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Abstract 23 

Spatial organization of the genome is critical for condition-specific gene expression. Previous 24 

studies have shown that functionally related genes tend to be spatially proximal. However, 25 

these studies have not been extended to multiple human cell types, and the extent to which 26 

context-specific spatial proximity of a pathway is related to its context-specific activity is not 27 

known. We report the first pathway-centric analyses of spatial proximity in six human cell lines.  We 28 

find that spatial proximity of genes in a pathway tends to be context-specific, in a manner consistent 29 

with the pathway’s context-specific expression and function; housekeeping genes are ubiquitously 30 

proximal to each other, and cancer-related pathways such as p53 signaling are uniquely proximal in 31 

hESC. Intriguingly, we find a correlation between the spatial proximity of genes and interactions of 32 

their protein products, even after accounting for the propensity of co-pathway proteins to interact. 33 

Related pathways are also often spatially proximal to one another, and housekeeping genes tend to be 34 

proximal to several other pathways suggesting their coordinating role. Further, the spatially proximal 35 

genes in a pathway tend to be the drivers of the pathway activity and are enriched for transcription, 36 

splicing and transport functions. Overall, our analyses reveal a pathway-centric organization of the 3D 37 

nucleome whereby functionally related and interacting genes, particularly the initial drivers of pathway 38 

activity, but also genes across multiple related pathways, are in spatial proximity in a context-specific 39 

way. Our results provide further insights into the role of differential spatial organization in cell type-40 

specific pathway activity.  41 
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Introduction  42 

Recent advances in Chromosome Confirmation Capture (3C) and its high throughput 43 

derivative, Hi-C, have enabled genome-wide identification of spatially proximal genomic 44 

regions [1-3]. Comparative analysis of Hi-C data across cell lines and species reveals a 45 

conserved framework of 3D architecture, represented by topologically associating domains 46 

(TADs) and further context-specific variation in distal interactions [4].  47 

Among other things, these 3D maps of chromosomes help explain, in part, spatio-temporal 48 

regulation of gene expression by distal enhancers, aided by long-range DNA looping [5-7]. 49 

Similarly, previous studies have shown that groups of spatially clustered enhancers exhibit co-50 

activity across cell types and this co-activity is reflected in co-expression of proximal genes, 51 

which are often functionally related [8, 9]. More specifically, genes involved in the same 52 

pathway have been shown to be spatially proximal in Saccharomyces cerevisiae [10, 11], 53 

Plasmodium falciparum [12] and Homo sapiens lymphoblastoid cell lines [13] . However, 54 

these previous studies have not been extended to multiple human cell lines, and it is not clear 55 

to what extent spatio-temporal activity of pathways is related to the spatial proximity of the 56 

constituent genes. More generally, the broader characterization of physically proximity of 57 

genes in the context of functional pathways is missing and could reveal organizing principles 58 

underlying spatial proximity of pathway genes as they relate to pathway activity. 59 

In this work, we perform a comparative pathway-centric analysis of Hi-C-derived spatial 60 

proximity data in 6 ENCODE [14] cell types - HEK293 [15], hESC [4], IMR90, BT483[16], 61 

GM06990[16], and RWPE1[17], each with replicate data.  Our analysis of two large sets of 62 

pathways – KEGG [18], and NetPath [19] reveals several properties of spatial proximity of 63 

pathway genes:  We find that in general, genes in a pathway tend to be spatially proximal and 64 

this tendency is even greater for gene pairs that belong to multiple pathways. Our expression 65 

analysis shows that genes that are co-localized in nuclear space with other genes have higher 66 

expression, and this effect is especially prominent when they are proximal to a gene in the 67 

same pathway. We also found that spatial proximity of pathway genes is strongly correlated 68 

with cell type-specific pathway activity. As an expected corollary, housekeeping genes, by 69 

virtue of being ubiquitously active, exhibit ubiquitous spatial proximity. Surprisingly though, 70 

we found that the protein products of spatially proximal genes in a pathway have a 71 

significantly greater tendency to physically interact than various controls. Functional 72 

enrichment analysis suggests that spatially proximal pathway genes are enriched for specific 73 

functional classes such as transcription factor and transmembrane genes, and they occupy 74 
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higher levels in the regulatory hierarchy. Finally, we look at higher-level spatial organization 75 

of functional pathways by quantifying spatial proximity for all pairs of pathways. Using this, 76 

we identify a network of spatially proximal pathways that is consistent with their functional 77 

roles.  78 

Overall, this first comprehensive pathway-centric analysis of spatial proximity in multiple 79 

human cell lines shows a strong link between spatial proximity and context-specific gene 80 

expression and pathway activity. Our analysis also reveals surprising links between spatial 81 

proximity and interaction between the corresponding protein products. Functional analysis of 82 

proximal genes within pathways strongly suggests a regulatory hierarchical bias in physical 83 

proximity of pathway genes. Taken together, these results are consistent with a mechanism in 84 

which early regulatory components of a pathway are brought into spatial proximity in a 85 

condition specific manner. 86 

Results 87 

1. Software pipeline for Hi-C processing - overview 88 

Fig. 1 shows the overall pipeline that, starting from the raw reads obtained from a Hi-C 89 

experiment, produces significant pair-wise gene interactions. Details of the pipeline are 90 

provided in the Methods section, and we highlight a few pertinent features here. The pipeline 91 

allows the user to select a resolution at which significant interactions are identified. We 92 

performed our analysis at 100 kb resolution because we are interested in gene-centric 93 

interactions and 100 kb is expected to cover ~1 gene; smaller resolution yields fewer 94 

significant interactions due to loss in power and larger resolution results in ambiguous gene-95 

segment mapping. We have further discussed the choice of the resolution later in the 96 

discussion section. The pipeline uses the normalization step of the Homer tool [20] to control 97 

for the genomic distance-dependent features of Hi-C counts (that proximal genomic regions 98 

are more likely to interact). Using this pipeline, we processed 6 sets of pooled replicates for 6 99 

