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RNA polymerase errors cause splicing defects and can be regulated by 1 

differential expression of RNA polymerase subunits. 2 
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 10 

Errors during transcription may play an important role in determining 11 

cellular phenotypes: the RNA polymerase error rate is >4 orders of magnitude 12 

higher than that of DNA polymerase and errors are amplified >1000-fold due to 13 

translation. However, current methods to measure RNA polymerase fidelity are low-14 

throughout, technically challenging, and organism specific. Here I show that changes 15 

in RNA polymerase fidelity can be measured using standard RNA sequencing 16 

protocols. I find that RNA polymerase is error-prone, and these errors can result in 17 

splicing defects. Furthermore, I find that differential expression of RNA polymerase 18 

subunits causes changes in RNA polymerase fidelity, and that coding sequences may 19 

have evolved to minimize the effect of these errors. These results suggest that errors 20 

caused by RNA polymerase may be a major source of stochastic variability at the 21 

level of single cells.  22 

 23 
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  The information that determines protein sequence is stored in the genome 24 

but that information must be transcribed by RNA polymerase and translated by the 25 

ribosome before reaching its final form. DNA polymerase error rates have been well 26 

characterized in a variety of species and environmental conditions, and are low, on 27 

the order of one mutation per 108 - 1010 bases per generation1-3. In contrast, RNA 28 

polymerase errors are uniquely positioned to generate phenotypic diversity. Error 29 

rates are high (10-6-10-5)4-7, and each mRNA molecule is translated into 2,000 – 30 

4,000 molecules of protein8,9, resulting in amplification of any errors. Likewise, 31 

because many RNAs are present in less than one molecule per cell in microbes10,11 32 

and embryonic stem cells12, an RNA with an error may be the only RNA for that 33 

gene; all newly translated protein will contain this error. Despite the fact that 34 

transient errors can result in altered phenotypes13,14, the genetics and 35 

environmental factors that affect RNA polymerase fidelity are poorly understood. 36 

This is because current methods for measuring polymerase fidelity are technically 37 

challenging4, require specialized organism-specific genetic constructs15, and can 38 

only measure error rates at specific loci16.  39 

 40 

To overcome these obstacles I developed MORPhEUS (Measurement Of RNA 41 

Polymerase Errors Using Sequencing), which enables measurement of differential 42 

RNA polymerase fidelity using existing RNA-seq data (Figure 1). The input is a set 43 

of RNA-seq fastq files and a reference genome, and the output is the error rate at 44 

each position in the genome. I find that RNA polymerase errors result in intron 45 

retention and that cellular mRNA quality control may reduce the effective RNA 46 
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polymerase error rate. Moreover, our analyses suggest that the expression level of 47 

the RPB9 Pol II subunit determines RNA polymerase fidelity in-vivo. Because it can 48 

be run on any existing RNA-seq data, MORPhEUS enables the exploration of a 49 

previously unexplored source of biological diversity in microbes and mammals.  50 

 51 

Technical errors from reverse transcription and sequencing, and biological 52 

errors from RNA polymerase look identical (single-nucleotide differences from the 53 

reference genome). Therefore, a major challenge in identifying SNPs and in 54 

measuring changes in polymerase fidelity is the reduction of technical errors17-55 
19(Figure 1). First, I map full length (untrimmed) reads to the genome, and discard 56 

reads with indels, more than two mismatches, reads that map to multiple locations 57 

in the genome, and reads that do not map end-to-end along the full length of the 58 

read. I next trim the ends of the mapped reads, as alignments are of lower quality 59 

along the ends, and the mismatch rate is higher, especially at splice junctions. I also 60 

discard any cycles within the run with abnormally high error rates, and bases with 61 

low Illumina quality scores (Figure 1 – figure supplement 1). Finally, using the 62 

remaining bases, I count the number of matches and mismatches to the reference 63 

genome at each position in the genome. I discard positions with identical 64 

mismatches that are present more than once, as these are likely due to subclonal 65 

DNA polymorphisms or sequences that Illumina miscalls in a systematic manner20 66 

