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Abstract 

Single-cell phenotyping promises to yield insights into biological responses in 

heterogeneous cell populations.  We developed a method based on single-cell analysis to 

phenotype human induced pluripotent stem cells (hIPSC) by high-throughput imaging. 

Our method uses markers for morphology and pluripotency as well as social features to 

characterize perturbations using a meta-phenotype based on mapping single cells to 

distinct phenotypic classes. Analysis of perturbations on a single cell level enhances the 

applicability of human induced pluripotent stem cells (hIPSC) for screening experiments 

taking the inherently increased phenotypic variability of these cells into account. We 

adapted miniaturized culture conditions to allow for the utilization of hIPSC in RNA 

interference (RNAi) high-throughput screens and single cell phenotyping by image 

analysis. We identified key regulators of pluripotency in hIPSC masked in a population-

averaged analysis and we confirmed several candidate genes (SMG1, TAF1) and assessed 

their effect on pluripotency. 
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Introduction 

Multi-parametric analysis applied to high throughput imaging screens opened new 

avenues in functional genomic analysis.1 While this method allows to measure the effect 

of perturbations by small molecules or small interfering RNAs (siRNAs) with cellular 

resolution2,3, robust methods are necessary to analyse the vast amounts of multi-

dimensional data on a single-cell level.4,5 Currently, most methods reduce data 

complexity by normalization and averaging over cell populations, thereby loosing 

information about phenotypic plasticity and heterogeneity within a population of 

perturbed cells.6,7 In contrast, preserving the multi-dimensionality at a single-cell level 

captures cell-to-cell variability and promises to provide in-depth characterization of 

heterogenic cell populations, such as stem cells, that are otherwise not achievable. Such 

analysis can be provided by multi-factorial microscopy based readout. 

Human induced pluripotent stem cells (hIPSC) are an important model system to 

address fundamental questions in stem cell and developmental biology8–10, and serve as a 

tool to dissect disease processes using patient-derived hIPSC. The phenotypic 

heterogeneity of hIPSC, in particular after perturbations that might interfere with self-

renewal or initiate differentiation, requires a quantitative, single-cell analysis of 

hIPSCs.11–13 Here we established a high-throughput method to comprehensively measure 

multi factorial phenotypes in hIPSC perturbed by RNA interference (RNAi) in order to 

overcome limitations for hIPSC use in high-throughput screening applications.   
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Results 

 

Figure 1. Single-cell phenotyping of human induced pluripotent stem cells.  

(a) Workflow of cell-based RNAi screening of hIPSC using a high-throughput microscopy read-out. (b) 
Representative images of hIPSC 96 hours after transfection with siRNA targeting Oct4 and non-targeting 
control siRNA. Bar plots show quantification of Oct4-positive and total nuclei. (c) Distinct populations of 
hIPSC. Each cell is represented by a dot with the following feature data: nuclear area, mean Oct4 signal 
intensity, and distance to first neighbour. 200 000 randomly selected cells from both, non-targeting and 
Oct4 targeting siRNA controls were plotted. Feature data were scaled between 0 and 1 linearly, based on 
the complete dataset. Colours represent populations found by k-means clustering with 6 centres and 30 
random starts.  

To identify modifiers of hIPSC phenotypes, we performed a kinome-wide RNAi screen 

using automated microscopy (Figure 1a,b).  First, we established a method to reliably 

seed, perturb and image hIPSC in a 384-microwell format. Transparent-bottom micro 

well plates were coated with Matrigel and siRNAs were pre-spotted. After treatment with 

ROCK-inhibitor Y27632 for 1h followed by enzymatic digestion with trypsin and 

collagenase IV, 2000 separated hIPSC per well were seeded and reverse transfected with 

siRNAs in mTeSR™ stem cell medium.  We found conditions to ensure that cells were 

evenly distributed, spatially separated and growing robustly (Figure 2a).  After 4 days 

incubation, cells were fixed and stained for DNA and OCT4 protein expression.  Next, 

we tested the gene silencing efficiency of small interfering RNAs (siRNA) targeting 

OCT4 (Pou5f1), a master regulator of pluripotency in hIPSC, marking cellular 

pluripotency state.   
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A pool of 4 siRNAs targeting OCT4 efficiently silenced OCT4 expression reducing the 

number of OCT4 positive cells 13-fold (Figure 1b).  Additional markers of pluripotency, 