ENCODE cell lines - HEK293, hESC, IMR90, BT483, GM06990, and RWPE1. Table 1 shows 100 

the data obtained for the 6 cell types at the default interaction p-value threshold of 0.001 and 101 

FDR <= 0.1.  102 

Assessment of spatial proximity of pathway genes 103 

We quantify cell-line-specific spatial proximity of genes in a pathway using edge fraction (EF), 104 

which is essentially the fraction of all possible gene pairs in the pathway that are spatially 105 

proximal. This measure was previously shown to be effective [10] . We then quantify 106 
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significance of EF based on a sampling procedure (see Materials & methods), obtaining a Z-107 

score and the corresponding p-value and multiple testing corrected q-value; a higher Z-score 108 

is indicative of spatial proximity of the pathway genes above expectation. We studied 164 109 

KEGG pathways [21]  with at least 10 genes and estimated their spatial proximity Z-scores in 6 110 

cell lines. Fig. 2 shows that overall biological pathways tend to be spatially proximal, 111 

consistent with previous reports [10]. Interestingly, as shown in Fig. 2, we found that spatial 112 

proximity for subsets of genes shared between two pathways is even greater, suggesting that 113 

such genes, coordinating multiple pathways, may be under a greater constraint to be spatial 114 

proximal. 115 

Fig. 3 shows the cell-type-specific Z-scores for a representative set of pathways and 116 

Supplementary Fig. 1 shows the same for all pathways. Consistent with the fact that the KEGG 117 

database is dominated by essential and broad cellular processes, we found that spatially 118 

proximity of KEGG pathways are not only generally high (Fig. 2), but a large fraction of 119 

pathways exhibit a significant level of spatial proximity in many cell types (Fig. 4).  In 120 

particular, given the ubiquitous expression and function of housekeeping genes, we tested 121 

whether these genes tend to be ubiquitously spatially proximal or whether their ubiquitous 122 

expression is decoupled from their spatial proximity to one other. Based on 3800 123 

housekeeping genes [22], we found that housekeeping genes exhibit significant spatial 124 

proximity to other housekeeping genes in 5 out of 6 cell lines tested (Fig. 3).  Other 125 

ubiquitously proximal pathways include Metabolism of xenobiotics by cytochrome P450, 1- 126 

and 2-Methylnephthalene degradation and Gamma-hexachlorocyclohexane degradation, all 127 

involved in drug metabolisms in animals. 128 

Several cases of cell-type-restricted spatial proximity are worth noting. For instance, ‘Cell 129 

cycle’ genes are expected to be active in pluripotent stem cells. This pathway is significantly 130 

proximal in only two cell types, one of which is the human embryonic stem cell (hESC). 131 

Cytokine-mediated signaling is critical in immune response and consistently, Cytokine-132 

cytokine receptor interactions are uniquely proximal in immune B-cell (GM06990); B-cell-133 

specific proximity of cytokines CCL23 and CCL4 is consistent with their known role in 134 

increased monocyte recruitment during inflammation [23]. Likewise we found the Androgen 135 

and estrogen metabolism pathways to be proximal in breast cancer cell lines, where the role 136 

of this pathway is well known [24]. Interestingly, we found the Androgen-Estrogen receptor 137 

pathway to be proximal in Kidney cell line as well (Z-score = 6.5, FDR = 0.12), consistent with 138 

the role of this pathway in glucuronidation activity that involves communication between 139 

thyroid and kidney [25]. Unexpectedly, we see proximity of ‘Type-II diabetic mellitus’ in lung 140 
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fibroblast-derived IMR90. This is however consistent with recently observed connections 141 

between diabetes and lung functions [26]. Finally, one the only two cell lines where 142 

Melanogenesis genes is found to be proximal are the prostate epithelial RWEP1 and mammary 143 

epithelial BT483; melanogenesis in prostate epithelial cells has been previously reported [27].  144 

As an additional set of pathways, we examined a set of annotated cancer-related pathways 145 

from NetPath [19]. As shown in Supplementary Fig. 2, genes in cancer-related pathways 146 

exhibit much more subdued spatial proximity patterns in cell lines not derived from primary 147 

tumors. Another noticeable trend is that many pathways exhibit high intra-pathway gene 148 

proximity in hESC, consistent with previously noted similarities between cancer and stem cell 149 

processes [28].  We found that IL3-signaling pathway is uniquely proximal in hESC 150 

consistent with its known role in cell cycle control [29].  151 

As a useful resource, in Supplementary Table 1 we have provided, for all pathways considered, 152 

the specific gene pairs that were proximal in different cell lines. 153 

 154 

2. Spatial proximity and gene expression 155 

Next, we assessed whether spatial proximity of genes is correlated with their expression levels. 156 

