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Abstract 

 

The CRISPR/Cas9 system has been rapidly adopted for genome editing. However, one 

major issue with this system is the lack of robust bioinformatics tools for design of single 

guide RNA (sgRNA), which determines the efficacy and specificity of genome editing. To 

address this pressing need, we analyze CRISPR RNA-seq data and identify many novel 

features that are characteristic of highly potent sgRNAs. These features are used to 

develop a bioinformatics tool for genome-wide design of sgRNAs with improved 

efficiency. These sgRNAs as well as the design tool are freely accessible via a web 

server, WU-CRISPR (http://crispr.wustl.edu). 

 

Keywords: gRNA; guide RNA; sgRNA; single guide RNA; CRISPR; Cas9; genome 

editing 
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Background 

 

The CRISPR/Cas9 system has been developed in recent years for genome editing, and 

it has been rapidly and widely adopted by the scientific community [1]. The RNA-guided 

enzyme Cas9 originates from the CRISPR-Cas adaptive bacterial immune system. 

CRISPRs (clustered regularly interspaced palindromic repeats) are short repeats 

interspaced with short sequences in bacteria genomes. CRISPR-encoded RNAs have 

been shown to serve as guides for the Cas protein complex to defend against viral 

infection or other types of horizontal gene transfer  by cleaving foreign DNA [2-4]. Major 

progress has been made recently to modify the natural CRISPR/Cas9 process in 

bacteria for applications to mammalian genome editing [5, 6]. Compared with other 

genome editing methods, the CRISPR system is simpler and more efficient, and can be 

readily applied to a variety of experimental systems [7-11]. 

 

The natural CRISPR/Cas9 system in bacteria has two essential RNA components, 

mature CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA). These two RNAs 

have partial sequence complementarity and together form a well-defined two-RNA 

structure that directs Cas9 to target invading viral or plasmid DNA [2, 12]. Recent work 

indicates that it is feasible to engineer a single RNA chimera (single guide RNA, or 

sgRNA) by combining the sequences of both crRNA and tracrRNA [13]. The sgRNA is 

functionally equivalent to the crRNA/tracrRNA complex, but is much simpler as a 

research tool for mammalian genome editing. In a typical CRISPR study, an sgRNA is 

designed to have a guide sequence domain (designated as gRNA in our study) at the 5’-

end, which is complementary to the target sequence. The rationally designed sgRNA is 

then used to guide the Cas9 protein to specific sites in the genome for targeted 

cleavage. 
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The gRNA domain of the sgRNA determines both the efficacy and specificity of the 

genome editing activities by Cas9. Given the critical roles of gRNA, multiple 

bioinformatics tools have been developed for rational design of gRNAs for the 

CRISPR/Cas9 system [14-17]. Experimental analysis indicates that Cas9-based genome 

editing could have wide spread off-target effects, resulting in a significant level of non-

specific editing at other unintended genomic loci [14, 18-20]. Thus, most existing design 

tools have focused primarily on selection of gRNAs with improved specificity for genome 

targeting. However, more recent studies have demonstrated that the off-target effects of 

the CRISPR-Cas9 system is not as extensive as previously speculated, and random 

targeting of the noncoding regions in the genome has little functional consequences in 

general [21, 22]. Furthermore, novel experimental systems have been developed to 

improve the targeting specificity of CRISPR/Cas9 [23, 24]. Besides targeting specificity, 

another important aspect of bioinformatics design is to select gRNAs with high targeting 

potency. Individual gRNAs vary greatly in their efficacy to guide Cas9 for genome 

editing. Thus, the design of potent gRNAs is highly desired, as inefficient genome editing 

by Cas9 will inevitably lead to significant waste of resources at the experimental 

screening stage. The importance of gRNA efficacy has only been appreciated very 

recently, with multiple studies attempting to identify sequence features that are relevant 

to functionally active sgRNAs [21, 25-28]. For example, one recent study by Doench and 

colleagues analyzed 1841 randomly selected gRNAs and identified position-specific 

sequence features that are predictive of gRNA potency [21]. Similarly, CRISPRseek is a 

BioConductor package that also implements the Doench algorithm for potency prediction 

[29]. In our study, we reanalyzed this public dataset and identified many novel features 

that are characteristic of functional gRNAs. These selected features have been 

integrated into a bioinformatics algorithm for the design of gRNAs with high efficacy and 
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specificity. A web server implementing this design algorithm has also been established. 