SSEA4 and NANOG decreased 80 fold and 6 fold after OCT4 knockdown, respectively 

(Figure 4b). Subsequently, a total of 1.71 Mio cells were seeded in two biological 

replicates. Automated imaging was performed using a robotic imaging system to acquire 

more than 42,000 images.  We developed an image analysis pipeline for hIPSC analysis 

based on CellProfiler14 (Suppl. Software 1). Quantified features included intensity, 

morphology and spatial distribution features (see also Methods, Image analysis). An 

analysis on the basis of the z’-score normalized OCT4 signal showed overall good 

reproducibility of the biological replicates (Figure 2b, Spearman correlation coefficient of 

0.67). In-depth analysis of the screen based on multiple single-cell features was realized 

using a workflow based on single-cell feature clustering approaches (Figure 2d, Suppl. 

Data 1).7 Out of an initial dataset of 67 features, non-redundant features were selected by 

excluding features showing Pearson correlation coefficients of higher than 0.95 with any 

other feature.  For subsequent analysis, we used 8 remaining features: (i) nuclear extent, 

(ii) nuclear area, (iii) number of neighbours, (iv) distance to first neighbour, (v) mean 

Hoechst intensity, (vi) maximum Hoechst intensity, (vii) mean OCT4 intensity and (viii) 

maximum OCT4 intensity.  Unsupervised k-means clustering was performed on negative 

(non-targeting siRNA) and positive (siRNA targeting OCT4) control cells resulting in a 

classification into multiple distinct cell categories. 
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Figure 2. Methods for single cell phenotyping in hIPSC.  
(a) Growth curve of hIPSC after seeding 2000 single cells per well in a 384-microwell plate (n = 8 per time 
point, mean ± s.d.). Corresponding immunofluorescence images of hIPSC stained for DNA (purple) and 
Oct4 (green) after single-cell seeding. (b) Scatterplot of two replicate RNAi screening results using per-
well analysis of 779 sample siRNAs targeting kinases (grey) and 21 positive (siRNA targeting OCT4; 
black) as well as 42 negative (non-targeting siRNAs; green) control siRNAs, respectively. Z-scores were 
calculated based on the ratio of the number of Oct4-positve cells and the total cell number per siRNA-
treatment (Spearmen correlation coefficient = 0.67). (c) The three features (I) nuclear area, (II) mean Oct4 
signal intensity, and (III) distance to first neighbour were plotted for non-targeting siRNA, OCT4-siRNA, 
NEK4-siRNA and TAF1-siRNA, respectively. The cells were subsampled from the entire dataset of each 
treatment, randomly 6000 cells from each treatment. The data was scaled linearly from 0 to 1. (d) Step-by-
step schematic workflow comprising image segmentation, feature extraction, reduction of the feature 
matrix by correlation analyses, K-means clustering to generate phenotypic population categories, K-
nearest-neighbour (K-N-N) classification by assigning every single cell of the screening experiment to one 
of the populations, and the final profiling by counting the number of cells of each population in every well. 

Supplementary Figure 1
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Classification into six categories resulted in the most robust clustering performance.  We 

visualized these six reference cell categories in a 3D scatterplot (i) nuclear area, (ii) 

OCT4-signal intensity, and (ii) distance to first neighbour after treatment with non-

targeting siRNA and siRNA targeting OCT4. OCT4 signal intensity was reduced by 80 % 

after OCT4 knockdown. In addition, reduction in the expression of the remaining two 

features could also be detected, 3.5 % and 2 % for nuclear area and distance to first 

neighbour, respectively (Figure 2c, left). This highlights the shift of entire cell 

populations after down regulation (Figure 1c, e.g. reduction of abundance of ‘black’ 

category cells by nearly 100 %, see also Figure 3b class 5). Reference categories were 

further used to perform k-nearest neighbour classification assigning each cell of the 

7731725 imaged cells to one of the six categories (Figure 3a). We further found that the 

population distribution of the cells among the reference categories can be used as a 

characteristic meta-phenotype and to enable the classification of perturbations. Six profile 

distributions, showing enrichments for either one population, are shown in Figure 3b, 

including example perturbations. For example, knockdown of NIMA-related kinase 4 

(NEK4) increases the non-targeting (stem cell-like) meta-phenotype, whereas in contrast 

RNAi against the TATA box binding protein (TBP)-associated factor (TAF1) is forcing 

the population into an OCT4-knockdown-like distribution (Figure 2c).  
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Figure 3. Profiling by single-cell classification and profile correlation.  