Furthermore, we also assessed among the spatially proximal genes whether belonging to same 157 

pathway has any association with expression level. This analysis was done in all 6 cell lines 158 

using RNA-seq data available in GEO (see Materials & Methods). We compared cell type 159 

specific expression levels for three disjoint groups of genes (Fig. 5). The first group consisted 160 

of genes that are proximal to another gene in the same pathway (proximal-intra-pathway). 161 

The second group consisted of genes proximal to another gene but excluding proximal-intra-162 

pathway genes; this group was designed to assess whether shared pathway membership 163 

impinges on gene expression. The last group consisted of all other genes not proximal to any 164 

gene (non-proximal-generic). Fig. 6 shows that in pooled result from all 6 tissues, while genes 165 

that are spatially proximal to other genes have a greater expression than non-proximal genes, 166 

the expression is greater for genes that are proximal to a gene in the same pathway. The 167 

results for individual cell lines are qualitatively similar and are shown in Supplementary Fig. 168 

3.  169 

We directly assessed the correlation between cell type specific pathway proximity and pathway 170 

activity. We used two measures to approximate pathway activity (see Materials & Methods). 171 
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The first measure captured the mean expression of all genes in the pathway and the second 172 

measure captured the ratio of mean expressions of proximal and non-proximal genes in the 173 

pathway. Each measure was converted into a based on random sampling (see Materials & 174 

Methods). As shown in Fig. 7, spatial proximity is highly correlated with mean pathway 175 

expression (Spearman rho = 0.77, p = 5.9e-62). Note that this analysis does not rely on any Z-176 

score cutoff. 177 

Our observed highly positive correlation between spatial proximity of a pathway genes and the 178 

pathway activity would imply that the pathway genes are localized in active compartments and 179 

not in repressive or inactive compartments (in which case spatial proximity would result in 180 

pathway suppression – an opposite effect). A previous paper [48] has shown that in 181 

GM06990, relative to the inactive (B) compartment, the active (A) compartment (1) is highly 182 

enriched for genes, (2) has higher expression, (3) has more accessible chromatin, and (4) is 183 

loosely packed, i.e., has fewer interactions. To assess our hypothesis that interacting pathway 184 

genes are preferentially in A-compartment, we estimated the compartmentalization in 185 

GM06990 cell line using HOMER tool and found 18256 (75%) genes in A-compartment and 186 

6371 (25%) genes in B-compartment, consistent with previous report. Next, we compared for 187 

4 groups of genes (defined in Fig. 5) the tendency to belong to A-compartment. As shown in 188 

Supplementary Fig. 4 there is a robust monotonic trend whereby the genes proximal to 189 

another gene in the same pathway have the greatest tendency to belong to A-compartment 190 

and both spatial proximity and co-pathway membership contribute to this tendency. 191 

Specifically there a large difference between the first class (proximal-intra-pathway) and the 192 

non-proximal genes (p-value = 1.6E-53, Odds-ratio = 6.3). Thus, it seems that our observed 193 

positive correlation between pathway proximity and activity is due to the fact that most 194 

within-pathway proximal genes are in A-compartment.  195 

 196 

3. Spatial proximity and protein-protein interaction 197 

We have found that genes in a pathway tend to be spatially proximal. Previous studies have 198 

shown that the proteins in a pathway have a greater tendency to physically interact with each 199 

other [30]. We therefore directly assessed the correlation between spatial proximity of a gene 200 

pair and the physical interaction of their products. We obtained the protein-protein 201 

interactions (PPI) from HPRD database [31] and STRING [32]. Fig. 8 shows, for pooled data 202 

from all the 6 cell lines, for each of the 5 groupings of gene pairs (defined in Fig. 5), the 203 

fraction of all gene pairs that have evidence for physical interaction (fractional PPI ). Results 204 
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for other individual cell lines are provided in Supplementary Fig. 5. Taken together, these data 205 

suggest that, both pathway membership and spatial proximity of a gene pair is equally 206 

associated with PPI between their products, and the effect is partly independent, that is, PPI 207 

tendency is much greater for gene pairs that are both in the same pathway and physically 208 

proximal. 209 

4. Functional enrichment for spatially proximal genes in pathways 210 

Only a small fraction of genes in a pathway are spatially proximal to other genes in the same 211 

pathway. This could partly be due to low coverage and false negatives in the Hi-C derived 212 

interactions. However, given the differences between proximal and non-proximal genes above, 213 

we investigated whether specific functional terms are enriched among proximal-intra-214 

pathway genes relative to non-proximal-intra-pathway genes (see Fig. 5 for definition). We 215 

pooled the data for all pathways into two groups and performed the functional enrichment 216 

analysis using GOrilla software [33]. Fig. 9 suggests that regulatory (both RNA processing, 217 

and splicing) and protein binding functions are highly enriched among the spatially proximal 218 

pathway genes. We emphasize that our background set of genes in this analysis included those 219 

that are in the pathways and are spatially proximal to some other gene not belonging to the 220 

same pathway. Thus the observed functional enrichment is not due to spatial proximity alone 221 

and is a specific property of spatially proximal genes within pathways.  222 

5. Spatial proximity and regulatory hierarchy  223 

The comparative analyses of biological properties of spatially proximal pathway genes relative 224 

to other pathway genes thus far suggests that the upstream genes in a pathway may be more 225 

likely to be spatially proximal, ensuring  their robust expression and consequently robust 226 

pathway activity. We derived the hierarchical level of all pathway genes based on directed 227 

pathway edges (see Materials & Methods), and compared the hierarchical levels of proximal 228 

and non-proximal genes, pooled overall pathways. Our approach for assigning hierarchical 229 

level does not partition the pathway into a strict hierarchy, and can accommodate cycles.  We 230 

found that, in 3 of the 6 cell lines, the hierarchical levels of proximal genes were higher than 231 

the rest; Wilcoxon test p-values: IMR90 (p = 4.4E-04), GM06990 (p = 9.7E-04) and hESC (p 232 