 

Results 

 

In a recent study, Doench and colleagues analyzed 1841 sgRNAs to identify sequence 

features that are associated with CRISPR activities [21]. From that analysis, significant 

position-specific sequence features have been discovered. In particular, nucleotides 

adjacent to the protospacer adjacent motif (PAM), NGG in the target site are significantly 

depleted of C or T. In our study, this public dataset was systematically reanalyzed to 

identify other novel features that are predictive of CRISPR activity. To this end, we 

compared the most potent sgRNAs (top 20% in ranking) with the least potent sgRNAs 

(bottom 20%). By excluding sgRNAs with modest activities in this manner, distinct 

characteristics of functional sgRNAs can be more readily identified. The same strategy 

for feature selection has been proven to be effective in our previous study to 

characterize highly active siRNAs for target knockdown [30]. 

 

Structural characteristics of functional sgRNAs  

Previous studies have shown that structural accessibility plays an important role in RNA-

guided target sequence recognition, such as by siRNA and microRNA [30-32]. Similarly, 

we hypothesized that structural characteristics of the sgRNA are important determinants 

of CRISPR activity. To this end, RNA secondary structures were calculated with RNAfold 

[33]. Overall secondary structure, self-folding free energy, and the accessibility of 

individual nucleotides in the structure were analyzed for each sgRNA. The sgRNA 

consists of two functional domains, the guide RNA (gRNA) sequence and trans-

activating RNA (tracrRNA) sequence. The gRNA sequence consists of 20 nucleotides 

that pair perfectly to the targeted genomic sequence, thereby guiding the recruitment of 
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the Cas9 protein to the target site; on the other hand, tracrRNA binds to Cas9 to form a 

functionally active RNA-protein (RNP) complex. As shown in Figure 1A, the tracrRNA 

region contains multiple well-defined structural motifs, which are important for interaction 

with Cas9 to form a functional RNP complex. 

 

Compared with non-functional sgRNAs, functional sgRNAs were significantly more 

accessible at certain nucleotide positions (Figure 1B&C). In particular, the most 

significant difference in accessibility involved nucleotides at positions 18-20, which 

constitute the 3’-end of the guide sequence (highlighted in Figure 1A). The 3’-end of the 

guide sequence, also known as the “seed region”, plays a critical role in recognition of 

target sequence. Thus, based on structural analysis, accessibility of the last three bases 

in the seed region was a prominent feature to differentiate functional sgRNAs from non-

functional ones (Figure 1B). In addition, base accessibility in positions 51-53 was also 

significantly different.  In the predicted structure of the sgRNA, nucleotides at positions 

21-50 form a stable stem-loop secondary structure. From the survey of non-functional 

sgRNAs, nucleotides at positions 51-53 commonly paired with the end nucleotides of the 

guide sequence (positions 18-20), resulting in an extended stem-loop structure 

encompassing positions 18-53. Thus, decreased base accessibility at positions 51-53 

was generally associated with decreased accessibility of the end of the seed region. 

 

Furthermore, overall structural stability of the guide sequence alone (i.e. the gRNA 

domain residing positions 1-20) was evaluated with thermodynamics analysis. 

Specifically, the propensity of forming secondary structure was determined by 

calculating the self-folding free energy of the guide sequence. On average, non-

functional guide sequences had significantly higher potential for self-folding than 

functional ones, with G = -3.1 and -1.9, respectively (P = 6.7E-11, Figure 2A). Thus, the 
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result from thermodynamic analysis also indicated that structural accessibility of the 

guide sequence was correlated with sgRNA functionality. In general, structural stability 

of the RNA can be approximated by the GC content of the sequence. Consistent with the 

free energy calculation, the guide sequence of non-functional sgRNAs had higher GC 

content on average as compared to functional sgRNAs (0.61 vs. 0.57, P = 2.1E-5). 

Furthermore, thermodynamic stability of the sgRNA / target sequence was evaluated. 

