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Abstract 1 

Admixture-introduced linkage disequilibrium (LD) has recently been 2 

introduced into the inference of the histories of complex admixtures. However, 3 

the influence of ancestral source populations on the LD pattern in admixed 4 

populations is not properly taken into consideration by currently available 5 

methods, which affects the estimation of several gene flow parameters from 6 

empirical data. We first illustrated the dynamic changes of LD in admixed 7 

populations and mathematically formulated the LD under a generalized 8 

admixture model with finite population size. We next developed a new 9 

method, MALDmef, by fitting LD with multiple exponential functions for 10 

inferring and dating multiple-wave admixtures. MALDmef takes into account 11 

the effects of source populations which substantially affect modeling LD in 12 

admixed population, which renders it capable of efficiently detecting and 13 

dating multiple-wave admixture events. The performance of MALDmef was 14 

evaluated by simulation and it was shown to be more accurate than MALDER, 15 

a state-of-the-art method that was recently developed for similar purposes, 16 

under various admixture models. We further applied MALDmef to analyzing 17 

genome-wide data from the Human Genome Diversity Project (HGDP) and 18 

the HapMap Project. Interestingly, we were able to identify more than one 19 

admixture events in several populations, which have yet to be reported. For 20 

example, two major admixture events were identified in the Xinjiang Uyghur, 21 

occurring around 27–30 generations ago and 182–195 generations ago, 22 

respectively. In an African population (MKK), three recent major admixtures 23 

occurring 13–16, 50–67, and 107–139 generations ago were detected. Our 24 

method is a considerable improvement over other current methods and further 25 

facilitates the inference of the histories of complex population admixtures.  26 

   27 
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Introduction 1 

The “Out of Africa” human migrations resulted in population differentiation 2 

in different continents, while subsequent migrations that have occurred over 3 

the past millennia have resulted in gene flow among previously separated 4 

human sub-populations. As a result, admixed populations come into being 5 

when previously mutually isolated populations meet and intermarry. 6 

Population admixture has received a great deal of attention recently. Many 7 

studies based on genome-wide data have shown that gene flow has been 8 

common among inter-continental and intra-continental populations and that 9 

admixture of populations often leads to extended linkage disequilibrium (LD), 10 

which can greatly facilitate the mapping of human disease genes(McKeigue 11 

2005; Reich and Patterson 2005; Smith and O’Brien 2005; Seldin 2007).  12 

The high levels of LD in recently admixed populations are due to 13 

associations between pairs of loci co-inherited on an intact chromosomal 14 

chunk from one of the ancestral source populations(Chakraborty and Weiss 15 

1988). This particular type of admixture-introduced LD, or ALD, decays as a 16 

function of time since admixture because of recombination. Consequently, it is 17 

possible to infer population admixture by modeling the dynamic changes of 18 

ALD. Patterson N. et al. recently proposed such an approach by aggregating 19 

pairwise LD measurements through a weighting scheme (Patterson et al. 20 

2012).This was further developed by Loh et al.(Loh et al. 2013) This ALD 21 

based approach is particularly useful for admixture dating.  22 

In the hybrid isolation (HI) model, the expected value of LD decreases at 23 

the rate of 1–d (Chakraborty and Weiss 1988; Pfaff et al. 2001), where d is the 24 

genetic distance (in Morgans) between two sites and g (generation) is the time 25 
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elapsed since the initial admixture event. For convenience, (1–d)
g is 1 

considered approximately equal to e–dg in computation, assuming that the 2 

admixed population is engaged in random mating and has infinite effective 3 

population size(Hill and Robertson 1966). 4 

Pickrell et al. considered the situation of multiple waves of admixture from 5 

different source populations and showed that LD was comprised of multiple 6 

exponential terms, each of which refers to a single admixture event(Pickrell et 7 