= 0.05). Lack of significance in other cell lines (p-values = 0.07, 0.16, and 0.2) may be 233 

attributed to due to insufficient data; when we pool the data from the other 3 cell lines, the 234 

result is significant (p = 1.41E-05). If we apply Chi-square test based on hierarchy level of 2 as 235 

the partitioning criterion, an additional cell line yields significance and importantly the odds 236 

ratio in all six cell lines range favorably from 1.7 to 3.2.  237 
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6. Spatial proximity between pathways 238 

Next, we investigated, whether certain pairs of pathways might occupy neighboring spaces in 239 

the nucleus, suggesting their functional relatedness. Analogous to intra-pathway spatial 240 

proximity estimation, for each pair of pathways, after excluding the common genes, we 241 

obtained the number of interactions between genes across pathways and estimated its Z-score 242 

based on 1000 controlled random samplings (for computational tractability) of 2 sets of genes 243 

representing the 2 pathways. Using Z-score > 2 as the threshold, we identified a total of 3109 244 

pathway pairs across all cell lines, 73 of which were proximal in at least 4 tissues and 20 were 245 

proximal in at least 5 tissues (Supplementary Table 2). 246 

Next, analogous to intra-pathway proximity analysis, we estimated inter-pathway spatial 247 

proximity between housekeeping genes and all other KEGG pathways. We found that 248 

housekeeping genes are significantly proximal to 95 out of 164 KEGG pathways, at Z-score > 2 249 

threshold in at least 1 cell line; the full distribution of number of housekeeping-proximal 250 

pathways shared in 1 or more cell lines is provided in Supplementary Fig. 6, and pathways 251 

proximal to housekeeping genes in 4 or more cell lines are provided in Supplementary Table 252 

2. These results suggest a central role housekeeping genes may play in the genome 253 

organization as well as in coordinating the activities of other pathways. 254 

Several of the pathway pairs deemed to be spatially proximal in our analysis (Supplementary 255 

Table 2) are very likely to be functionally related, for instance, pathways for metabolism of 256 

various amino acids and derivatives thereof. Importantly, however, these data also reveal non-257 

trivial relationships, which have some support in literature. We discuss a few next.  258 

• Consistent with the proximity of steroid hormone metabolism and proteolysis, direct 259 

functional links between these two processes have been noted [34]. 260 

• Links between amino acid metabolism and cell cycle and cancer (Chronic myloid leukemia 261 

in our case) is not surprising given the metabolic requirements during cell division and 262 

growth. 263 

• JAK-STAT pathway and SNARE complexes are found to be proximal. While we did not 264 

find a direct link between the two, they are known to be co-targeted by TGF-beta signaling 265 

[35]. 266 

• Abnormal steroid hormone metabolism has been reported in Myeloid leukemia patients 267 

[36], which is consistent with the detected proximity of these two pathways. 268 
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• Butanoate metabolism and Glioma are deemed to be spatially proximal in our analysis. 269 

Treatment with butanoate (sodium butyrate) is known to induce differentiation of c6 270 

Glioma cells [37]. 271 

• While a direct link between Cholera and DRPLA, deemed to be proximal,  is not clear, we 272 

note that DRPLA is a spinocerebral degeneration disease, and cholera toxin subunit b is 273 

known to be dispersed to brain and spinal cord neurons [38].  274 

• Synthesis and degradation of ketone bodies was found to be proximal to genes involved in 275 

several different cancers, including pancreatic cancer, and cell cycle. Previous papers have 276 

shown growth inhibitory effects of ketone bodies on pancreatic cancer could be mediated 277 

by reduced c-Myc expression [39]. Moreover c-Myc is overexpressed in pancreatic cancer 278 

[40] and its inhibition has been shown to result in regression of lung cancer [41] and 279 

pancreatic cancer [42]. 280 

• Glycosylphosphatidylinositol (GPI) and Huntington (a neurological disease) were deemed 281 

proximal. While a direct link between these two pathways is not clear, GPI-anchor cleavage 282 

is known to modulate notch signaling and promoter neurogenesis [43]. 283 

 284 

Overall, these results suggest that spatial proximity between pathway genes is somewhat 285 

associated with functional interactions between the pathways. 286 

Discussion 287 

In this work, we have presented the first comprehensive analysis of intra- and inter-pathway 288 

spatial proximity in multiple Homo sapiens cell lines. Previous studies have shown that in 289 

Saccharomyces cerevisiae [10], Plasmodium falciparum [12] and H.sapiens lymphoblastoid 290 

cell line [13], broadly, functionally related genes tend to be spatially proximal. Our goal here 291 

was to not only extend these previous observations to multiple human cell lines and assess the 292 

relationships between spatial proximity and pathway activity based on gene expression, but 293 

equally importantly, to further functionally characterize proximal genes within pathways and 294 

examine higher-order physical and functional interactions between pathways.  295 

Previous similar analysis in S. cerevisiae [10] are based on only inter-chromosomal segment 296 

interactions, and H. sapiens lymphoblastoid cell line results [13] are based on low-resolution 297 