On average, non-functional guide sequences were predicted to form more stable 

RNA/DNA duplexes with the target sequence than functional ones, with G = -17.2 and -

15.7, respectively (P = 4.9E-10, Figure 2B). Thus, high duplex stability was a significant 

characteristic of non-functional sgRNAs. 

 

Sequence characteristics of functional sgRNAs 

In addition to structural features describing the sgRNA, relevant sequence features of 

the guide sequence were also evaluated and are presented below. 

 

Sequence motifs related to oligo synthesis or transcription. In most CRISPR 

applications, a 20-mer DNA oligo representing the guide sequence is cloned into an 

expression vector and expressed as the gRNA domain within the sgRNA. Thus, the 

efficiencies of both DNA oligo synthesis and subsequent transcription process are 

relevant to CRISPR activity. Repetitive bases (i.e. a stretch of contiguous same bases) 

could potentially be correlated with poor efficiency for DNA oligo synthesis. To assess 

this possibility, the distributions of repetitive bases in the guide sequence were 

compared between functional and non-functional gRNAs. Repetitive bases are defined 

as any of the following: five contiguous adenines, five contiguous cytosines, four 

contiguous guanines or four contiguous uracils. Overall, compared with non-functional 

gRNAs, functional gRNAs were significantly depleted of repetitive bases (5.4% vs. 
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22.8%, P = 1.3E-11). Among the four bases, four contiguous guanines (GGGG) were 

especially correlated with poor CRISPR activity. Previous work indicates that GGGG not 

only leads in poor yield for oligo synthesis, but also has the propensity to form a special 

secondary structure called guanine tetrad, which makes the guide sequence less 

accessible for target sequence recognition. Consistently, much fewer functional gRNAs 

were observed to contain the GGGG motif than non-functional ones (4.9% vs. 17.9%, P 

= 2.6E-8). 

 

A stretch of contiguous uracils signals the end of transcription for RNA polymerase III 

that recognizes the U6 promoter. All gRNAs containing UUUU in the guide sequence 

had been preselected for exclusion from our analysis. Furthermore, recent work 

suggested that three repetitive uracils (UUU) in the seed region of the guide sequence 

could be responsible for decreased CRISPR activity [34]. Thus, a more stringent 

assessment was applied to evaluate the impact of potential transcription ending signal 

by searching for UUU in the last six bases of the gRNA. UUU was significantly absent in 

the seed region of functional gRNAs as compared to that in non-functional gRNAs (0.8% 

vs. 8.4%, P = 8.8E-7). 

 

Overall nucleotide usage. Within the 20 n.t. gRNA sequence, the average counts for 

adenine were 4.6 and 3.3 for functional and non-functional gRNAs, respectively (P = 

9.3E-18). In contrast, the usage of the other three bases (A, C or G) was only marginally 

correlated to CRISPR activity (Table 1, p-values in the range of 0.055 - 0.0019). The 

preference for adenine in functional gRNAs was not likely a mere reflection of overall 

preference for GC content as the uracil count was even lower in functional gRNAs than 

in non-functional ones (4.0 vs. 4.4). Overall usage of dinucleoside and trinucleoside 

were also examined and summarized in Table 1 and Supplementary Table S1, 
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respectively. The most significant dinucleoside was GG (P = 2.3E-11) and the most 

significant trinucleoside was GGG (P = 4.9E-13). Both GG and GGG were significantly 

depleted in functional gRNAs, with enrichment ratios of 0.64 and 0.39, respectively. 

 

Position-specific nucleotide composition. Base usage at individual positions was 

summarized and compared between functional and non-functional gRNAs 

(Supplementary Table S2). Consistent with previous findings [21], there was a strong 

bias against U and C at the end of functional gRNAs. Interestingly, a U or C at the end of 

the gRNA has a strong propensity to pair with AAG at positions 51-53 of the sgRNA, 

resulting in an extended stem-loop secondary structure (Figure 1A). Thus, the bias 

against U and C here was consistent with the structural analysis results, indicating the 

importance of free accessibility of the seed region for target recognition. 