(Figure 1 – figure supplement 2). The result is a set of mismatches, many of which 67 

are technical errors, some of which are RNA polymerase errors. In order to 68 

determine if RNA-seq mismatches are due to RNA polymerase errors it is necessary 69 
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to identify sequence locations in which RNA polymerase errors are expected to have 70 

a measurable effect, or situations in which RNA polymerase fidelity is expected to 71 

vary.  72 

 73 

I reasoned that RNA polymerase errors that alter positions necessary for 74 

splicing should result in intron retention, while sequencing errors should not affect 75 

the final structure of the mRNA (Figure 2a). However, mutations in the donor and 76 

acceptor splice sites also result in decreased expression36, and therefore are difficult 77 

to measure using RNA-seq. I therefore used chromatin-associated and nuclear RNA 78 

from Hela and Huh7 cells37, and extracted all reads that span an exon-intron 79 

junction for introns with canonical GT and AG splice sites, and measured the RNA-80 

seq mismatch rate at each position. I find that errors at the G and U in the 5’ donor 81 

site, and at the A in the acceptor site are significantly enriched relative to errors at 82 

other positions (Figure 2b), and to errors trinucleotides present in the splicing 83 

motifs in the human genome (Figure 2 – figure supplement 1) suggesting that 84 

RNA polymerase mismatches can result in changes in transcript isoforms. The 85 

ability of RNA polymerase errors to significantly affect splicing has been proposed22 86 

but never previously measured.  87 

 88 

RPB9 is known to be involved in RNA polymerase fidelity in vitro and in 89 

vivo15,23. I therefore reasoned that cell lines expressing low levels of RPB9 would 90 

have higher RNA polymerase error rates. Consistent with this, I find that RPB9 91 

expression varies 8-fold across the ENCODE cell lines, and this expression variation 92 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 26, 2015. ; https://doi.org/10.1101/026799doi: bioRxiv preprint 

https://doi.org/10.1101/026799


  

 Page 5 of 18

is correlated with the RNA-seq error rate (Figure 2c, Figure 2 – figure supplement 93 

2). This suggests that low RPB9 expression may cause decreased polymerase 94 

fidelity in-vivo.  95 

 96 

In addition, export of mRNAs from the nucleus involves a quality-control 97 

mechanism that checks if mRNAs are fully spliced and have properly formed 5’ and 98 

3’ ends24. I hypothesized that mRNA export may involve a quality control that 99 

removes mRNAs with errors. I used the ENCODE dataset in which nuclear and 100 

cytoplasmic poly-A+ mRNAs I re sequenced, thus I can compare nuclear and 101 

cytoplasmic fractions from the same cell line grown in the same conditions and 102 

processed in the same manner. I find that the nuclear fraction has a higher RNA 103 

polymerase error rate than does the cytoplasmic fraction (Figure 2c,d), suggesting 104 

that either that nuclear RNA-seq has a higher technical error rate or that the cell has 105 

mechanisms for reducing the effective polymerase error rate by preventing the 106 

export of mRNAs that contain errors.  107 

 108 

Rpb9 and Dst1 are known to be involved in RNA polymerase fidelity in-vitro, 109 

yet there is conflicting evidence as to the role of Dst1 in-vivo6,15,23,25-27. Part of these 110 

conflicts may result from the fact that the only available assays for RNA polymerase 111 

fidelity are special reporter strains that rely on DNA sequences known to increase 112 

the frequency of RNA polymerase errors. While I found that RPB9 expression 113 

correlates with RNA-seq error rates in mammalian cells, correlation is not 114 

causation. Furthermore, differences in RNA levels do not necessitate differences in 115 
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stoichiometry among the subunits in active Pol II complexes. In order to determine 116 

if differential expression of RPB9 or DST1 are causative for differences in RNA 117 

polymerase fidelity in-vivo, I constructed two yeast strains in which I can alter the 118 

expression of either RPB9 or DST1 using B-estradiol and a synthetic transcription 119 

factor that has no effect on growth rate or the expression of any other genes28,29. I 120 

grew these two strains ( Z3EVpr-RPB9 and Z3EVpr-DST1 ) in different concentrations 121 

of B-estradiol and performed RNA-seq. I find that cells expressing low levels of 122 

RPB9 have high RNA polymerase error rates (Figure 3a). Likewise, cells with low 123 

DST1 have high error rates (Figure 3a). The increase in errors rate is not a property 124 

of cells defective for transcription elongation (Figure 3 – figure supplement 1). 125 