(1 Mb) segments, which can result in spurious interactions at the level of individual gene loci. 298 

Importantly, however, a greater tendency for genomically proximal regions to be spatially 299 

proximal, i.e., autocorrelation, unless appropriately controlled for, can result in false positives 300 

in inferring significant spatial proximity from Hi-C data. The absence of effective tools to 301 
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control for autocorrelation has forced previous studies to exclude intra-chromosomal 302 

interactions from consideration, significantly impacting their statistical power [10]. In 303 

contrast the Homer tool [20] satisfactorily controls of autocorrelation in estimating 304 

significance, consequently enabling us to include all significant interactions, both inter- and 305 

intra-chromosomal, in our analyses, while obviating an explicit control for inter-gene 306 

distances in random sampling procedures. We note that despite an explicit control for 307 

autocorrelation, genomically proximal regions (within 500 kb) have a slightly higher tendency 308 

to be spatially proximal (data not shown). However, we explicitly tested if this biases our 309 

pathway proximity assessment as follows. We compared intra-pathway gene distances with 310 

those for randomly selected genes from the same chromosome and found that for none of the 311 

pathways there was a significant difference between the two sets of distances.   312 

We have performed our analyses based on 100 kb resolution to detect interactions. However, 313 

we have also assessed the impact of using a higher resolution of 10 kb. We found that the 314 

number of interactions detected was much greater when using 100 kb resolution, especially 315 

the inter-chromosomal interactions, due to a greater statistical power for interaction detection 316 

at this resolution. For example, for cell type HEK293, only 7889 intra- and only 14 inter-317 

chromosomal gene-gene interactions are detected using 10kb resolution and 43439 intra- and 318 

1538 inter-chromosomal interactions at 100 kb. Moreover, at 10 kb resolution, large fractions 319 

of detected interactions are within a gene, which does not contribute to our analyses. We note 320 

that using a 100 kb resolution does not substantively influence the gene-gene interaction 321 

inference, as only 4% of 100 kb segments have multiple genes. Thus, to maximize statistical 322 

power with relative small fraction of ambiguous (but not necessarily biologically wrong) gene-323 

gene interaction calls, we chose to perform all downstream analyses based on 100 kb 324 

resolution.  325 

Hi-C data, like most genome-wide datasets, comes with a level of false positives, as does the 326 

pathway data. This is an important issue, and one that cannot be addressed by computational 327 

means alone. We have relied on the published interaction data that have undergone quality 328 

control measures, and used robust tool with recommended controls to perform the analyses. 329 

For pathway proximity, we have relied on a well-controlled randomized gene set to assess the 330 

significance of proximity. Despite the controls, a certain fraction of data is likely to be false 331 

positive. However, the noise in the data, as long as the tests are properly controlled, is not 332 

likely to generate strong consistent signals across multiple cell types simply by chance.  333 
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We performed a number of checks to ensure the robustness of our conclusions against several 334 

potential biases. First, note that in quantifying the significance of the pathway spatial 335 

proximity, we control for the lengths of the pathway genes. Second, we ensured that our ability 336 

to detect the spatial proximity of a pathway is independent of the number of genes in the 337 

pathway (Spearman correlation between pathway size and spatial proximity Z-score was 338 

statistically insignificant). A recent paper [9] has suggested a link between detection of Hi-C 339 

interaction of a gene and a gene’s codon usage (which is related to its expression) and the GC 340 

content of the gene’s genomic locus. Third, we ascertained that the codon-usage does not bias 341 

the detection of Hi-C interactions (Spearman correlation = -0.09).  342 

Finally, with regards to the potential GC bias, indeed highly interacting loci tend to have lower 343 

GC composition, as noted previously [11]. Although the GC composition near the restriction 344 

sites can present a technical bias [44], several papers also suggest that GC composition may be 345 

an inherent property of the physical proximity [45]. Therefore, it seems that an explicit control 346 

for GC content may not be ideal. However to explore the extent to which GC-controlled 347 

analyses would affect our results, for HEK293 cell line we reprocessed the data with specific 348 

GC control option provided in HOMER tool and compared the downstream results of our 349 

analyses with and without the GC control. We found that 80% of interactions detected without 350 

GC control are also detected with GC control and overall correlation between gene-wise 351 

interaction degrees between the two is 0.92. Next, we re-estimated the pathway proximity Z-352 

scores based on GC-controlled interactions and found those to be highly correlated with the Z-353 

score based on uncontrolled interaction detection (Spearman rho = 0.85). Lastly, we re-354 

calculated the correlation between pathway proximity and pathway activity and found that too 355 

is as significant as the estimated without GC control (Spearman rho = 0.80, relative to 0.83 356 

without GC control). Thus, our conclusions are not substantively biased by these various 357 

potentially confounding factors. 358 

Our primary resource of biological pathways – KEGG, is dominated by essential and broadly 359 

utilized cellular pathways, and therefore it is encouraging to see that by and large KEGG 360 

pathways are not only highly significantly proximal (Fig. 2), but a large fraction of these 361 

pathways are proximal in multiple cell lines (Fig. 4). However, as we show, this is not true for 362 

a different set of pathways relevant to cancer, where the overall z-scores are much more 363 

subdued, and spatially proximity is less ubiquitous (Supplementary Fig. 2). Despite, general 364 

ubiquity of spatial proximity of KEGG pathways, we still see a strong correlation between cell 365 

type-specific spatial proximity and pathway activity as approximated by gene expression (Fig. 366 