al. 2014). However, the confounding effect was not fully taken into account, 8 

especially the effects of source populations on the LD of an admixed 9 

population. In this study, an accurate mathematical expression of LD is given 10 

under a general admixture model(Verdu and Rosenberg 2011) (Figure 1). Our 11 

analysis showed that the effect of the LD of source populations constitutes the 12 

major part of the LD in an admixed population (Table 1), which should not be 13 

ignored in the case of modeling or estimating ALD from empirical data.  14 

Based on our mathematical description of the weighted LD, Eq 14, we 15 

proposed a new approach to separate the confounding effects of LD of source 16 

populations under a two-way admixture model. This approach was 17 

implemented in MALDmef, which was newly developed for this study. Unlike 18 

previous methods of estimating the time of admixture based on weighted LD, 19 

such as ALDER or MALDER, our method considers the influence of LD from 20 

source populations and there is no need to set the starting distance d0. The 21 

current method also involves a fast numerical method to fit the LD to 22 

hundreds of exponential functions to cover the admixture events across a 23 

range of hundreds of generations. Applying this method to the well-known 24 

admixed populations in HGDP(Rosenberg et al. 2002) and HapMap(Altshuler 25 
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et al. 2010) data demonstrated that the current study have greatly facilitated 1 

understanding of the admixture history of human populations.  2 

Materials and Methods 3 

Data sets 4 

Data for simulation and empirical analysis were obtained from two public 5 

resources: Human Genome Diversity Panel (HGDP)(Rosenberg et al. 2002) 6 

and the International HapMap Project phase III (Altshuler et al. 2010). Data 7 

filtering was performed within each population: Samples with missing rate > 8 

5% per individual, SNPs with missing rate > 50% and SNPs failing in Hardy-9 

Weinberg Equilibrium test (p-value < 1.0E-6) were permanently removed from 10 

subsequent analysis. Source populations for simulations used the haplotypes 11 

from 113 Utah residents with Northern and Western European ancestries from 12 

the CEPH collection (CEU) and 113 Africans in Yoruba (YRI). 13 

LD for general admixture model 14 

A mathematical description of LD decay based on a general admixture model 15 

is given here (Figure 1). The relevant notation is summarized in Table S1. To 16 

produce the current model and render deduction more general and realistic, 17 

the population was assumed to be finite in size, and the effect of natural 18 

selection, if exists, is negligible. The details of math derivation can be found in 19 

Supplementary Material. However, the math expression of LD under the 20 

general assumption (Eq S10) is too complicated to be used in empirical 21 

analysis. It was here assumed that all populations were of infinite population 22 

size since the initial admixture. This assumption leads to a brief version of LD 23 
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and it would have only limited effect on admixture time inference in empirical 1 

data analysis.  2 

When the population size is infinite, the allele frequency on each site 3 

should always be considered as constant in the source populations: so for the 4 

ith source population at the l
th wave admixture on the site x (Eq 14) and the 5 

allele frequency difference, Eq 14 , between two source populations i and j:  6 

��
������ �  ��

������, �	 
 0;  Eq 1 


��
������ �  
��

������ �  ��
������ � ��

������, 	 
 0, � 
 0, � 
 1.  Eq 2 

The total genetic contribution from source population i in the admixed 7 

population with nth waves of admixture is as follows:  8 

��
��� � ∑ ��

��� �∏ ��
����

�	�
� ��
�	� .  Eq 3 

In this way, the expectation of LD for the target admixed population is as 9 

follows:  10 

            ��
��
����� � ∑ ��

�����
��
������

�	�   

                              � ∑ ������� �∏ ��
����

�	�
� ��
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�	� ". 
Eq 4 

If we set g(j) = 1 and 11 

#������ � ���
������� �∏ ��
����

�	���

 �,.  Eq 5 

then we have the expected LD value for the (n+1)
th generation’s admixed 12 

population is as follows: 13 

��
��
����� � ∑ ��

�����
��
������

�	� �  ∑ #�������
�	� exp�����.  Eq 6 

This equation tells us that the LD in admixed population is composed of 14 

two parts: one is from its source populations, and the other is formed by the 15 

admixture events. 16 
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 LD for specific admixture models 1 