The increase in error rates due to mutations in Rpb9 and Dst1 have not been 126 

robustly measured, however, there are some rough numbers. Here, the measured 127 

increase in error rate is 13%, while the measured effect of Rpb9 deletion in-vitro is 128 

5-fold38 and in-vivo following reverse transcription is 30%25. If 2% of the observed 129 

mismatches are due to RNA polymerase errors, a 5-fold increase in polymerase 130 

error rate results in a 10% increase in measured mismatch frequency; this is 131 

consistent with RNA polymerase fidelity of 10-6-10-5 and overall RNA-seq error rates 132 

of 10-4. Note that in our assay cells still express low levels or RPB9, and we therefore 133 

expect the increase in error rate to be lower, suggesting that RNA polymerase errors 134 

constitute 5-10% of the measured mismatches. Our ability to genetically control the 135 

expression of DST1 and RPB9, and measure changes in RNA-seq error rates is 136 

consistent with MORPhEUS measuring RNA polymerase fidelity. In addition, we 137 

observe more single nucleotide insertions in the RNA-seq data from the high error 138 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 26, 2015. ; https://doi.org/10.1101/026799doi: bioRxiv preprint 

https://doi.org/10.1101/026799


  

 Page 7 of 18

rate samples, suggestiong that depletion of RPB9 and DST1 results in increased 139 

insertions in transcripts, but not increased deletions (Figure 3 – figure 140 

supplement 2). Finally, genetic reduction in RNA polymerase fidelity results in 141 

increased intron retention, consistent with RNA polymerase errors causing reduced 142 

splicing efficiency (Figure 3b).  143 

 144 

A unique advantage of MORPhEUS is that it measures thousands of RNA 145 

polymerase errors across the entire transcriptome in a single experiment, and thus 146 

enables a complete characterization of the mutation spectrum and biases of RNA 147 

polymerase. I asked how altered RPB9 and DST1 expression levels affect each type 148 

of single nucleotide change. I find that, with decreasing polymerase fidelity, 149 

transitions increase more than transversions, and that C->U errors are the most 150 

common (Figure 3c). This result, along with other sequencing based results4, have 151 

shown that DNA and RNA polymerase have broadly similar error profiles2; it will be 152 

interesting to see if all polymerases share the same mutation spectra, and if this is 153 

due to deamination of the template base, or is a structural property of the 154 

polymerase itself. Interestingly, I find that coding sequences have evolved so that 155 

errors are less likely to produce in-frame stop codons than out-of-frame stop 156 

codons, suggesting that natural selection may act to minimize the effect of 157 

polymerase errors (Figure 4). 158 

 159 

Here I have presented proof that relative changes in RNA polymerase error 160 

rates can be measured using standard Illumina RNA-seq data. Consistent with 161 
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previous work in-vivo and in-vitro, I find that depletion of RPB9 or Dst1 results in 162 

higher RNA polymerase error rates. Futhermore, I find that expression of RPB9 163 

negatively correlates with RNA-seq error rates in human cell lines, suggesting that 164 

differential expression of RPB9 may regulate RNA polymerase fidelity in-vivo in 165 

humans. In addition, consistent with the errors detected by MORPhEUS being due to 166 

RNA polymerase and not technical errors, in reads spanning an exon-intron 167 

junction, the measured error rate is higher at the 5’ donor splice site, suggesting that 168 

RNA polymerase errors result in intron retention. Because it can be run on existing 169 

RNA-seq data, I expect MORPhEUS to enable many future discoveries regarding both 170 

the molecular determinants of RNA polymerase error rates, and the relationship 171 

between RNA polymerase fidelity and phenotype. 172 

 173 
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 177 

Materials and methods 178 

Counting RNA polymerase errors in already aligned ENCODE data 179 

Much existing RNA-seq data is available as bam files aligned to the human 180 

genome. In order to bypass the most computationally expensive step of the pipeline, 181 
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I developed a method capable of using RNA-seq reads aligned with spliced aligners. 182 

First, in order to avoid increased mismatch rates at splice junctions due to 183 

alignment problems with both spliced and unspliced reads, I used samtools30 and 184 

awk to remove all alignments that don’t align along the full length of the genome 185 