7). 367 
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Previous studies have noted greater transcription in spatially clustered regions [8]. 368 

Independently, earlier studies have shown the existence of so called transcription factories 369 

[46] - nuclear locales with enriched core transcriptional machinery components where 370 

transcripts are synthesized and processed.  Moreover, links between transcription factories 371 

and chromatin organization have been noted [47]. Taken together, these previous results are 372 

consistent with our observation that genes in spatially proximity with other genes have much 373 

higher expression. However, interestingly, in addition to spatial proximity alone, functional 374 

relationship between the spatially proximal genes, i.e., membership in the same pathway, 375 

makes a small but significant additional contribution to the gene expression level (Fig. 6). 376 

 377 

Our analysis reveals an unexpected association between spatial proximity of a gene pair and 378 

the interaction between their protein products. Among the physically proximal gene pairs, the 379 

well-annotated genes, i.e., annotated in some KEGG pathway, have much greater PPI 380 

propensity than genes that do not belong to an annotated pathway ((III) vs. (IV) in Fig. 8); 381 

this may be explained by a greater representation of well-studied genes in PPI databases. 382 

Functionally related genes have been shown to have a greater propensity to physically interact 383 

[49], consistent with our findings (compare (I) and (III) in Fig. 8). However, we found that 384 

spatial proximity is independently associated with protein interaction in both pathway ((I) 385 

versus (II) in Fig. 8) and non-pathway ((IV) versus (V) in Fig. 8) contexts. The gene-pairs that 386 

are both spatially proximal and belong to same pathway have the highest PPI propensity ((I) 387 

in Fig. 8). These trends are identical in all 6 cell lines, suggesting that both spatial proximity 388 

and pathway membership contribute independently to PPI propensity. 389 

Scrutinizing each of the pathways, we found the spatially proximal genes in a pathway to have 390 

distinguishing functional characteristics relative to other pathway genes that are not spatially 391 

proximal to any other gene in the same pathway. In terms of biological processes (Fig. 9), such 392 

genes are overwhelmingly involved in transcription, splicing and intracellular transport and 393 

localization. Interestingly, the genes in a pathway that are spatially proximal to other genes in 394 

the same pathway tend to occupy a higher level in the regulatory hierarchy, related to other 395 

genes in the pathway, that also are spatially proximal to other genes but none in the same 396 

pathway. Overall, these results ascribe, for the first time, a special functional status to spatially 397 

proximal genes in pathways – such genes tend to perform higher-level regulatory functions. 398 

We found that housekeeping genes, consistent with their ubiquitous expression and activity, 399 

tend to be broadly and highly spatially proximal. Previous studies have observed clustering of 400 

housekeeping genes into so call transcription factories [50], and have suggested that 401 
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interactions between housekeeping genes may play a role in the spatial organization of the 402 

chromatin [51]. Our results confirm these previous observations through the first genome-403 

wide assessment of spatial proximity of housekeeping genes in multiple cell lines. In addition 404 

to spatial proximity of housekeeping genes, we also found that as a group housekeeping genes 405 

are ‘centrally’ located in the nucleus and act as a link between numerous other pathways. A 406 

mechanistic interpretation of this intriguing observation, as well as of the causal link between 407 

the expression of housekeeping genes and their spatial proximity, will require further analysis.  408 

Conclusion 409 

Overall, based on the first comprehensive pathway-centric analysis of spatial proximity in 410 

multiple cell lines, our results suggest that (i) context-specific regulation of pathways is 411 

associated with their context-specific spatial proximity; in doing so, our analysis provides 412 

mechanistic insights into cell type-specific activity of certain pathways, (i) spatial-proximity of 413 

pathway genes is associated with physical interaction among their gene products, and (iii) 414 

specific classes of genes within pathways, likely occupying higher regulatory levels, have a 415 

greater tendency to be spatially proximal. Our results also provide insights into correlated 416 

activity of multiple pathways by showing that the genes in these pathways are spatially 417 

proximal.  418 

 419 

Methods 420 

Hi-C processing pipeline. We downloaded paired-end Hi-C raw reads FASTQ files of 421 

sample replicates for the following tissues from GEO database (www.ncbi.nlm.nih.gov/geo): 422 

(i) HEK293 (GSM1081530, GSM1081531) [15], (ii) IMR90 (GSM1055800, GSM1055801) [52], 423 

(iii) hESC (GSM862723, GSM892306) [4], (iv) GMO6990 (GSM1340639) [16], (v) RWPE1 424 

(GSM927076) [17] and (vi) BT483 (GSM1340638, GSM1340637) [16].  We mapped the reads 425 

onto hg19 human genome using BWA tools [53] with default parameters. The resulting SAM 426 

files were converted to BAM files using “samtools view” program [54] and processed to 427 

removing PCR duplicates using “samtools sort” and “Picard” tools.  428 

We then processed the non-redundant reads for Hi-C analysis using various HOMER tools 429 