(a) 6 categories defined by k-means clustering are represented by star plots of the 8 phenotypic traits used. 

The following traits were represented: number of neighbours (light grey), distance to first neighbour (dark 

grey), mean Hoechst intensity (light purple), maximum Hoechst intensity (dark purple), mean Oct4 

intensity (dark green), maximum Oct4 intensity (light green), nuclear extent (dark grey), nuclear area 

(black). (b) Population profiles of selected transcript depletions. For each profile, cells in each population 

were counted and normalized to the total cell count for the corresponding treatment. Bar plots represent the 

distribution of cells among the 6 categories. In addition an image enriched for either one population is 

shown beneath emphasizing the visual phenotype of the 6 populations. (c-e) Euclidean distance of each 

sample profile from the average non-targeting siRNA profile is plotted against the Euclidean distance of 

each sample profile from the average Oct4 targeting siRNA controls. (c) Profiles are defined as the per cent 

cell counts of each population normalized to the total number of cells per well. (d) Profiles are defined as 

absolute cell counts per population per well. (e) Profiles are defined as mean feature expression per well 

regarding mean and maximum Oct4 signal intensity.  
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Perturbations are characterized based on the Euclidian distance of their meta-phenotype 

to positive and negative controls.  When plotted against two controls, candidate genes 

were segregated into four groups (Figure 3c-e), showing e.g. either close proximity to 

positive controls (Q1) and far proximity to negative controls or far proximity to positive 

and negative controls (Q2). For instance, perturbations resulting in a shift of a profile 

from Q3 to Q1 represent the transformation from a pluripotent meta-phenotype towards a 

loss-of-pluripotency.  In contrast, meta-phenotypes located in Q2, differ from an un-

perturbed hIPSC phenotype, however without resembling the loss-of-pluripotency meta-

phenotype. For example, depletion of TAF1 or SMG1 gene in hIPSC shows a meta-

phenotype located in Q1 indicating close phenotypic relation to the OCT4-knockdown 

(Figure 3d). However, whereas the meta-phenotype of ERK1, a known regulator of 

pluirpotency15, shows similarities to the OCT4 control (Q1), an analysis of OCT4 

expression only (Figure 3e) does not implicate this and locates the meta-phenotype in Q2. 

Even if cell count per population is normalized to total number of cells, excluding 

viability effects, the same trends are observed (Figure 3d). 
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Figure 4. Follow–up analysis of the candidate genes TAF1 and SMG1.  
(a) Immunofluorescence images of hIPSC stained for DNA (blue) and Oct4 (green) after treatment with 

siRNAs targeting OCT4, TAF1, SMG1, and with non-targeting siRNA. (b) OCT4 gene expression, 

measured by qRT-PCR and normalized to ACTB mRNA levels, and relative ratio of OCT4-, SSEA4- and 

NANOG-positive hIPSC transfected with single siRNAs and corresponding pools of siRNAs targeting 

OCT4. Data shown as mean ± s. d. (n = 5 for gene expression data; n = 4 for OCT4, n = 2 for SSEA4 and 

NANOG immunofluorescence data). (c) Expression of candidate genes TAF1 and SMG1, and of 

pluripotency marker OCT4 normalized to ACBT in hIPSC transfected with single siRNAs and the 

corresponding pool of siRNAs targeting TAF1 und SMG1, respectively. Data shown as mean ± s. d. (TAF1-

knockdown: n = 3 for TAF1 and n = 5 for OCT4; SMG1-knockdown: n = 2 for SMG1 and n = 5 for OCT4). 

Relative ratio of cells positive for pluripotency markers OCT4, SSEA, and NANOG in hIPSC transfected 

with single siRNAs and the corresponding pool of siRNAs targeting TAF1 und SMG1, respectively. Data 

shown as mean ± s. d. (n = 2 – 4 for TAF1, n = 2 – 4 for SMG1). 