The mathematical description of LD for a general admixture model is 2 

provided above. Here, the LD of specific previously reported admixture 3 

models are described(Chakraborty and Weiss 1988; Ewens and Spielman 4 

1995; Pfaff et al. 2001; Guo and Fung 2006; Jin et al. 2012). It is shown that 5 

these models can be regarded as special cases of our general model when 6 

parameters are specified (Tables S2-6). 7 

The two-way hybrid-isolation (HI) model is the most popular admixture 8 

model and most admixture analyses are based on this model. Under this 9 

model, only two source populations are assumed to be involved in any one 10 

admixture event, and all the populations are isolated without further gene flow. 11 

In the current mathematical framework, description of LD for two-way HI 12 

model is as follows:  13 

         ��
�
���� � ����

�
���� � �
�

�
����  

                         � ���
$�
�
���
�
�%�||� � %| � �� exp �!����".  
 Eq 7 

Two typical continuous admixture models have also been frequently 14 

discussed. These include the gradual admixture (GA) model(Ewens and 15 

Spielman 1995; Guo and Fung 2006) and continuous gene flow (CGF) 16 

model(Pfaff et al. 2001). Here, the two-way admixture of these models is 17 

discussed, but LD for the multiple-way admixture models are also 18 

incorporated into the current general admixture model. In these admixture 19 

models, we set the number of generations between two admixtures to be 1, 20 

g(j) = 1 and the LD for the (n+1)th generation of the admixed population 21 

(admixture began at the 1st generation) is given below.  22 

Under the GA model, 23 
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Under the CGF model, 1 

 ��
��
����� � ����
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 Eq 9 

The GA model describes a scenario in which both source populations 2 

continuously contributed genetic materials to the admixed population after the 3 

admixture event, and the admixture proportion remained constant throughout 4 

all of the generations. However, the CGF model only allows one of the two 5 

source populations to continuously contribute genetic materials to the 6 

admixed population.  7 

The two-wave admixture model describes that the admixed population is 8 

formed by two waves of admixture, one ancient and one recent. The ancient 9 

admixture event produces the admixed population and the recent admixture 10 

causes new migration in the admixed population. The LD (Eq S1) in the 11 

admixed population is as follows: 12 
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                                     ( $�
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In a more complicated scenario, the genetic materials of the admixed 1 

population are inherited from more than two populations. One general 2 

scenario could be that two of the source populations (populations 1 and 2) 3 

meet first and then the third source population (population 3) joins the 4 

admixed population during the second wave. This phenomenon is here called 5 

the three-way-two-wave model. The LD in the admixed population under this 6 

model is as follows: 7 

 ��
������ � ����

������ � �
�

������ � ����

������  

           ���
����


�����
�
�$�
�
���
�
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          ���
�
���

�
� ∑ ����$ 
�����
���%�*|� � %| � �" exp �!�
��"���,��
 . 

 Eq 11 

In order to provide an intuitive understanding of the dynamic decay of LD 8 

among these models, they were plotted with specific parameters (Figure S1).  9 

Modeling LD with consideration of influence of ancestral source 10 

populations 11 

In order to demonstrate how the LD in admixed population is influenced by 12 

its ancestral source populations, we take the two-way HI model was here 13 

used as an example to illustrate the effect of the LD of source populations on 14 

the LD in the admixed population. Because, in a two-way HI model, no 15 

recombination occurs in the population immediately after admixture, the LD 16 

(Eq S2) in the first generation admixed population can be expressed as 17 

follows.  18 

�������, %� � ��
�����

�����, %� � �

����


�����, %� � ��
����


���
�
���
�
�%�.  Eq 12 
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Here, the absolute ratio, rsa, to measure the effect of the LD in the source 1 