[20]: we ran  “makeTagDirectory” program using options “tbp -1” (to ensure that any 430 

genomic location is mapped by a unique read), “–restrictionSite” (only keep reads if both ends 431 

of the paired-end read have a restriction site within the fragment length estimate 3' to the 432 

read), “-removePEbg” (removing read pairs separated by less than 1.5x the sequencing insert 433 
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fragment length) , “-removeSelfLigation” (remove re-ligation events), and “-removeSpikes” 434 

(remove high tag density regions).  435 

Normalization of Hi-C interactions. Having output from the previous steps, next we 436 

normalized the data to create background of the Hi-C interactions at 100kb resolution using 437 

HOMER “analyzeHiC” program. The program (i) divides the genome into 100kb regions, (ii) 438 

calculates total read coverage in each region, (iii) calculates the fraction of interactions 439 

spanning any given distance with respect to read depth, (iv) optimizes a read count model to 440 

assign expected interaction counts in regions with uneven sequencing depth and (v) calculates 441 

variation in interaction frequencies as a function of distance. For fragments i and j, the 442 

procedure the estimated expected number of reads supporting the interaction as:  443 

��,� �
��� � �� 	 
� 	 
�

�
 

where N = total number of reads, n = number of reads in a region, and f represents the 444 

expected frequency of Hi-C reads as a function of distance.  445 

The background model were created for the entire data for a given sample then applied for 446 

selection of Hi-C interacting reads at default p-value cutoff of 0.001 using “-interaction” 447 

parameters using “analyzeHiC” program. We further filtered the Hi-C interactions using FDR 448 

cutoff <= 0.1 and considered the resulting set as significant Hi-C interactions. The significant 449 

Hi-C interacting reads were then passed through “annotateInteractions” program for 450 

mapping them onto the annotated genomic features (i.e., 5’UTR, CDS, introns, exons, 451 

intergenic etc.), from which, we selected only those interactions mapping to gene regions (i.e., 452 

Promoter, 5’UTR, exon, intron and 3’UTR), resulting in a comprehensive set of spatially 453 

proximal gene pairs (SGP) for each tissue.  454 

Codon usage. To assess the effect of codon bias on interaction detection, we used 455 

Biopython’s “SeqeUtils::ModuleCodonUsage” package and calculated Codon Adaptation 456 

Index (CAI) for each gene of the H. sapiens genome.   457 

Pathway datasets. A ‘pathway’ for our purpose is a set of genes. We downloaded two sets of 458 

pathways from KEGG [21] and NetPath [19] databases, only retaining those with at least 10 459 

genes, resulting in 164 and 32 pathways respectively. We also included the set of 3800 460 

housekeeping genes [22], as an additional  ‘pathway’.  461 
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Defining classes of edges and nodes relative to pathways. For various analyses we 462 

have defined 5 disjoint sets of genes and gene pairs in the context of a pathway and spatial 463 

proximity (see Figure 5 for illustration). All spatially proximal gene pairs were partitioned into 464 

three groups:  proximal-intra-pathway: intra-pathway spatially proximal gene pairs, 465 

proximal-inter-pathway: Spatially proximal pair of genes where each gene is in a different 466 

pathway, and proximal-generic: Spatially proximal pair of genes such that at least one of the 467 

genes is not in any pathway. Similarly all non-proximal gene pairs were partitioned into two 468 

categories: non-proximal-intra-pathway: a non-proximal gene pair within a pathway, and 469 

non-proximal-generic: any pair of genes that are not spatially proximal to any other gene and 470 

not within any pathway.  471 

Edge fraction and its significance in estimating pathway spatial proximity. Intra-472 

pathway gene spatial proximity was estimated as Edge Fraction (EF) – number of pairwise 473 

gene-gene interaction in the pathway normalized by the number of total possible interactions. 474 

To quantify significance of the EF for pathway with N genes, we randomly sampled N genes, 475 

such that number of genes in each chromosome is identical to real pathway, and each sampled 476 

gene’s length was within 20% of the matched pathway gene’s length (this controls for length-477 

based bias in interaction detection). We generated 1000 such samples and calculated 1000 478 

corresponding EFs. We then obtained the Z-score corresponding to the EF for actual pathway 479 

relative to 1000 controls. We estimated the Z-score for each pathway in each cell line resulting 480 

in 165 x 6 Z-score matrix.  481 

Inter-pathway proximity. Analogous to the intra-pathway proximity analysis above, for a 482 

pair of pathways, after excluding the shared genes, we estimate the edges between genes in 483 

two pathways, and estimate its significance based on randomly sampling 2 gene sets (instead 484 

of 1 as above), with identical controls as above. We thus estimated a Z-score for inter-pathway 485 

proximity for all pairs of pathways.  486 

Processing RNA-Seq data. We downloaded raw RNA-Seq FASTQ files for three of the 487 

tissues in which matching RNA-Seq was available: (i) HEK293 (GSM1081534, GSM1081535) 488 

[15], (ii) IMR90 (GSM1154029) [52] and (iii) RWPE1 (GSM927074) [17], (iv) hESC 489 

