
		

	 Page	1	of	18		
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Errors	 during	 transcription	 may	 play	 an	 important	 role	 in	 determining	11	

cellular	 phenotypes:	 the	 RNA	 polymerase	 error	 rate	 is	 >4	 orders	 of	 magnitude	12	

higher	 than	 that	 of	 DNA	 polymerase	 and	 errors	 are	 amplified	 >1000-fold	 due	 to	13	

translation.	However,	current	methods	to	measure	RNA	polymerase	fidelity	are	low-14	

throughout,	technically	challenging,	and	organism	specific.	Here	I	show	that	changes	15	

in	 RNA	 polymerase	 fidelity	 can	 be	 measured	 using	 standard	 RNA	 sequencing	16	

protocols.	I	find	that	RNA	polymerase	is	error-prone,	and	these	errors	can	result	in	17	

splicing	defects.	Furthermore,	I	find	that	differential	expression	of	RNA	polymerase	18	

subunits	causes	changes	in	RNA	polymerase	fidelity,	and	that	coding	sequences	may	19	

have	evolved	to	minimize	the	effect	of	these	errors.	These	results	suggest	that	errors	20	

caused	by	RNA	polymerase	may	be	 a	major	 source	 of	 stochastic	 variability	 at	 the	21	

level	of	single	cells.		22	

	23	
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		 The	 information	 that	determines	protein	 sequence	 is	 stored	 in	 the	genome	24	

but	that	information	must	be	transcribed	by	RNA	polymerase	and	translated	by	the	25	

ribosome	before	reaching	its	final	form.	DNA	polymerase	error	rates	have	been	well	26	

characterized	in	a	variety	of	species	and	environmental	conditions,	and	are	low,	on	27	

the	order	of	one	mutation	per	108	 -	1010	bases	per	generation1-3.	 In	contrast,	RNA	28	

polymerase	errors	are	uniquely	positioned	to	generate	phenotypic	diversity.	Error	29	

rates	 are	 high	 (10-6-10-5)4-7,	 and	 each	 mRNA	 molecule	 is	 translated	 into	 2,000	 –	30	

4,000	 molecules	 of	 protein8,9,	 resulting	 in	 amplification	 of	 any	 errors.	 Likewise,	31	

because	many	RNAs	are	present	in	less	than	one	molecule	per	cell	 in	microbes10,11	32	

and	 embryonic	 stem	 cells12,	 an	 RNA	with	 an	 error	may	 be	 the	 only	 RNA	 for	 that	33	

gene;	 all	 newly	 translated	 protein	 will	 contain	 this	 error.	 Despite	 the	 fact	 that	34	

transient	 errors	 can	 result	 in	 altered	 phenotypes13,14,	 the	 genetics	 and	35	

environmental	 factors	 that	 affect	 RNA	 polymerase	 fidelity	 are	 poorly	 understood.	36	

This	 is	because	current	methods	 for	measuring	polymerase	 fidelity	are	 technically	37	

challenging4,	 require	 specialized	 organism-specific	 genetic	 constructs15,	 and	 can	38	

only	measure	error	rates	at	specific	loci16.		39	

	40	

To	overcome	these	obstacles	I	developed	MORPhEUS	(Measurement	Of	RNA	41	

Polymerase	 Errors	 Using	 Sequencing),	which	 enables	measurement	 of	 differential	42	

RNA	polymerase	fidelity	using	existing	RNA-seq	data	(Figure	1).	The	input	is	a	set	43	

of	RNA-seq	 fastq	 files	and	a	 reference	genome,	and	 the	output	 is	 the	error	 rate	at	44	

each	 position	 in	 the	 genome.	 I	 find	 that	 RNA	 polymerase	 errors	 result	 in	 intron	45	

retention	 and	 that	 cellular	 mRNA	 quality	 control	 may	 reduce	 the	 effective	 RNA	46	
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polymerase	error	rate.	Moreover,	our	analyses	suggest	that	the	expression	level	of	47	

the	RPB9	Pol	II	subunit	determines	RNA	polymerase	fidelity	in-vivo.	Because	it	can	48	

be	 run	 on	 any	 existing	 RNA-seq	 data,	 MORPhEUS	 enables	 the	 exploration	 of	 a	49	

previously	unexplored	source	of	biological	diversity	in	microbes	and	mammals.		50	