Supplementary Figure 2
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We further validated the two candidate genes, TAF1 and SMG1, using deconvoluted 

pools of siRNAs. In addition, we analysed expression of additional pluripotency markers 

other than Oct4 after targeting TAF1 and SMG1 with siRNA. These experiments 

demonstrated effective gene silencing of TAF1 and SMG1 with RNAi and revealed 

decreased expression of NANOG and SSEA4 indicating loss of pluripotency in hIPSC 

after knockdown of TAF1 and SMG1 (Figure 4c).  

 

Conclusions 

Large-scale functional analyses of heterogeneous cells have remained an 

unresolved challenge for high-throughput experiments. Our combined experimental and 

computational workflow demonstrates how image-based single-cell phenotyping could be 

used to identify candidate perturbations. We show how perturbation of these gene impact 

phenotypic characteristics of cell populations.  

This indicates that cell populations undergo different functional states such as the 

modulation of the pluripotent state as shown in our study. Combining morphology-based 

features with specific markers robustly identified phenotypic classes for a heterogeneous 

cell type at a single-cell level.16 Future experiments using additional markers or different 

control profiles may aid in the assessment of differentiation capacity of hIPSC towards 

specific phenotypes and help to identify perturbations that influence specific 

differentiation pathways.  

 

Methods 

Cell Culture 

Experiments were performed in two human induced pluripotent stem cell (hIPSC) 

lines (hIPSC1 and hIPSC2, as indicated in Suppl.  Table 1). hIPSC1 was derived from 

human skin fibroblasts (Ethics Committee of Heidelberg University approval no. 2009-

350N-MA) and hIPSC2 was generated using replication-defective doxycycline-inducible 

single lentiviral vectors containing OCT4, KLF4 and C-MYC from primary melanocytes 

purchased from Promocell as described previously1. Reprogramming of hIPSC1 was 

performed using the polycistronic lentiviral vector STEMCCA-OKSM and the tet-
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activator M2rtTA as described elsewhere2. Fibroblasts were seeded with a density of 5000 

cells/well on gelatin coated 6-well plates (BD Bioscience). The cells were rinsed with 

PBS and 2 mL mouse embryonic fibroblast (MEF) medium (DMEM supplemented with 

10% fetal bovine serum, 1% penicillin/streptomycin and 1% L-glutamine, all Gibco) was 

added. For lentiviral transduction 5 µL of M2rtTA and 5 µL STEMCCA-OKSM 

concentrated virus was added. To improve the transduction efficiency 1 mg/mL 

polybrene (Sigma) was supplemented. The following day cells were rinsed with PBS 

followed by another round of lentiviral transduction. After 24 h the cells were washed 

twice with PBS and a 1:1 mixture of MEF medium with human embryonic stem cell 

(hES) medium (DMEM/F12 supplemented with 20 % KOSR, 1% L-glutamine, 1% 

penicilline/streptomycine, 1% MEM-NEAA, all Gibco, 0.05 mM 2-Mercaptoethanol, 

Carl Roth, and 10 ng/mL bFGF, Promokine) was added. The medium was supplemented 

with 1 µg/mL doxycycline (Sigma) in order to induce the transgene expression. The 

transduced cells were cultured in the mix-medium for one week, afterwards in hES cell 

medium supplemented with 1 µg/mL doxycycline. After four to six weeks appearing 

colonies of reprogrammed cells were picked manually and transferred onto mitomycin c 

(AppliChem) treated feeder cells. After another two weeks, when the cells reached a 

stable state, doxycycline was withdrawn and the colonies were picked manually onto 

Matrigel™ (BD Bioscience) coated dishes and cultured in mTeSR™ (STEMCELL 

Technologies). To ensure pluripotency hIPSC1 were subjected to a teratoma formation 

assay and the expression of pluripotency markers was assessed by immunostaining 

(Suppl. Figure 1). 

Both, hIPSC1 and hIPSC2 were cultured in mTeSR™1 (STEMCELL Technologies) in 

feeder-free conditions on growth factor reduced Matrigel-coated (BD Bioscience) plates 

in a humidified incubator at 37° C and 5% CO2 in standard conditions. 

