattern’s occurrence between pre- and post-task SWS.
These were normalised by the maximum change within each session. Maximally changing
patterns were candidates for those updated by learning during the task. Correlation
between change in pattern sampling and outcome prediction was done on normalised
changes pooled over all sessions. Change scores were binned using variable-width bins of
P (predict outcome), each containing the same number of data-points to rule out power
issues affecting the correlation. We regress P (predict outcome) against median change in
each bin, using the mid-point of each bin as the value for P (predict outcome). Our main
claim is that prediction and change are dependent variables (Fig. 2c). To test this claim,
we compared the data correlation against the null model of independent variables, by
permuting the assignment of change scores to the activity patterns. For each permutation,
we repeat the binning and regression. We permuted 5000 times to get the sampling
distribution of the correlation coefficient R∗ predicted by the null model of independent
variables. To check robustness, all analyses were repeated for a range of fixed number of
data-points per bin between 20 and 100 (Supplementary Fig. 3).

Relationship of location and outcome prediction The location of every occurrence
of an activity pattern was expressed as normalized position on the linearised maze (0: start
of departure arm; 1: end of the chosen goal arm). Our main claim is that activity patterns
strongly predictive of outcome occur predominantly around the choice point of the maze,
and so prediction and overlap of the choice area are dependent variables (Fig. 3b). To test
this claim, we compared this relationship against the null model of independent variables,
by permuting the assignment of average location (median and interquartile range) to the
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activity patterns. For each permutation, we compute the proportion of patterns whose
interquartile range overlaps the choice area, and bin as per the data. We permuted 5000
times to get the sampling distribution of the proportions predicted by the null model of
independent variables: we plot the mean and 95% range of this sampling distribution as
the grey region in Figure 3b.
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Figure S1: Consistent sampling of activity patterns across session epochs. Each circle is the proportion
of co-activation patterns that appeared only in that epoch of the session. Black bar and line give the median and
interquartile range across the 10 sessions.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2015. ; https://doi.org/10.1101/027102doi: bioRxiv preprint 

https://doi.org/10.1101/027102
http://creativecommons.org/licenses/by-nc/4.0/


2 3 5 10 20 50 100
−10

0

10

20

30

40

50

60

C
on

ve
rg

en
ce

 (
%

)

Pattern binsize (ms)

2 3 5 10 20 50 100
−10

0

10

20

30

40

50

60

C
on

ve
rg

en
ce

 (
%

)

Pattern binsize (ms)

a b

Figure S2: Consistent convergence of distributions over choice of pattern binsize. We plot here the
dependence of the convergence of task and post-task SWS distributions on the binsize used for constructing the
activity patterns. We see that the convergence of the distribution of patterns on correct task trials (a) is robust
to order of magnitude changes in binsize (the distribution at the binsize of 2ms is plotted in Fig. 1f). Similarly,
we see that the non-convergence of the distribution of patterns on incorrect task trials (b) is also robust to order
of magnitude changes in binsize. Circles are convergence in individual sessions. Black lines give mean ± 2 s.e.m.
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Figure S3: Consistent correlation between choice prediction and change in sampling rate. a
Correlation of outcome prediction and change in pattern occurrence between sleep epochs, over all ten sessions.
Here we plot the worst-case correlation amongst all tested. Dots show median change values over N=25 data-
points each. Blue line is the best-fit linear regression (P < 0.0002, permutation test). b Scatter of correlation in
the data against predicted correlation by the null model of independent relationship between outcome prediction
and sampling change. The data axis plots the correlation value (R) found for every tested data regression using
between N=20 and N=100 data-points per bin in steps of 5. The blue dot is the worst-case fit in panel a; the
red dot is the fit shown in Figure 2c, main text. The control axis plots the median (dot) and 95% range (line)
of correlation coefficient (R) for regressions between the outcome prediction scores and permuted change scores
(for 5000 permutations). All data points fall beyond the maximum correlation reported by all 5000 permutations
(black circles), giving P < 0.0002 for every data correlation.
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Figure S4: Using all activity patterns increases convergence.. In the main text, we conversatively base
our analyses on co-activation patterns of two or more active neurons, to help rule out firing rate effects (see
Methods). We replot here the scatter of convergence scores for co-activation patterns from Fig. 1f. If we include
all activity patterns in our analysis of distances between distributions, we find clear convergence between task
and post-task SWS distributions for every session (convergence greater than zero at P = 0.001); if anything, this
convergence is more consistent than when using only co-activation patterns. Circle: convergence for a session.
Black lines give mean ± 2 s.e.m.
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Figure S5: Effect of including all correct trials. In the main text, we construct all task-related distributions
by considering only correct trials after the learning criterion trial, to isolate the population activity changes due
to learning: correct trials before obtaining the rule may not contain causal samples from the population (see
Methods). a If we include all correct trials of a session, we find that convergence between task and post-task
SWS distributions is still present (convergence greater than zero at P = 0.042). However it is clearly weaker than
when considering only trials post-learning. This indicates that the learning criterion trial does usefully separate
periods of random choice from rule-learning, and the consequent difference in patterns in the mPFC population
activity. Note that the convergence between task and post-task SWS distributions is greater for post-learning
trials, even though that task distribution is built from fewer samples, and so might be expected to be noisier. b
If we include all correct trials in the task distribution and include all activity patterns, then convergence between
task and post-task SWS distributions is still strongly present (convergence greater than zero at P = 0.002).
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