	51	

Technical	 errors	 from	 reverse	 transcription	 and	 sequencing,	 and	 biological	52	

errors	from	RNA	polymerase	 look	identical	(single-nucleotide	differences	from	the	53	

reference	 genome).	 Therefore,	 a	 major	 challenge	 in	 identifying	 SNPs	 and	 in	54	

measuring	 changes	 in	 polymerase	 fidelity	 is	 the	 reduction	 of	 technical	 errors17-55	

19(Figure	1).	First,	I	map	full	length	(untrimmed)	reads	to	the	genome,	and	discard	56	

reads	with	indels,	more	than	two	mismatches,	reads	that	map	to	multiple	locations	57	

in	 the	 genome,	 and	 reads	 that	 do	not	map	 end-to-end	 along	 the	 full	 length	 of	 the	58	

read.	 I	next	 trim	the	ends	of	 the	mapped	reads,	as	alignments	are	of	 lower	quality	59	

along	the	ends,	and	the	mismatch	rate	is	higher,	especially	at	splice	junctions.	I	also	60	

discard	any	cycles	within	the	run	with	abnormally	high	error	rates,	and	bases	with	61	

low	 Illumina	 quality	 scores	 (Figure	1	 –	 figure	 supplement	1).	 Finally,	 using	 the	62	

remaining	bases,	 I	 count	 the	number	of	matches	and	mismatches	 to	 the	 reference	63	

genome	 at	 each	 position	 in	 the	 genome.	 I	 discard	 positions	 with	 identical	64	

mismatches	 that	 are	 present	more	 than	once,	 as	 these	 are	 likely	 due	 to	 subclonal	65	

DNA	polymorphisms	or	sequences	 that	 Illumina	miscalls	 in	a	systematic	manner20	66	

(Figure	1	–	figure	supplement	2).	The	result	is	a	set	of	mismatches,	many	of	which	67	

are	 technical	 errors,	 some	 of	 which	 are	 RNA	 polymerase	 errors.	 In	 order	 to	68	

determine	if	RNA-seq	mismatches	are	due	to	RNA	polymerase	errors	it	is	necessary	69	
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to	identify	sequence	locations	in	which	RNA	polymerase	errors	are	expected	to	have	70	

a	measurable	effect,	or	 situations	 in	which	RNA	polymerase	 fidelity	 is	expected	 to	71	

vary.		72	

	73	

I	 reasoned	 that	 RNA	 polymerase	 errors	 that	 alter	 positions	 necessary	 for	74	

splicing	should	result	in	intron	retention,	while	sequencing	errors	should	not	affect	75	

the	final	structure	of	the	mRNA	(Figure	2a).	However,	mutations	in	the	donor	and	76	

acceptor	splice	sites	also	result	in	decreased	expression36,	and	therefore	are	difficult	77	

to	measure	using	RNA-seq.	I	therefore	used	chromatin-associated	and	nuclear	RNA	78	

from	 Hela	 and	 Huh7	 cells37,	 and	 extracted	 all	 reads	 that	 span	 an	 exon-intron	79	

junction	for	introns	with	canonical	GT	and	AG	splice	sites,	and	measured	the	RNA-80	

seq	mismatch	rate	at	each	position.	I	find	that	errors	at	the	G	and	U	in	the	5’	donor	81	

site,	and	at	the	A	in	the	acceptor	site	are	significantly	enriched	relative	to	errors	at	82	

other	 positions	 (Figure	 2b),	 and	 to	 errors	 trinucleotides	 present	 in	 the	 splicing	83	

motifs	 in	 the	 human	 genome	 (Figure	 2	 –	 figure	 supplement	 1)	 suggesting	 that	84	

RNA	 polymerase	 mismatches	 can	 result	 in	 changes	 in	 transcript	 isoforms.	 The	85	

ability	of	RNA	polymerase	errors	to	significantly	affect	splicing	has	been	proposed22	86	

but	never	previously	measured.		87	

	88	

RPB9	 is	 known	 to	 be	 involved	 in	 RNA	 polymerase	 fidelity	 in	 vitro	 and	 in	89	

vivo15,23.	 I	 therefore	 reasoned	 that	 cell	 lines	 expressing	 low	 levels	 of	 RPB9	would	90	

have	 higher	 RNA	 polymerase	 error	 rates.	 Consistent	 with	 this,	 I	 find	 that	 RPB9	91	

expression	varies	8-fold	across	the	ENCODE	cell	lines,	and	this	expression	variation	92	
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is	correlated	with	the	RNA-seq	error	rate	(Figure	2c,	Figure	2	–	figure	supplement	93	