 

High-throughput siRNA screening 

The kinome siRNA library (siGENOME, Dharmacon) was arrayed in growth 

factor reduced Matrigel (BD Bioscience) coated (20 µL per well for one hour at room 

temperature) 384 well micro plates (BD Bioscience) using a Biomek FX200 liquid 

handling system. 5 µL of a 250 nmolar siRNA pool of four single siRNAs were spotted 
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in each well. Non-targeting single siRNA (siControl #2 in wells B4 through H4 and 

siRLUC in wells I4 through O4, Dharmacon) served as negative and a pool of four 

siRNAs targeting OCT4 (SiGenome, Dharmacon; wells B3 through H3) served as 

positive controls. A pool of four single siRNAs targeting UBC (SiGenome, Dharmacon; 

wells A3, A4, P3, and P4) served as viability controls. 

For single cell seeding hIPSC were treated with 5 µmolar ROCK-inhibitor (Y27632; 

Axxora, 5 µmolar)) in mTeSR™1 hour before and after passaging. Cells were passaged 

in a two-step protocol sequentially using CTK solution consisting of 0.25% trypsin 

(Gibco), 0.1% collagenase IV (Invitrogen), 20% KnockOut Serum Replacement 

(Invitrogen) and 1 mmolar CaCl2 as well as trypsin solution (0.25% with EDTA; Gibco) 

to generate a single cell suspension. Reverse transfection was performed using 

Lipofectamine RNAiMAX (Invitrogen) transfection reagent. A master mix of 0.05 µL 

transfection reagent and 4.95 µL DMEM/F12 (Invitrogen) medium was added to each 

well and incubated for 20 minutes. Single hIPSC were seeded at a density of 2000 cells 

per well in 40µL mTeSR™1 medium supplemented with 1% penicillin/streptomycin 

(Invitrogen) and 5 µmolar ROCK-inhibitor. Two days after transfection 30 µL of fresh 

mTeSR™1 was added to each well. Plates were kept in a humidified incubator at 37° C 

and 5% CO2 in standard conditions.  

Fixation and Staining  

Four days after transfection, cells were washed with PBS. Subsequently cells 

were fixed and permeabilized using 4% paraformaldehyde (Sigma) and 0.2% Triton X-

100 (AppliChem) in PBS for 45 minutes at room temperature. After an additional 

washing step with PBS, cells were blocked with 3% BSA (Sigma) and 0.05% Triton X-

100 in PBS for 45 minutes. Next, immunostaining was performed overnight at 4° C using 

a rabbit anti-OCT4 antibody (Abcam, working concentration 1 µg/mL) and Phalloidin-

TRITC (Sigma; working concentration 1 µg/mL). After three washing steps secondary 

antibody staining was performed with an Alexa 488 conjugated goat anti-rabbit antibody 

(Invitrogen; working concentration 5µg/mL) and DNA-labelling was done with Hoechst 

33242 (Invitrogen; working concentration 1µg/mL) for 1 hour at room temperature. After 

4 additional washing steps plates were amenable for image acquisition. 
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Automated imaging  

Imaging was done using an automated BD Pathway 855 Bioimaging System 

(Becton Dickinson) with a 20x objective (NA=0.75) in combination with a Hamamatsu 

digital camera (Orca-ER). 25 fields per well were imaged containing channels for 

Hoechst (DNA; excitation filter 380/10 nm), and FITC (Oct4; excitation filter 488/10 

nm). Hoechst staining was used to bring cells into focus by laser autofocus for every 

single image. Due to a technical restraint of the BD Pathway microscope leading to 

partial duplication of image frames in row A of 384 micro well plates, all compound 

images had to be cropped accordingly to prevent duplicate frames to be analysed. 

Image analysis 

Image analysis was performed with the CellProfiler image analysis software 

(Version 2.0). The pipeline used in this screen is available under Suppl. Software 2. In 

brief, object selection was based on adaptive intensity and fixed size thresholds for every 

single object. Object segmentation was optimized to achieve best possible resolution of 

single objects in dense clusters of cells. For data analysis, morphological, intensity and 

spatial distribution parameters of parent objects segmented in channel 1 (Hoechst) and 

child objects of objects in channel 2 (Oct4) were measured.  