(eg: for 76bp reads, only reads with a CIGAR flag of 76M). The remaining reads I re 186 

trimmed (bamUtil , trimBam) to convert the first and last 10bp of each read to Ns 187 

and set the quality strings to ‘!’. I then used samtools mpileup (-q30 –C50 –Q30) and 188 

custom perl code to count the number of reads and number of errors at each 189 

position in genome. Positions with too many errors (eg: more than one read of the 190 

same non-reference base) I re not counted. 191 

 192 

Measurement of error rates at splice junctions 193 

I used the UCSC table browser31 to download two bed files: hg19 194 

EnsemblGenes introns with -10bp flanking from each side, and another file with the 195 

introns and +10bp flanking on either side. I then used bedtools32 (bedtools flank -b 196 

20 -l 0 & bedtools flank -l 20 -b 0) to generate bed files with intervals that contain 197 

the splicing donor and acceptor sites, respectively. In addition, I used bedtools 198 

getfasta on the +10bp flanking bed file to keep only introns flanked by GT and AG 199 

donor and acceptor sites. The final result is a pair of bam files with intervals 200 

centered on the splicing donor or acceptor sites. I used this new bed file to count 201 

error rates around each splice junction. The error rate at each position (eg: -10, -9, -202 

8, etc from the G at the 5’ donor site) is the sum of all errors at that position, divided 203 

by the sum of all reads. Positions are relative to the splicing feature, not to the 204 
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genome, as error rates at any single genomic position are dominated by sampling 205 

bias. Per mono, di and tri-nucleotide background error rates I re calculated using 206 

the same scripts, but without limiting mpileup to the splice junctions.  207 

 208 

Strain construction and RNA sequencing for RPB9 and DST1 strains 209 

The parental strain DBY1239433 (GAL2+ s288c repaired HAP1, ura3∆, 210 

leu2∆0::ACT1pr-Z3EV-NatMX) was transformed with a PCR product (KanMX-211 

Z3EVpr) to generate a genomically integrated inducible RPB9 (LCY143) or DST1 212 

(LCY142). Correct transformants I re confirmed by PCR. To induce various levels of 213 

expression, strains I re grown in YPD + 0,3,6,12 or 25nM β-estradiol (Sigma E4389) 214 

for more than 12 hours to a final OD600 of 0.1 – 0.4. Cellular RNA was extracted using 215 

the Epicenter MasterPure RNA Purification Kit, and Illumina sequencing libraries I 216 

re prepared using the Truseq Stranded mRNA kit, and sequenced on a HiSeq2000 217 

with at least 20,000,000 50bp sequencing reads per sample.  218 

 219 

I used bwa34 (-n 2, to permit no more than two mismatches in a read) to align the 220 

yeast RNA-seq reads to the reference genome, and trimBam from bamUtil to mask 221 

the first and last 10bp of each read. I used samtools mpileup30 (-q 30 -d 100000 -222 

C50 –Q39) to count the number of reads and mismatches at each position in the 223 

genome, discarding low confidence mapping, reads that map to multiple positions,  224 

and low quality reads. Duplicate reads can be removed from the fastq file if the 225 

coverage is low enough so that all unique read sequences are expected to come the 226 
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same RNA fragment; this is the case for low coverage paired-end reads with a 227 

variable insert size, but not for very high coverage datasets or single-ended reads. 228 

 229 

pre-existing RNA-seq datasets. 230 

For the intron retention analysis in human cells, data are from NCBI SRA 231 

PRJNA253670. Data for the elc4 and spt4 analysis are from PRJNA167772 and 232 

PRJNA148851, respectively. For RPB9 correlation, ENCODE35 data (SRA 233 

PRJNA30709) are all from the Gingeras lab at CSHL.  234 
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Figures 334 

Figure 1. A computational framework to measure relative changes in RNA 335 

polymerase fidelity. (a) Pipeline to identify potential RNA polymerase errors in 336 