2).	 This	 suggests	 that	 low	 RPB9	 expression	 may	 cause	 decreased	 polymerase	94	

fidelity	in-vivo.		95	

	96	

In	 addition,	 export	 of	 mRNAs	 from	 the	 nucleus	 involves	 a	 quality-control	97	

mechanism	that	checks	if	mRNAs	are	fully	spliced	and	have	properly	formed	5’	and	98	

3’	 ends24.	 I	 hypothesized	 that	 mRNA	 export	 may	 involve	 a	 quality	 control	 that	99	

removes	 mRNAs	 with	 errors.	 I	 used	 the	 ENCODE	 dataset	 in	 which	 nuclear	 and	100	

cytoplasmic	 poly-A+	 mRNAs	 I	 re	 sequenced,	 thus	 I	 can	 compare	 nuclear	 and	101	

cytoplasmic	 fractions	 from	 the	 same	 cell	 line	 grown	 in	 the	 same	 conditions	 and	102	

processed	 in	 the	 same	manner.	 I	 find	 that	 the	 nuclear	 fraction	 has	 a	 higher	 RNA	103	

polymerase	error	rate	than	does	the	cytoplasmic	fraction	(Figure	2c,d),	suggesting	104	

that	either	that	nuclear	RNA-seq	has	a	higher	technical	error	rate	or	that	the	cell	has	105	

mechanisms	 for	 reducing	 the	 effective	 polymerase	 error	 rate	 by	 preventing	 the	106	

export	of	mRNAs	that	contain	errors.		107	

	108	

Rpb9	and	Dst1	are	known	to	be	involved	in	RNA	polymerase	fidelity	in-vitro,	109	

yet	there	is	conflicting	evidence	as	to	the	role	of	Dst1	in-vivo6,15,23,25-27.	Part	of	these	110	

conflicts	may	result	from	the	fact	that	the	only	available	assays	for	RNA	polymerase	111	

fidelity	are	special	reporter	strains	that	rely	on	DNA	sequences	known	to	 increase	112	

the	 frequency	 of	 RNA	 polymerase	 errors.	 While	 I	 found	 that	 RPB9	 expression	113	

correlates	 with	 RNA-seq	 error	 rates	 in	 mammalian	 cells,	 correlation	 is	 not	114	

causation.	Furthermore,	differences	in	RNA	levels	do	not	necessitate	differences	in	115	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 17, 2015. ; https://doi.org/10.1101/026799doi: bioRxiv preprint 

https://doi.org/10.1101/026799


		

	 Page	6	of	18		

stoichiometry	among	the	subunits	in	active	Pol	II	complexes.	In	order	to	determine	116	

if	 differential	 expression	 of	 RPB9	 or	 DST1	 are	 causative	 for	 differences	 in	 RNA	117	

polymerase	fidelity	in-vivo,	I	constructed	two	yeast	strains	in	which	I	can	alter	the	118	

expression	of	either	RPB9	or	DST1	using	B-estradiol	and	a	 synthetic	 transcription	119	

factor	that	has	no	effect	on	growth	rate	or	the	expression	of	any	other	genes28,29.	 I	120	

grew	these	two	strains	(	Z3EVpr-RPB9	and	Z3EVpr-DST1	)	in	different	concentrations	121	

of	 B-estradiol	 and	 performed	 RNA-seq.	 I	 find	 that	 cells	 expressing	 low	 levels	 of	122	

RPB9	have	high	RNA	polymerase	error	rates	(Figure	3a).	Likewise,	cells	with	 low	123	

DST1	have	high	error	rates	(Figure	3a).	The	increase	in	errors	rate	is	not	a	property	124	

of	 cells	 defective	 for	 transcription	 elongation	 (Figure	3	 –	 figure	 supplement	1).	125	