populations, is defined as follows: 2 

+����, %� � ,��
�����

�����,��
��
�����

�����,��
�
	���

��,�� ,.   Eq 13 

Here, the admixture between Europeans and Africans was considered. 3 

The scenario started with 100 individuals of CEU and 100 individuals of YRI 4 

as the source populations of Europeans and Africans. They were simply put 5 

together and treated as a population immediately after admixture. Pairwise LD 6 

was calculated using the sampled SNPs on chromosome 1. The SNPs were 7 

sampled in two rounds. In the first round, one SNP was sampled for every 8 

twenty SNPs. In the second round, SNPs on the right side of every SNP 9 

sampled in the first round (with greater physical position numbers) as follows: 10 

All the SNPs whose genetics distance from the chosen SNP were below 0.05 11 

Morgans were sampled; one in every three SNPs in the region whose 12 

genetics distance from the chosen SNP was between 0.05 and 0.1 Morgans 13 

were samples; and one in every five SNPs in the region whose genetic 14 

distance from the chosen SNP was between 0.1 and 0.5 Morgans were 15 

sampled. LD was calculated only between the SNPs sampled in the first 16 

round and the related SNPs sampled in the second round. The rsa was 17 

calculated with raw LD of YRI, CEU and the manufactured admixed 18 

population and these were classified into bins according to the genetic 19 

distance between each pair of SNPs. Results showed the median value of rsa 20 

to be around 0.45 for all bin intervals (Table 1). The LD of source populations 21 

made up about 45% of the LD in source populations. However, recent work 22 

with the LD provide insight into population admixture history, even though the 23 

effect of LD from the source populations was ignored(Loh et al. 2013). 24 
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Actually, using the average value of weighted LD can reduce the effect from 1 

source populations. To verify this conclusion, we first calculated +��  on the 2 

average value of LD (for every 100 pairs of SNPs) in each bin (classified 3 

according to the genetic distance between each pair of SNPs) and then 4 

calculated rsa on the average value of weighted LD in each bin. Results 5 

showed LD from the source populations to make up about 33% of the average 6 

LD and only about 2.8% of the average weighted LD in the admixed 7 

population, and this proportion did not deduce to be negligible as the genetic 8 

distance increasing (Table 1). In summary, this analysis indicates that 9 

weighted LD is more proper to be used to infer admixture because it contains 10 

less effect of confounding LD. However, using a starting distance with 11 

weighted LD might not be the best way to reduce the confounding effect of 12 

source populations. 13 

Weighted LD in a two-way admixed population 14 

The effective population size of the admixed population was assumed to 15 

be large enough to be regarded as infinity, the LD can be described by Eq 6. 16 

The effect of admixture events could be formalized with the sum of bunches of 17 

exponential functions. The coefficient of exponential functions, Eq 6, if positive, 18 

indicates the admixture event l generations ago. This can be used to estimate 19 

the time of admixture. Moreover, it gives us an opportunity to infer the history 20 

of admixture without any prior assumption of particular admixture models 21 

(such as HI, GA, or CGF). In this way, it is important to study the exponential 22 

property of the LD decay in admixed populations. If the ancestral source 23 

populations are known for the two-way admixed population, the LD is as 24 

follows:  25 
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���� � ∑ �������

�	� � ∑ #����

�	� ��� exp�����, Eq 14 

Here, D(d) is the LD of the admixed population, mi is the genetic 1 

contribution from source population i to the admixed population and Di(d) is 2 

the present LD of the ancestral source population i.  3 

To determine the time of admixture actually using the exponential term 4 

exp�����, two important things must be taken into consideration. First, the 5 

coefficient of the exponential function, #������, must be relatively constant and 6 

bigger than 0; second, the effect of the LD of source populations can be 7 

separated. This confirmed that using weight, and the difference in allele 8 

frequencies between two source populations, could leave the coefficients of 9 

the exponential functions constantly bigger than zero (Appendix) and it may 10 

be possible to deduce the effect from source populations (Table 1). The 11 

weighted LD is examines in further detail below. The formula of weighted LD 12 

is as follows: 13 

�-��� � . ���-����


�	�
� . #/���

�

�	�
��� exp����� 

, 

Eq 15 

Here,  14 

�-��� � $ � ���, %�
�
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�
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�-���� � $ � ����, %�
�
���
�
�%�"0|� � %| � ��, 
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�
���
�
�%�"20|� � �| � ��, 

Eq 16 

and  15 
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�
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����	��  . 