RNA-seq data. High quality full-length RNA-seq reads are mapped to the reference 337 

genome or transcriptome using bwa, and only reads that map completely with two 338 

or fewer mismatches are kept. (b) Then 10bp from the front and 10bp from the end 339 

of the read are discarded as these regions have high error rates and are prone to 340 

poor quality local alignments. (c) Errors that occur multiple times (purple boxes) 341 

are discarded, as these are likely due to sub-clonal DNA mutations or sequences that 342 

sequence poorly on the HiSeq. Unique errors in the middle of reads (cyan box) are 343 

kept and counted.  344 

 345 

 346 

Figure 2. RNA polymerase errors cause intron retention and error rates are 347 

correlated with RPB9 expression. (a) RNA polymerse errors at the splice junction 348 

should result in intron retention, as DNA mutations at the 5’ donor site are known to 349 

cause intron retention. (b) Shown are the RNA-seq mismatch rates at each position 350 

relative to the 5’ donor splice site, for sequencing reads that span an exon-intron 351 

junction. Mismatch rates from chromatin associated and nuclear RNAs are higher at 352 

the 5’ and 3’ splice sites, suggesting that RNA polymerase errors at this site result in 353 

intron retention. (c) For all ENCODE cell lines, RPB9 expression was determined 354 

from whole-cell RNA-seq data, and the RNA-seq error rate was measured separately 355 

for the cytoplasmic and nuclear fractions. (d) The RNA-seq error rate is higher 356 
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(paired t-test, p=0.0019) in the nuclear than the cytoplasmic fraction, suggesting 357 

that quality control mechanism may block nuclear export of low quality mRNAs. 358 

Figure 3. RNA polymerase error rate is determined by the expression level of 359 

RPB9 and DST1. (a) RNA-seq error rates I re measured for two strains (Z3EVpr-360 

RPB9, black points , Z3EVpr-DST1, blue points) grown at different concentrations of 361 

β-estradiol. The points show the relationship between RPB9 expression levels 362 

(determined by RNA-seq) and RNA-seq error rates. The blue points show RPB9 363 

expression levels for the Z3EVpr-DST1 strain, in which DST1 expression ranges from 364 

16 FPKM at 0nM β-estradiol to 120 FPKM native expression to 756 FPKM at 25nM 365 

β-estradiol. Low induction of both DST1 or RPB9 results in high RNA-seq error rates 366 

(red box), while wild-type and higher induction levels result low RNA-seq error 367 

rates (black box). (b) Across all genes, the intron retention rate is higher in 368 

conditions with low RNA polymerase fidelity (t-test between high and low error rate 369 

samples, p=0.029 ), consistent with the hypothesis that RNA polymerase errors 370 

result in splicing defects. (c) The error rate for each of the 12 single base changes 371 

are shown for induction experiments that gave high (red) or low (black) RNA-seq 372 

error rates. Transitions (G<->A , C<->U) are marked with green boxes and 373 

transversions (A<->C , G<->U) with purple 374 

 375 

Figure 4. In-frame stop codons are less likely to be created by polymerase 376 

errors. For all genes in yeast, I calculated the number of codons which are one 377 

polymerase error from a stop codon. (a) Fewer in-frame codons can be turned into a 378 

stop codon by a single nucleotide change, compared to out-of-frame codons. (b) 379 
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Codons that are one error away from generating an in-frame stop codon are more 380 

likely to be found at the ends of ORFs, compared to the beginning of the ORF. 381 

 382 

Figure 1 – figure supplement 1. Cycle-specific error rates and better 383 

differentiation of genetically determined error rates using base quality value 384 

cutoffs. Six yeast RNA-cDNA libraries were sequenced on the same lane in a HiSeq.  385 

(a) The average mismatch rate (across the six cDNA libraries) to the reference 386 

genome at each position was determined using different minimum base-quality 387 

thresholds using GATK ErrorRatePerCycle. Independent of the quality threshold, 388 

cycles at the ends, as well as some cycles in the middle, have high error rates. (b) 389 

The measured error rate for each sample using a minimum base quality of 10. (c) 390 