The	 increase	 in	 error	 rates	 due	 to	 mutations	 in	 Rpb9	 and	 Dst1	 have	 not	 been	126	

robustly	measured,	 however,	 there	 are	 some	 rough	numbers.	Here,	 the	measured	127	

increase	in	error	rate	is	13%,	while	the	measured	effect	of	Rpb9	deletion	in-vitro	is	128	

5-fold38	and	in-vivo	following	reverse	transcription	is	30%25.	If	2%	of	the	observed	129	

mismatches	 are	 due	 to	 RNA	 polymerase	 errors,	 a	 5-fold	 increase	 in	 polymerase	130	

error	 rate	 results	 in	 a	 10%	 increase	 in	 measured	 mismatch	 frequency;	 this	 is	131	

consistent	with	RNA	polymerase	fidelity	of	10-6-10-5	and	overall	RNA-seq	error	rates	132	

of	10-4.	Note	that	in	our	assay	cells	still	express	low	levels	or	RPB9,	and	we	therefore	133	

expect	the	increase	in	error	rate	to	be	lower,	suggesting	that	RNA	polymerase	errors	134	

constitute	5-10%	of	the	measured	mismatches.	Our	ability	to	genetically	control	the	135	

expression	 of	 DST1	 and	 RPB9,	 and	 measure	 changes	 in	 RNA-seq	 error	 rates	 is	136	

consistent	with	MORPhEUS	measuring	RNA	polymerase	fidelity.	In	addition,	genetic	137	

reduction	 in	 RNA	 polymerase	 fidelity	 results	 in	 increased	 intron	 retention,	138	
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consistent	with	RNA	polymerase	errors	causing	reduced	splicing	efficiency	(Figure	139	

3b).		140	

	141	

A	 unique	 advantage	 of	 MORPhEUS	 is	 that	 it	 measures	 thousands	 of	 RNA	142	

polymerase	errors	across	the	entire	transcriptome	in	a	single	experiment,	and	thus	143	

enables	 a	 complete	 characterization	 of	 the	mutation	 spectrum	 and	 biases	 of	 RNA	144	

polymerase.	I	asked	how	altered	RPB9	and	DST1	expression	levels	affect	each	type	145	

of	 single	 nucleotide	 change.	 I	 find	 that,	 with	 decreasing	 polymerase	 fidelity,	146	

transitions	 increase	 more	 than	 transversions,	 and	 that	 C->U	 errors	 are	 the	 most	147	

common	(Figure	3c).	This	result,	along	with	other	sequencing	based	results4,	have	148	

shown	that	DNA	and	RNA	polymerase	have	broadly	similar	error	profiles2;	it	will	be	149	

interesting	to	see	if	all	polymerases	share	the	same	mutation	spectra,	and	if	this	is	150	

due	 to	 deamination	 of	 the	 template	 base,	 or	 is	 a	 structural	 property	 of	 the	151	

polymerase	 itself.	 Interestingly,	 I	 find	 that	 coding	 sequences	 have	 evolved	 so	 that	152	

errors	 are	 less	 likely	 to	 produce	 in-frame	 stop	 codons	 than	 out-of-frame	 stop	153	

codons,	 suggesting	 that	 natural	 selection	 may	 act	 to	 minimize	 the	 effect	 of	154	

polymerase	errors	(Figure	4).	155	

	156	

Here	I	have	presented	proof	that	relative	changes	in	RNA	polymerase	error	157	

rates	can	be	measured	using	standard	Illumina	RNA-seq	data.	Consistent	with	158	

previous	work	in-vivo	and	in-vitro,	I	find	that	depletion	of	RPB9	or	Dst1	results	in	159	

higher	RNA	polymerase	error	rates.	Futhermore,	I	find	that	expression	of	RPB9	160	

negatively	correlates	with	RNA-seq	error	rates	in	human	cell	lines,	suggesting	that	161	
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differential	expression	of	RPB9	may	regulate	RNA	polymerase	fidelity	in-vivo	in	162	

humans.	In	addition,	consistent	with	the	errors	detected	by	MORPhEUS	being	due	to	163	

RNA	polymerase	and	not	technical	errors,	in	reads	spanning	an	exon-intron	164	

junction,	the	measured	error	rate	is	higher	at	the	5’	donor	splice	site,	suggesting	that	165	

RNA	polymerase	errors	result	in	intron	retention.	Because	it	can	be	run	on	existing	166	