 

Combining heterogeneous features for genome-wide prediction of sgRNA activity 

Identified significant sgRNA features, including both structural and sequence features 

described above (summarized in Table S3), were combined and modeled in a support 

vector machine (SVM) framework. With these features, a computational algorithm was 

developed to predict the CRISPR activities. Similar to the sample selection strategy 

adopted in feature analysis, the most potent sgRNAs (top 20% in ranking) and the least 

potent sgRNAs (bottom 20%) were included in the SVM training process. The 

performance of the SVM model was validated by receiver operating characteristic (ROC) 

curve analysis. To reduce potential risk of overtraining, 10-fold cross-validation was 

performed in this ROC analysis. As shown in Figure 3A, the area under curve (AUC) 

was 0.92 for the SVM model. To further evaluate potential gene-specific bias in model 

performance, leave-one-gene-out cross-validation was performed. Specifically, 

experimental data from eight of the nine genes were used to train an SVM model while 
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the data from the remaining gene were used for model testing in each iteration of the 

cross-validation process. The result of this gene-based cross-validation was similar to 

that of 10-fold cross-validation, with an AUC of 0.91. In contrast, a previous sgRNA 

prediction model based on the same training data had an average AUC of 0.76 from 

gene-based cross-validation [21]. Thus, our SVM prediction model could be used to 

differentiate functional sgRNAs from non-functional ones. In summary, cross-validation 

analysis indicated that our SVM model, which integrated both structural and sequence 

features, had robust performance at predicting sgRNA activities. 

 

The SVM model was used to select functionally active sgRNAs for all known genes in 

the human and mouse genomes. To significantly speed up the selection process, a set 

of pre-filters were implemented to first quickly eliminate unpromising sgRNA candidates 

before evaluation by the SVM model. These pre-filters are summarized in Table 2. With 

these pre-filters, about 85% of non-functional sgRNAs were excluded while about 60% 

of functional sgRNAs were retained for further evaluation. Thus, application of the pre-

filters led to a drastic reduction of non-functional sgRNAs while accompanied by only a 

moderate increase in false negative rate. By implementing these pre-filters before SVM 

modeling, a modified prediction model was constructed for genome-wide sgRNA design 

based on pre-screened training data. 

 

The general applicability of the SVM model, which we named WU-CRISPR, was 

evaluated using an independent experimental dataset generated by Chari et al. [28]. In 

the Chari study, the knockout activities of 279 sgRNAs were determined experimentally 

by high-throughput sequencing and used to train a novel sgRNA design algorithm, 

sgRNAScorer. In our analysis, the activities of these sgRNAs were predicted with WU-

CRISPR and correlated to experimental data. Furthermore, the performance of three 
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other design tools, sgRNA Designer [21], SSC [27] and sgRNAScorer [28], were also 

evaluated using the Chari dataset. The Chari dataset was independent from WU-

CRISPR, sgRNA Designer and SSC, but was used to train sgRNAScorer. Thus, ten-fold 

cross-validation results from sgRNAScorer (as presented in the Chari study) were 

included in our comparative analysis to reduce potential training bias. For each 

algorithm, top ranking sgRNAs were selected and their knockout activities were checked 

against the experimental results. Precision-recall curve analysis was performed to 

evaluate the prediction accuracy. Precision-recall curves are commonly used to evaluate 

prediction precision (proportion of true positives among all predicted positives) in relation 

to the recall rate (proportion of true positives among all positive samples). As shown in 

Figure 4, all four algorithms performed significantly better than random selection (113 

functional sgRNAs among 279 tested sgRNAs, or 40.5% precision background). Among 

these algorithms, WU-CRISPR had the best performance at selecting functional 

sgRNAs. Specifically, all ten sgRNAs with the highest prediction scores by WU-CRISPR 

were experimentally confirmed to have high knockout activities. Similarly, among all 50 

sgRNAs with the highest prediction scores by WU-CRISPR, 88% were experimentally 

validated for their high knockout activities. 

 

Besides knockout efficacy, targeting specificity was also considered as an optional 

feature in the design pipeline. Targeting specificity of sgRNAs has been considered in 

previously published algorithms. However, existing algorithms search for potential off-

target sites in the entire genome space. As the genome contains billions of nucleotides, 

sgRNA off-targeting is an unavoidable problem when all genomic regions are 

considered. Recent studies indicate that small-scale genomic alterations (insertions or 

deletions of less than 20 n.t.) induced by sgRNA had little functional consequence if the 

sites are within noncoding regions [21, 22]. Therefore, we decided to focus our off-
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targeting analysis exclusively on exon regions, including sequences from both protein-

coding genes and other types of genes such as miRNAs and long noncoding RNAs. In 

this way, more stringent off-target filters could be implemented since a much smaller 

sequence space (as compared to the entire genome space) was searched.  