(GSM758566) [55], (v) GM06990 (GSM958747) [56] and (vi) BT483 (GSM1172854) [57]. The 490 

raw FASTQ reads were mapped and processed up to de-duplication steps using the same 491 

pipeline that we used to apply for Hi-C data analysis, and then used to quantify expression 492 

levels using cufflinks [58] tool with default parameters, yielding gene-wise RPKM values.   493 
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Significance of pathway activity. For genes with multiple transcripts, we take the 494 

maximum expression over all transcripts for the genes. For a pathway, we estimated its 495 

activity as the average expression of the genes in the pathway; we selected only the proximal-496 

intra-pathway genes to estimate activity. To quantify significance of the pathway activity, we 497 

followed a sampling approach similar to that for estimating EF significance above, yielding a 498 

z-score for each pathway and cell line.  499 

Estimating regulatory hierarchy. The regulatory analysis of a pathway requires a 500 

directed graph in which all defined interactions suggest direction of the signal flow. KEGG 501 

does not provide the directed graph by default. Therefore, we downloaded KGML (KEGG 502 

Markup Language) and parsed the files using KEGGgraph package in Bioconductor and 503 

created directed graph for each pathway using NetworkX package in Python. In order to 504 

investigate hierarchy of genes we first assigned a synthetic root connecting to all pathway 505 

nodes with zero in-degree, and then calculated the shortest path length (SPL) from root to 506 

every other node. Low SPL indicates higher level of hierarchy. For Chi-square and Fisher tests 507 

(see Results), we created two gene sets: (i) genes with SPL = 1 (top level) and (ii) genes with 508 

SPL >= 3 (lower hierarchy). We pooled these two sets across all pathways.  509 
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Figure Legends 523 

Figure 1. Overview of the Hi-C processing pipeline and flow of downstream 524 

analysis (see Methods for details). 525 

Figure 2. Z-score distribution of intra-pathway spatial proximity. The figure shows 526 

the distributions of spatial-proximity z-scores for three sets of gene sets, pooled from 6 cell 527 

lines. Blue: KEGG pathway. Red: Random gene-sets matching each KEGG pathway controlled 528 

for gene lengths and chromosomal distributions. Green: intersection of each pair of KEGG 529 

pathways. 530 

Figure 3. Spatial proximity of intra-pathway genes in selected KEGG pathways 531 

across six cell lines. Note the ubiquitous proximity of Housekeeping genes, hESC-specific 532 

proximity of p53 signaling pathway. 533 

Figure 4. Intra-pathway pathway proximity is shared across tissues. The figure 534 

shows number of pathways (Y-axis) with high intra-pathway proximity (Z-score >= 2) in 535 

different number of cell lines (X-axis). The table values show number of pathways whose 536 

intra-pathway genes proximity (Z-score >= 2) is unique to a cell line (diagonal) or shared 537 

between a pair of cell lines (off-diagonal). 538 

Figure 5. Schematic defining sets of genes and gene-pairs. Outermost rectangle 539 

represents all genes. Inner rectangle represents all genes that are in spatial proximity to at 540 

least one other gene. Circles represent annotated pathways. Nodes represent genes and edges 541 

represent spatially proximal gene pairs. All spatially proximal gene pairs are partitioned into 542 

three groups:  proximal-intra-pathway: intra-pathway spatially proximal gene pairs 543 

(orange nodes and edges), proximal-inter-pathway: Spatially proximal pair of genes 544 

where each gene is in a different pathway (light blue nodes and edges), and proximal-545 

generic: Spatially proximal pair of genes such that at least one of the genes is not in any 546 

pathway (red nodes and edges). Similarly all non-proximal gene pairs are partitioned into two 547 

categories: non-proximal-intra-pathway: a non-proximal gene pair within a pathway, 548 

and non-proximal-generic: any pair of genes that are not spatially proximal to any other 549 

gene and not within any pathway (pairs of dark blue nodes). 550 

Figure 6. Spatial proximity and gene expression. The figure shows box-plots of gene 551 

expression (FPKM) values of the genes in three different groups (see Figure-5) pooled from all 552 

6 cell lines. A~B Wilcoxon test p-values = 3.4E-35. A~C Wilcoxon test p-value = 8.43E-72. See 553 

Supplementary Fig. 4 for results of 6 individual cells. 554 
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Figure 7. Spatial proximity versus mean pathway expression. This figure shows 555 

scatter plot between proximity z-scores of pathways versus z-scores of expression values of the 556 

proximal-intra-pathway genes pooled from all 6 cells. Spearman rho = 0.77, p-value: 5.90e-557 

62. 558 

Figure 8. Pathway membership, spatial proximity and PPI. The figure shows 6 cells 559 

pooled fraction of gene pairs (Y-axis) in different gene groups (X-axis; see Figure 5) whose 560 

protein products physically interact. The inset shows Fishers tests p-values for various pair-561 

wise comparisons. See supplementary Figure 6 for other tissues. 562 

Figure 9. GO enrichment analysis. This figure enriched GO terms (–log (q-value) >= 2) 563 

proximal-intra-pathway genes relative to other spatially proximal genes (see Fig. 5).  564 

  565 
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Table 1. Hi-C analysis summary.  566 

Cell line 

Rep-1            
Hi-C mapped 
fragments in 

million 

Rep-2           
Hi-C mapped 
fragments in 

million 

# Unique genes 
in HiC 

interactions 

# Unique 
genes in HiC 
interactions 

IMR90 66.69 299.86 14550 101502 

HEK293 92.03 210 11978 44977 

hESC 42.49 234.33 10713 34531 

GM06990 58.62 96.33 9019 11447 

BT483 41.8 64.7 5948 5792 

RWPE1 73.65 82.33 9416 14124 

 567 

  568 
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