RNA-seq	data,	I	expect	MORPhEUS	to	enable	many	future	discoveries	regarding	both	167	

the	molecular	determinants	of	RNA	polymerase	error	rates,	and	the	relationship	168	

between	RNA	polymerase	fidelity	and	phenotype.	169	

	170	
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	174	

Materials	and	methods	175	

Counting	RNA	polymerase	errors	in	already	aligned	ENCODE	data	176	

Much	existing	RNA-seq	data	is	available	as	bam	files	aligned	to	the	human	177	

genome.	In	order	to	bypass	the	most	computationally	expensive	step	of	the	pipeline,	178	

I	developed	a	method	capable	of	using	RNA-seq	reads	aligned	with	spliced	aligners.	179	

First,	in	order	to	avoid	increased	mismatch	rates	at	splice	junctions	due	to	180	

alignment	problems	with	both	spliced	and	unspliced	reads,	I	used	samtools30	and	181	
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awk	to	remove	all	alignments	that	don’t	align	along	the	full	length	of	the	genome	182	

(eg:	for	76bp	reads,	only	reads	with	a	CIGAR	flag	of	76M).	The	remaining	reads	I	re	183	

trimmed	(bamUtil	,	trimBam)	to	convert	the	first	and	last	10bp	of	each	read	to	Ns	184	

and	set	the	quality	strings	to	‘!’.	I	then	used	samtools	mpileup	(-q30	–C50	–Q30)	and	185	

custom	perl	code	to	count	the	number	of	reads	and	number	of	errors	at	each	186	

position	in	genome.	Positions	with	too	many	errors	(eg:	more	than	one	read	of	the	187	

same	non-reference	base)	I	re	not	counted.	188	

	189	

Measurement	of	error	rates	at	splice	junctions	190	

I	used	the	UCSC	table	browser31	to	download	two	bed	files:	hg19	191	

EnsemblGenes	introns	with	-10bp	flanking	from	each	side,	and	another	file	with	the	192	

introns	and	+10bp	flanking	on	either	side.	I	then	used	bedtools32	(bedtools	flank	-b	193	

20	-l	0	&	bedtools	flank	-l	20	-b	0)	to	generate	bed	files	with	intervals	that	contain	194	

the	splicing	donor	and	acceptor	sites,	respectively.	In	addition,	I	used	bedtools	195	

getfasta	on	the	+10bp	flanking	bed	file	to	keep	only	introns	flanked	by	GT	and	AG	196	

donor	and	acceptor	sites.	The	final	result	is	a	pair	of	bam	files	with	intervals	197	

centered	on	the	splicing	donor	or	acceptor	sites.	I	used	this	new	bed	file	to	count	198	

error	rates	around	each	splice	junction.	The	error	rate	at	each	position	(eg:	-10,	-9,	-199	

8,	etc	from	the	G	at	the	5’	donor	site)	is	the	sum	of	all	errors	at	that	position,	divided	200	

by	the	sum	of	all	reads.	Positions	are	relative	to	the	splicing	feature,	not	to	the	201	

genome,	as	error	rates	at	any	single	genomic	position	are	dominated	by	sampling	202	

bias.	Per	mono,	di	and	tri-nucleotide	background	error	rates	I	re	calculated	using	203	

the	same	scripts,	but	without	limiting	mpileup	to	the	splice	junctions.		204	
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	205	

Strain	construction	and	RNA	sequencing	for	RPB9	and	DST1	strains	206	

The	parental	strain	DBY1239433	(GAL2+	s288c	repaired	HAP1,	ura3∆,	207	

leu2∆0::ACT1pr-Z3EV-NatMX)	was	transformed	with	a	PCR	product	(KanMX-208	

Z3EVpr)	to	generate	a	genomically	integrated	inducible	RPB9	(LCY143)	or	DST1	209	

(LCY142).	Correct	transformants	I	re	confirmed	by	PCR.	To	induce	various	levels	of	210	

expression,	strains	I	re	grown	in	YPD	+	0,3,6,12	or	25nM	β-estradiol	(Sigma	E4389)	211	

for	more	than	12	hours	to	a	final	OD600	of	0.1	–	0.4.	Cellular	RNA	was	extracted	using	212	

the	Epicenter	MasterPure	RNA	Purification	Kit,	and	Illumina	sequencing	libraries	I	213	

re	prepared	using	the	Truseq	Stranded	mRNA	kit,	and	sequenced	on	a	HiSeq2000	214	

with	at	least	20,000,000	50bp	sequencing	reads	per	sample.		215	

	216	

I	used	bwa34	(-n	2,	to	permit	no	more	than	two	mismatches	in	a	read)	to	align	the	217	

yeast	RNA-seq	reads	to	the	reference	genome,	and	trimBam	from	bamUtil	to	mask	218	

the	first	and	last	10bp	of	each	read.	I	used	samtools	mpileup30	(-q	30	-d	100000	-219	