 

Each gRNA candidate was compared to all known exon sequences in the genome. 

Recent experimental studies revealed that the 3’-end seed region of the gRNA is more 

relevant to off-targeting than the nucleotides residing in the 5’-end. Thus, a more 

stringent filter is applied to this PAM-proximal seed region. In our algorithm, a gRNA 

candidate was excluded if its seed sequence (3’-end 13 nucleotides) was found in any 

other unintended exon sequence preceding the PAM domain (NGG or NAG). 

Furthermore, BLAST sequence alignment was performed to identify and exclude 20 n.t. 

gRNA candidates that have over 85% similarity to any unintended sequence in the 

design space. 

 

Using the established bioinformatics design pipeline to screen for both CRISPR efficacy 

and specificity, gRNA sequences were designed to target most known protein-coding 

genes in the genomes, including 18635 human and 20354 mouse genes, respectively. 

These gRNA sequences are freely accessible via a web server, WU-CRISPR 

(http://crispr.wustl.edu). In addition, a custom design interface was established for gRNA 

selection based on user-provided sequences. 

 

 

Discussion 
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In a short period of time, the CRISPR/Cas9 system has quickly become a major tool for 

editing of mammalian genomes. However, the rules governing the efficacy of CRISPR 

have not been well characterized and most users still design CRISPR assays by trial 

and error. This problem resembles a similar efficacy issue for RNAi studies ten years 

ago when the characteristics of functional siRNAs had not yet been well defined. As a 

result of significant advances in identifying the features that are characteristic of 

functional siRNAs, highly active siRNAs can be readily designed with bioinformatics 

tools, leading to a drastic saving in experimental resources. In the current study, we 

focused on identifying significant features that can be used to predict highly active 

sgRNAs. Specifically, we reanalyzed a public CRISPR dataset and discovered many 

novel features that are characteristic of functional sgRNAs. Previously, we and others 

have shown that both sequence and structural features of the siRNAs are important for 

RNAi knockdown activities [30]. Similarly, the knockout activities of CRISPR/Cas9 are 

also correlated to both sequence and structural features of the sgRNAs. By incorporating 

heterogeneous features in a prediction model, we have developed an improved 

bioinformatics design tool and implemented a web server, WU-CRISPR for genome-

wide selection of gRNAs for the CRISPR/Cas9 system. The availability of this program 

may help to improve the efficiency of CRISPR assay design, leading to significant 

savings in experimental resources at subsequent screening stage. 

 

Methods 

Retrieval of public data for algorithm training 

All gene sequences, including both exon and intron sequences, were downloaded from 

the UCSC Genome Browser [35]. Index files mapping transcript accessions to NCBI 

Gene IDs were downloaded from NCBI ftp site [36]. The Doench dataset for functional 

sgRNA screening was downloaded from the journal’s website [21]. In this published 
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study, functional activities of 1841 sgRNAs were determined by flow cytometry. The 

Doench dataset was reanalyzed to identify novel features that are correlated to sgRNA 

efficacy.  

 

Computational tools and data analysis 

LIBSVM was used to build computational models for sgRNA design 

(http://www.csie.ntu.edu.tw/~cjlin/libsvm/). For SVM analysis, a Radial Basis Function 

(RBF) was used for kernel transformation. Optimization of the RBF kernel parameters 

was done with grid search and cross-validation according to the recommended protocol 

by LIBSVM. RNA secondary structures and folding energies were calculated with 

RNAfold [33]. The predicted structures were examined at single-base resolution to 

determine whether individual nucleotides were base-paired or unpaired in the RNA 

structures. Statistical computing was performed with the R package (http://www.r-

project.org/). Statistical significance (p-value) for individual features was calculated by 

comparing functional and non-functional gRNAs with Student’s t-test or χ2 test. 