The measured error rate for each sample using a minimum base quality of 39.  391 

 392 

Figure 1 – figure supplement 2. RNA-seq data are enriched for mismatches to 393 

the reference genome that occur far more often than expected.  394 

(a) At each coverage (x-axis), a point is shown if there is any positions in the 395 

genome with the observed number of errors (y-axis) (small black dots). The 396 

diagonal lines show mismatch frequencies of 100%, 10%, 1% and 0.1% — any point 397 

falling on these lines has the given mismatch frequency. With large grey circles are 398 

shown simulated data in which the same coverage as the yeast RNA-seq data are 399 

used, but with a mismatch frequency identical to the measured overall mismatch 400 

frequency of the yeast data. Locations in the graph in which a black point occurs but 401 

there is no grey point are locations in which there are more mismatches than 402 
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expected by change. Note that at a coverage of less than 100, we expect to see no 403 

mismatches more than twice, and 0.5% of positions with 2 observances of identical 404 

mismatches.  (b) Identical to (a) but with the simulated mismatch frequency 5x the 405 

observed. (c) Shown are measured mismatch frequencies for the yeast RPB9 and 406 

DST1 induction data at different B-estradiol concentrations, at different filters for 407 

the maximal allowed number of observed identical mismatches. The dashed lines 408 

show the average mismatch frequency for the 0nM condition. For all filters, low B-409 

estradiol conditions have higher RNA-seq mismatch frequencies. (d) The coverage 410 

of the yeast RNA-seq data; ~95% of the genome is covered by less than 100 reads. 411 

(e) Shown are the fraction of positions in the genome (y-axis) with X errors (x-axis) 412 

for the yeast RNAseq data (cyan) and simulated data (blue). Also shown are the 413 

same data for positions of the genome with different coverage. For positions 414 

covered by less than 1000 reads (95% of the genome) the expectation is 0 or 1 415 

sequence mismatch (blue and orange lines). Positions with far greater numbers of 416 

mismatches are likely due to sub-clonal mutations and technical bias. 417 

 418 

Figure 2 – figure supplement 1. RNA-seq mismatch rates for all trinuculeotides 419 

in chromatin associated and nuclear RNAs. (a,b) The 5’ and 3  splicing motifs in 420 

the human genome. (c) The RNA-seq mismatch frequencies for all single 421 

nucleotides. (d) The RNA-seq mismatch rate to the reference genome for each 422 

trinucleotide, normalized to the average mismatch rate across all trinucleotides. For 423 

each  trinucleotide, red shows the mismatch frequency at the first base, blue at the 424 

second, and green at the third. Error bars are standard deviation across all samples. 425 
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 426 

Figure 2 – figure supplement 2. RBP9 expression negatively correlates with 427 

RNA-seq mismatch rates. The mismatch frequency is shown across all cells lines. 428 

(a) RPB9 mRNA expression is normalized by the median expression level of all 429 

subunits. (b) RPB9 mRNA expression is normalized by RBP3 (POLR2C) expression.  430 

 431 

Figure 3 – figure supplement 1. Decreases in RPB9 and DST1 expression in 432 

yeast results in more single base insertions in RNA-seq data. For each RNA-seq 433 

dataset, the number of inserts (+N) or deletions (-N) in the mpileup output (N is the 434 

number o bases in the indel) were counted, and this number divided by the total 435 

number of mapped reads in each sample.  On the right are the same data but 436 

zoomed in on each metric to better show the comparison between the two sets of 437 

samples. 438 

 439 

Figure 3 – figure supplement 2. Mutations that affect transcription elongation 440 

do not affect measured RNA-seq mismatch frequencies. Two separate 441 

experiments were performed with wild-type controls and mutants involved in 442 

transcription elongation. Individual bars show the RNA-seq mismatch frequency of 443 