C50	–Q39)	to	count	the	number	of	reads	and	mismatches	at	each	position	in	the	220	

genome,	discarding	low	confidence	mapping,	reads	that	map	to	multiple	positions,		221	

and	low	quality	reads.	Duplicate	reads	can	be	removed	from	the	fastq	file	if	the	222	

coverage	is	low	enough	so	that	all	unique	read	sequences	are	expected	to	come	the	223	

same	RNA	fragment;	this	is	the	case	for	low	coverage	paired-end	reads	with	a	224	

variable	insert	size,	but	not	for	very	high	coverage	datasets	or	single-ended	reads.	225	

	226	
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pre-existing	RNA-seq	datasets.	227	

For	the	intron	retention	analysis	in	human	cells,	data	were	downloaded	from	228	

http://www.ncbi.nlm.nih.gov/bioproject/PRJNA253670	and	reads	mapped	using	229	

bwa.	For	RPB9	correlation,	ENCODE35	data	(SRA	PRJNA30709)	from	the	Gingeras	230	

lab	at	CSHL	I	re	downloaded	from	NCBI	SRA.	Data	for	elc4	and	spt4	were	231	

downloaded	from	http://www.ncbi.nlm.nih.gov/bioproject/PRJNA167772	and	232	

http://www.ncbi.nlm.nih.gov/bioproject/PRJNA148851,	respectively.	233	
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Figures	333	

	334	
Figure	1.	A	computational	framework	to	measure	relative	changes	in	RNA	335	

polymerase	fidelity.	(a)	Pipeline	to	identify	potential	RNA	polymerase	errors	in	336	

RNA-seq	data.	High	quality	full-length	RNA-seq	reads	are	mapped	to	the	reference	337	

genome	or	transcriptome	using	bwa,	and	only	reads	that	map	completely	with	two	338	

or	fewer	mismatches	are	kept.	(b)	Then	10bp	from	the	front	and	10bp	from	the	end	339	

of	the	read	are	discarded	as	these	regions	have	high	error	rates	and	are	prone	to	340	

poor	quality	local	alignments.	(c)	Errors	that	occur	multiple	times	(purple	boxes)	341	

are	discarded,	as	these	are	likely	due	to	sub-clonal	DNA	mutations	or	sequences	that	342	

sequence	poorly	on	the	HiSeq.	Unique	errors	in	the	middle	of	reads	(cyan	box)	are	343	

kept	and	counted.		344	
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345	
Figure	2.	RNA	polymerase	errors	cause	intron	retention	and	error	rates	are	346	

correlated	with	RPB9	expression.	(a)	RNA	polymerse	errors	at	the	splice	junction	347	

should	result	in	intron	retention,	as	DNA	mutations	at	the	5’	donor	site	are	known	to	348	

cause	intron	retention.	(b)	Shown	are	the	RNA-seq	mismatch	rates	at	each	position	349	

relative	to	the	5’	donor	splice	site,	for	sequencing	reads	that	span	an	exon-intron	350	

junction.	Mismatch	rates	from	chromatin	associated	and	nuclear	RNAs	are	higher	at	351	

the	5’	and	3’	splice	sites,	suggesting	that	RNA	polymerase	errors	at	this	site	result	in	352	

intron	retention.	(c)	For	all	ENCODE	cell	lines,	RPB9	expression	was	determined	353	

from	whole-cell	RNA-seq	data,	and	the	RNA-seq	error	rate	was	measured	separately	354	

for	the	cytoplasmic	and	nuclear	fractions.	(d)	The	RNA-seq	error	rate	is	higher	355	

(paired	t-test,	p=0.0019)	in	the	nuclear	than	the	cytoplasmic	fraction,	suggesting	356	

that	quality	control	mechanism	may	block	nuclear	export	of	low	quality	mRNAs.	357	
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	358	