 

Validation of WU-CRISPR with independent experimental data 

The Chari dataset [28] was employed to independently evaluate the performance of WU-

CRISPR. In the Chari study, the knockout activities of 279 sgRNAs designed for Cas9 

(from Streptococcus pyogenes) were determined experimentally by high-throughput 

sequencing and used to train an sgRNA design algorithm, sgRNAScorer. In our 

comparative analysis, the Chari dataset was used to compare the performance of WU-

CRISPR with three other public algorithms, including sgRNA Designer [21], SSC [27] 

and sgRNAScorer [28]. Ten-fold cross-validation results from sgRNAScorer was 

previously presented in the Chari study and included in this comparative analysis. The 

sgRNA Designer program was downloaded at 
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http://www.broadinstitute.org/rnai/public/analysis-tools/sgrna-design; The SSC program 

was downloaded at http://sourceforge.net/projects/spacerscoringcrispr/. These stand-

alone tools were used to predict sgRNA activities, and the prediction results were then 

compared to experimental data. Precision-recall curve analysis was done for algorithm 

comparison in R using the ROCR package, and plotted using the ggplot and 

stat_smooth functions in the ggplot2 package. 

 

Data Availability 

The web server and stand-alone software package for gRNA design using the new 

design algorithm are distributed under the GNU General Public License and are 

available at http://crispr.wustl.edu. All sequencing data from the Doench study [21] and 

Chari study [28] can be retrieved from the NCBI Sequence Read Archive (accessions 

SRP048540 and SRP045596, respectively). 

 

Supplementary data 

Supplementary data are available at the journal’s website. 
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Table 1. Significant base counts in functional gRNAs* 

Mono- or Di-
Nucleoside Count 

Enrichment 
Ratio P-Value 

A 1.39 9.3E-18 
U 0.89 1.9E-03 
G 0.92 6.2E-03 
C 0.95 5.5E-02 
 

GG 0.64 2.3E-11 
AG 1.43 1.3E-09 
CA 1.38 6.7E-09 
AC 1.47 1.2E-08 
UU 0.59 7.5E-08 
UA 1.84 1.1E-07 
GC 0.77 3.2E-06 

* The enrichment ratio was determined by comparing the average nucleoside counts of 
functional gRNAs to that of non-functional gRNAs. The p-values were calculated with 
Student’s t-test. 
 
 
 
 
 
 
Table 2. gRNA feature filters that were applied before the SVM modeling process. 

Filtered Features Excluded Value 
Enrichment Ratio for 
Non-Functional gRNA 

gRNA folding (∆G) < -8 kcal/mol 15.8 

Duplex binding (∆G) < -22 kcal/mol 3.5 

GC content > 80% 30.7 

UUU in the seed region True 10.5 

Repetitive bases True 4.2 

Position 19 U 2.6 

Position 20 C or U 2.5 

Free energy (∆G) was calculated by RNAfold (23) for gRNA self-folding and by the 
Nearest Neighbor method (24) for binding stability of gRNA/target duplex. 
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Figure legends 
 
 
 
Figure 1.  Structural characteristics of sgRNAs. (A) Secondary structure of the sgRNA. 

The 20-nucleotide guide sequence is complementary to the target sequence and resides 

at the 5’-end  of the sgRNA. The highlighted nucleotides could potentially base pair, 

leading to an extended stem-loop structure. (B) Statistical significance of position-

specific nucleotide accessibility of functional sgRNAs as compared with non-functional 

sgRNAs. (C) Comparison of position-specific nucleotide accessibilities between 

functional and non-functional sgRNAs. 

 

Figure 2. Thermodynamic properties of the guide sequence (gRNA). Functional and 

non-functional gRNAs were compared in the analysis. (A) Structural stability of the 

gRNA as evaluated by self-folding free energy (G). (B) Structural stability of the 

gRNA/target sequence duplex as evaluated by free energy calculation.  

 

Figure 3. Evaluation of the gRNA prediction model by receiver operating characteristic 

(ROC) curves. Two cross-validation strategies were employed, 10-fold cross-validation 

and gene-based cross validation.  

 

Figure 4. Validation of WU-CRISPR using independent experimental data. Precision-

recall curves were constructed to evaluate the performance of WU-CRISPR and three 

other bioinformatics algorithms for sgRNA design.  
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