biological replicates.  444 

 445 
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Figure	1	–	figure	supplement	1.	Cycle-specific	error	rates	and	better	differentiation	of	
genetically	determined	error	rates	using	base	quality	value	cutoffs.	Six	yeast	RNA-cDNA	
libraries	were	sequenced	on	the	same	lane	in	a	HiSeq.		(a)	The	average	mismatch	rate	(across	
the	 six	 cDNA	 libraries)	 to	 the	 reference	 genome	 at	 each	 position	 was	 determined	 using	
different	minimum	base-quality	thresholds	using	GATK	ErrorRatePerCycle.	Independent	of	
the	quality	threshold,	cycles	at	the	ends,	as	well	as	some	cycles	in	the	middle,	have	high	error	
rates.	(b)	The	measured	error	rate	for	each	sample	using	a	minimum	base	quality	of	10.	(c)	
The	measured	error	rate	for	each	sample	using	a	minimum	base	quality	of	39.		
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Figure	 1	 –	 figure	 supplement	 2.	 RNA-seq	 data	 are	 enriched	 for	mismatches	 to	 the	
reference	genome	that	occur	far	more	often	than	expected.		
(a)	At	each	coverage	(x-axis),	a	point	is	shown	if	there	is	any	positions	in	the	genome	with	
the	observed	number	of	errors	(y-axis)	(small	black	dots).	The	diagonal	lines	show	mismatch	
frequencies	of	100%,	10%,	1%	and	0.1%	—	any	point	 falling	on	these	 lines	has	the	given	
mismatch	 frequency.	With	 large	grey	circles	are	shown	simulated	data	 in	which	the	same	
coverage	as	the	yeast	RNA-seq	data	are	used,	but	with	a	mismatch	frequency	identical	to	the	
measured	overall	mismatch	frequency	of	the	yeast	data.	Locations	in	the	graph	in	which	a	
black	 point	 occurs	 but	 there	 is	 no	 grey	 point	 are	 locations	 in	 which	 there	 are	 more	
mismatches	than	expected	by	change.	Note	that	at	a	coverage	of	less	than	100,	we	expect	to	
see	no	mismatches	more	than	twice,	and	0.5%	of	positions	with	2	observances	of	identical	
mismatches.		(b)	Identical	to	(a)	but	with	the	simulated	mismatch	frequency	5x	the	observed.	
(c)	Shown	are	measured	mismatch	frequencies	for	the	yeast	RPB9	and	DST1	induction	data	
at	different	B-estradiol	concentrations,	at	different	filters	for	the	maximal	allowed	number	of	
observed	identical	mismatches.	The	dashed	lines	show	the	average	mismatch	frequency	for	
the	0nM	condition.	For	all	filters,	low	B-estradiol	conditions	have	higher	RNA-seq	mismatch	
frequencies.	(d)	The	coverage	of	the	yeast	RNA-seq	data;	~95%	of	the	genome	is	covered	by	
less	than	100	reads.	(e)	Shown	are	the	fraction	of	positions	in	the	genome	(y-axis)	with	X	
errors	(x-axis)	for	the	yeast	RNAseq	data	(cyan)	and	simulated	data	(blue).	Also	shown	are	
the	same	data	for	positions	of	the	genome	with	different	coverage.	For	positions	covered	by	
less	than	1000	reads	(95%	of	the	genome)	the	expectation	is	0	or	1	sequence	mismatch	(blue	
and	orange	lines).	Positions	with	far	greater	numbers	of	mismatches	are	likely	due	to	sub-
clonal	mutations	and	technical	bias.	
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Figure	 2	 –	 figure	 supplement	 1.	 RNA-seq	mismatch	 rates	 for	 all	 trinuculeotides	 in	
chromatin	associated	and	nuclear	RNAs.	(a,b)	The	5’	and	3		splicing	motifs	in	the	human	
genome.	(c)	The	RNA-seq	mismatch	frequencies	for	all	single	nucleotides.	(d)	The	RNA-seq	
mismatch	 rate	 to	 the	 reference	genome	 for	 each	 trinucleotide,	normalized	 to	 the	average	
mismatch	 rate	 across	 all	 trinucleotides.	 For	 each	 	 trinucleotide,	 red	 shows	 the	mismatch	
frequency	at	the	first	base,	blue	at	the	second,	and	green	at	the	third.	Error	bars	are	standard	
deviation	across	all	samples.	
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Figure	2	–	figure	supplement	2.	RBP9	expression	negatively	correlates	with	RNA-seq	
mismatch	rates.	The	mismatch	frequency	is	shown	across	all	cells	 lines.	(a)	RPB9	mRNA	
expression	 is	normalized	by	 the	median	expression	 level	of	 all	 subunits.	(b)	RPB9	mRNA	
expression	is	normalized	by	RBP3	(POLR2C)	expression.		
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Figure	3	–	 figure	supplement	1.	Mutations	 that	affect	 transcription	elongation	do	not	affect	
measured	 RNA-seq	 mismatch	 frequencies.	 Two	 separate	 experiments	 were	 performed	 with	
wild-type	 controls	 and	mutants	 involved	 in	 transcription	 elongation.	 Individual	 bars	 show	 the	
RNA-seq	mismatch	frequency	of	biological	replicates.		
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