	359	

	360	

Figure	3.	RNA	polymerase	error	rate	is	determined	by	the	expression	level	of	361	

RPB9	and	DST1.	(a)	RNA-seq	error	rates	I	re	measured	for	two	strains	(Z3EVpr-362	

RPB9,	black	points	,	Z3EVpr-DST1,	blue	points)	grown	at	different	concentrations	of	363	

β-estradiol.	The	points	show	the	relationship	between	RPB9	expression	levels	364	

(determined	by	RNA-seq)	and	RNA-seq	error	rates.	The	blue	points	show	RPB9	365	

expression	levels	for	the	Z3EVpr-DST1	strain,	in	which	DST1	expression	ranges	from	366	

16	FPKM	at	0nM	β-estradiol	to	120	FPKM	native	expression	to	756	FPKM	at	25nM	367	

β-estradiol.	Low	induction	of	both	DST1	or	RPB9	results	in	high	RNA-seq	error	rates	368	

(red	box),	while	wild-type	and	higher	induction	levels	result	low	RNA-seq	error	369	
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rates	(black	box).	(b)	Across	all	genes,	the	intron	retention	rate	is	higher	in	370	

conditions	with	low	RNA	polymerase	fidelity	(t-test	between	high	and	low	error	rate	371	

samples,	p=0.029	),	consistent	with	the	hypothesis	that	RNA	polymerase	errors	372	

result	in	splicing	defects.	(c)	The	error	rate	for	each	of	the	12	single	base	changes	373	

are	shown	for	induction	experiments	that	gave	high	(red)	or	low	(black)	RNA-seq	374	

error	rates.	Transitions	(G<->A	,	C<->U)	are	marked	with	green	boxes	and	375	

transversions	(A<->C	,	G<->U)	with	purple	376	

	 	377	
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	378	

	379	

Figure	 4.	 In-frame	 stop	 codons	 are	 less	 likely	 to	 be	 created	 by	 polymerase	380	

errors.	 For	 all	 genes	 in	 yeast,	 I	 calculated	 the	 number	 of	 codons	 which	 are	 one	381	

polymerase	error	from	a	stop	codon.	(a)	Fewer	in-frame	codons	can	be	turned	into	a	382	

stop	 codon	 by	 a	 single	 nucleotide	 change,	 compared	 to	 out-of-frame	 codons.	 (b)	383	

Codons	that	are	one	error	away	from	generating	an	 in-frame	stop	codon	are	more	384	

likely	to	be	found	at	the	ends	of	ORFs,	compared	to	the	beginning	of	the	ORF.	385	

	 	386	

a b
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	387	

	388	

Figure	 1	 –	 figure	 supplement	 1.	 Cycle-specific	 error	 rates	 and	 better	389	

differentiation	of	genetically	determined	error	rates	using	base	quality	value	390	

cutoffs.	Six	yeast	RNA-cDNA	libraries	were	sequenced	on	the	same	lane	in	a	HiSeq.		391	

(a)	 The	 average	 mismatch	 rate	 (across	 the	 six	 cDNA	 libraries)	 to	 the	 reference	392	

genome	 at	 each	 position	 was	 determined	 using	 different	 minimum	 base-quality	393	

thresholds	 using	 GATK	 ErrorRatePerCycle.	 Independent	 of	 the	 quality	 threshold,	394	

cycles	at	 the	ends,	as	well	as	some	cycles	 in	 the	middle,	have	high	error	rates.	(b)	395	

The	measured	error	rate	 for	each	sample	using	a	minimum	base	quality	of	10.	(c)	396	

The	measured	error	rate	for	each	sample	using	a	minimum	base	quality	of	39.		397	
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	399	