Here, ����  is determined by the admixture history and it is a natural 1 

indicator for admixture events.  2 

Factorizing of weighted LD with exponential functions 3 

In order to show the exponential properties of the weighted LD, the 4 

admixed population was simulated using forward time simulation with 5 

haplotype data of YRI and CEU. A 100-generation old admixed population 6 

with 50%:50% proportion was constructed. Ancestral source populations 7 

based on the haplotype data of YRI and CEU were also constructed in the 8 

simulation, separately. Next, �-���, �-����, and $ � 
�
���
�
�%�"
0|� � %| � �� 9 

were calculated based on the genotype data. The LD decay was fit with 10 

hundreds of exponential functions. In this way, the coefficient spectrum on 11 

exponential functions was determined and used to describe the decay of 12 

weighted LD. The fitting method was able to model the decay of weighted LD 13 

well and to provide the amplitude in every exponential function. The results of 14 

fitting �-���  primarily showed three bunches of exponential functions 15 

composing the LD decay, with l values around 100, 180, and 1,250 16 

generations (Figure 2A). As mentioned above, the l value corresponds directly 17 

to the time of admixture, so the fact that the signal was around 100 could be 18 

explained easily by the admixture in that the designed admixture is 100 19 

generations ago. �-���� and $ � 
�
���
�
�%�"
0|� � %| � �� were also fit, and 20 

both �-���� and �-
��� showed signals on � around the value 1,250 (Figures 21 

S2–3). No significant signal peak was observed with 22 
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$ � 
�
���
�
�%�"
0|� � %| � ��, even though there was a sharp decay over a 1 

very short distance (Figure S4). Based on these fitting results, it is here 2 

speculated that the signals in �-��� around 1,250 and 180 might have resulted 3 

from confounding LD of the ancestral populations. To test this hypothesis, 4 

Z(d), the optimized ALD, was fit so that LD of source populations was 5 

separated from the admixed population as the follows: 6 

1��� � ������∑ �
��
����

��

����������������� |���|	�"
� ∑ 2����

�	� exp�����. Eq 18 

The fitting results of Z(d) showed only signal peak around the 100 of l’svalue 7 

(Figure 2B). This supported the present hypothesis.  8 

In summary, the weighted LD of source populations may affect the 9 

exponential properties of weighted LD of admixed population for relatively 10 

large l values, which may be the cause of signals of ancient admixture when 11 

employing a LD-based method for time estimation. However, we can use the 12 

derived LD of source populations to reduce the fake admixture signals.  13 

Calculation of weighted LD and fitting LD decay 14 

The basic algorithm used to calculate weighted LD was the same as that 15 

used with ALDER and MALDER. It was coded in C++. The weighted LD for 16 

admixed population was calculated as follows:  17 

���� �  ∑ #$%& ��,���12����12�����
�

|'���|   .  Eq 19 

Here, 2345 ��, %� is a non-bias estimator of the covariance on the genotype 18 

between two SNPs at x and y. S(d) is the set holding pairs of SNPs with inter-19 

site distance of d Morgan. 
�
�6� is the allele frequency difference, defined in 20 