Per-well screen analysis using cellHTS2 

After manually setting a threshold for mean intensity of the Oct4 signal, cells 

were binned into Oct4-positive and Oct4-negative cells. The ratio of Oct4-positive nuclei 

(rp) was calculated by dividing the number of Oct4-positive objects by the total number 

of nuclei per well. To exclude siRNAs strongly affecting cell viability, a minimum 

threshold tmin for the cell number per well was implemented at the 5% quartile of the 

number of nuclei of all wells analysed for each pair of plates (plate 1: tmin = 2430, plate 2:  

tmin = 2967, plate 3: tmin = 3268). The screen was analysed using the R package 

cellHTS23. Single channel data (fraction of Oct4-positive cells per well) were normalized 

per plate and z-scores were calculated (ranked list of z-scores see Suppl. Data 2). The 

Spearman rank correlation coefficient of the two technical duplicates of the screen was 

0.67 for rp. The z’-factor of the ratio of Oct4-positive nuclei per well was 0.62 and 0.42 

for replicate 1 and replicate 2, respectively.  
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Single cell phenotyping 

R was used in version 3.0.2. Perl was used in version 5.16.2. Raw data has been 

acquired from tab delimited output files from CellProfiler and annotated with the attached 

Perl scripts find_ctrls.pl and map_rna_to_well.pl (Suppl. Data 1,2). These scripts require 

a folder structure, in which for every plate there is a subfolder containing the respective 

tab delimited file and the annotation file. In each txt file there is one row per segmented 

object containing its well number of origin and its feature vector. The Annotation file 

hence contains the well number, well name and RNAi reagent. Further, using the R 

function make_and_save_kmeans (Suppl. Data 1,2) raw data resulting from find_ctrls.pl 

were read in, non-correlating feature (coefficient=0.95, method=Pearson) were selected 

and used for k-means clustering with 6 centres, 30 random start attempts and default 

parameters else. Clustering quality has been assessed by observing a between sum-of-

squares vs. total sum-of-squares ratio of 66.5%. Following, sample cells were classified 

as belonging to one of the 6 phenotypic groups using the classify_samples function 

(Suppl. Data 1,2). Therein k-nearest-neighbour classification has been performed using 

the result of the k-means clustering as training dataset and a neighbourhood (k) of 100 

data points. Hit identification has been performed by using the function 

make_distance_plot , where the Euclidian distances of each samples feature vector to the 

positive control vector is plotted against the negative control vector. (Suppl. Data 1,2). 

Validation Experiments 

Knockdown efficiency of candidates was tested by transfecting the pools of 

siRNAs as well as single siRNAs (all Dharmacon; see Suppl. Table 1 for target 

nucleotide sequences) in hIPSC in a 96-well format. RNA from two wells of 96-well 

plate was isolated with the RNAeasy Mini kit (Qiagen) after 4 days of culture with 

conditions identical to the screen after up scaling of the respective volumes. RNA was 

used as template for cDNA synthesis with the Revert Aid H Minus First Strand cDNA 

Synthesis kit (Fermentas). Real time polymerase chain reaction was used to quantify 

expression of the targeted transcript using a Roche Lightcycler 480 (Roche) and the 

Roche Universal Probe Library (Roche). Gene expression was normalized against ACTB.  

Immunofluorescence antibody staining for Oct4, SSEA4 and Nanog (all Abcam, working 

concentrations 1.0, 10.0 and 0.4 µg/mL, respectively) and corresponding secondary 
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antibodies (Alexa 488 goat anti-rabbit and Alexa 594 goat anti-mouse, Invitrogen; 

working concentrations of 5.0 and 8.0 µg/mL, respectively) was done using the same 

conditions as in the screen in a 384-well format after correction of the corresponding 

volumes. Imaging was done using the BD Pathway 855 Imaging system (BD) as 

previously described for the screening experiment. Ratio (rp) was calculated for each 

treatment using the above mentioned stem cell markers by dividing the number marker-

positive cells by the total number of cells per well. For each experiment the mean of at 

least two wells for each treatment was calculated. To ensure comparability of data 

between individual experiments, the rp of samples was normalized to the rp of controls 

(non-targeting siRNA) to yield the relative ratio of marker positive cells. 
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