Figure	1	–	figure	supplement	2.	RNA-seq	data	are	enriched	for	mismatches	to	400	

the	reference	genome	that	occur	far	more	often	than	expected.		401	

(a)	 At	 each	 coverage	 (x-axis),	 a	 point	 is	 shown	 if	 there	 is	 any	 positions	 in	 the	402	

genome	 with	 the	 observed	 number	 of	 errors	 (y-axis)	 (small	 black	 dots).	 The	403	

diagonal	lines	show	mismatch	frequencies	of	100%,	10%,	1%	and	0.1%	—	any	point	404	

falling	on	these	lines	has	the	given	mismatch	frequency.	With	large	grey	circles	are	405	

shown	 simulated	data	 in	which	 the	 same	 coverage	 as	 the	 yeast	RNA-seq	data	 are	406	

used,	 but	with	 a	mismatch	 frequency	 identical	 to	 the	measured	 overall	mismatch	407	

frequency	of	the	yeast	data.	Locations	in	the	graph	in	which	a	black	point	occurs	but	408	

there	 is	 no	 grey	 point	 are	 locations	 in	 which	 there	 are	 more	 mismatches	 than	409	

expected	by	change.	Note	 that	at	a	coverage	of	 less	 than	100,	we	expect	 to	see	no	410	
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mismatches	more	than	twice,	and	0.5%	of	positions	with	2	observances	of	identical	411	

mismatches.		(b)	Identical	to	(a)	but	with	the	simulated	mismatch	frequency	5x	the	412	

observed.	 (c)	Shown	 are	measured	mismatch	 frequencies	 for	 the	 yeast	 RPB9	 and	413	

DST1	 induction	data	 at	 different	B-estradiol	 concentrations,	 at	 different	 filters	 for	414	

the	maximal	 allowed	 number	 of	 observed	 identical	mismatches.	 The	 dashed	 lines	415	

show	the	average	mismatch	frequency	for	the	0nM	condition.	For	all	filters,	low	B-416	

estradiol	conditions	have	higher	RNA-seq	mismatch	 frequencies.	(d)	The	coverage	417	

of	the	yeast	RNA-seq	data;	~95%	of	the	genome	is	covered	by	less	than	100	reads.	418	

(e)	Shown	are	the	fraction	of	positions	in	the	genome	(y-axis)	with	X	errors	(x-axis)	419	

for	 the	 yeast	 RNAseq	 data	 (cyan)	 and	 simulated	 data	 (blue).	 Also	 shown	 are	 the	420	

same	 data	 for	 positions	 of	 the	 genome	 with	 different	 coverage.	 For	 positions	421	

covered	 by	 less	 than	 1000	 reads	 (95%	 of	 the	 genome)	 the	 expectation	 is	 0	 or	 1	422	

sequence	mismatch	(blue	and	orange	 lines).	Positions	with	 far	greater	numbers	of	423	

mismatches	are	likely	due	to	sub-clonal	mutations	and	technical	bias.	424	

	425	
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	426	

Figure	2	–	figure	supplement	1.	RNA-seq	mismatch	rates	for	all	trinuculeotides	427	

in	chromatin	associated	and	nuclear	RNAs.	(a,b)	The	5’	and	3		splicing	motifs	in	428	

the	 human	 genome.	 (c)	 The	 RNA-seq	 mismatch	 frequencies	 for	 all	 single	429	

nucleotides.	 (d)	 The	 RNA-seq	 mismatch	 rate	 to	 the	 reference	 genome	 for	 each	430	

trinucleotide,	normalized	to	the	average	mismatch	rate	across	all	trinucleotides.	For	431	

each		trinucleotide,	red	shows	the	mismatch	frequency	at	the	first	base,	blue	at	the	432	

second,	and	green	at	the	third.	Error	bars	are	standard	deviation	across	all	samples.	433	
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	435	

Figure	 2	 –	 figure	 supplement	 2.	 RBP9	 expression	 negatively	 correlates	with	436	

RNA-seq	mismatch	rates.	The	mismatch	frequency	is	shown	across	all	cells	 lines.	437	

(a)	 RPB9	 mRNA	 expression	 is	 normalized	 by	 the	 median	 expression	 level	 of	 all	438	

subunits.	(b)	RPB9	mRNA	expression	is	normalized	by	RBP3	(POLR2C)	expression.		439	
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	441	

Figure	3	–	figure	supplement	1.	Mutations	that	affect	transcription	elongation	442	

do	 not	 affect	 measured	 RNA-seq	 mismatch	 frequencies.	 Two	 separate	443	

experiments	 were	 performed	 with	 wild-type	 controls	 and	 mutants	 involved	 in	444	

transcription	elongation.	Individual	bars	show	the	RNA-seq	mismatch	frequency	of	445	

biological	replicates.		446	
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