Eq S3. The weighted LD for the source populations are calculated as follows:  21 
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����� �  ∑ #$%& ��,���0�����0������
�

|'���|  , 	 � 1,2 ;   Eq 20 

Here, ‘0’ represents admixed population.  1 

� ��
12���
12�%��
�|� � �| � �� � ∑ ��������������
2

����

|*�+�|  . Eq 21  

In this way, the algorithm and calculations relied only on genotype data, 2 

which prevented the introduction of phasing errors. The fast Fourier transform 3 

algorithm was also used to increase the computational efficiency. The 4 

population admixture proportions were estimated using the following formula.  5 

�
 � ∑ �01����21����

∑ ��21����2�

, �� � ∑ �02����12����

∑ ��12������

  .  Eq 22 

Once it is possible to calculate Z(d), we can fit it using a numerical routine 6 

known as the proximal gradient(Beck A. amd Teboulle et al. 2009). The object 7 

function to minimize is as follows: 8 

 min
#�,� and ∑ #�./

;1 � <2;
 , 

where 1 �  =����, =��
�, … , =������, =����"0
 is a vector of Z(d) with 9 

different d values. These can be obtained from genetic data. 10 

2 � �2� , 2� , … , 2��� , 2��0  is the coefficient of the exponential functions. The 11 

(i,j)th entry of the matrix <�1��
�� is <�� � exp ���?�", where @?�A�	�,..,�
�; is the 12 

chosen subset of data in the generations from 0 to G. With this method, it was 13 

possible to find the positive values in the vector 2.  14 

Determination of the significance of admixture signals and denoising 15 

The significance of admixture signal B was measured using a Jackknife-16 

based approach. For the target population, each chromosome was excluded 17 

one at a time and the value of Z(d) was calculated using the remaining 18 

chromosomes. After fitting Z(d) with the sum of exponential functions, 19 
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denoising was performed on the coefficients of exponential functions. Only the 1 

top signals that composed 99.9% of Z(d) were retained. For the coefficient of 2 

each exponential function, 22 observed values were tested to determine 3 

whether they were larger than 0. In this way, P-values were used to measure 4 

the significance of the admixture signal. In the spectrum plot of coefficients, 5 

the mean of the 22 coefficients with P-values smaller than 0.05 were plotted 6 

for each exponential function. This was specified using the candidate 7 

admixture time points. (Figure 2 and Figure 5) 8 

Simulations 9 

In order to evaluate the performance of our method for estimating the time 10 

of admixture, forward-time simulation was used to generate haplotypes of 11 

admixed populations under different admixture models and different 12 

scenarios: HI model, two-wave model (including the situation of one source 13 

population and the situation of two source populations which contribute 14 

genetic materials to the admixed population in the second wave), and 15 

continuous gene flow model were used in a combination of GA and isolation 16 

models and of CGF and isolation models. In our simulation, the newly 17 

generated haplotypes are assembled with the segments of haplotypes in 18 

source populations(Li and Stephens 2003; Price et al. 2009), which in this 19 

particular case come from the haplotypes of CEU, and YRI.  20 

In the HI model, the admixture event was set as having occurred 100 21 

generations earlier. In the two-wave model, the first admixture event was set 22 

as having occurred 100 generations earlier, after which the admixed 23 

population was isolated for the next 80 generations, until the second wave of 24 

admixture, after which the admixed population was isolated another 20 25 
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generations. In the second admixture event, a scenario in which only one of 1 

the source populations donated genetic materials (TW-CGF model) and 2 

another scenario where both source populations provided gene flows (TW-GA 3 

model) were simulated.  4 

Scenarios with continuous migration were also simulated. In one scenario, 5 

the migration window was set to 80 generations: Continuous gene flow was 6 

simulated from one of the source populations was simulated for 80 7 

generations and then isolated for the next 20 generations (CGF-I model), and 8 

continuous gene flow was simulated from both of the two-source populations 9 

for 80 generations and then the admixed population was isolated for 20 10 

generations (GA-I model); in the other scenario, the migration window lasted 11 

30 generations: 30 generations’ continuous gene flow and 70 generations’ 12 

isolation were used in both the CGF-I model and GA-I model. The evolution of 13 

the source populations was also simulated under random mating with sample 14 

size of 5,000 for 100 generations. The parameter details are given in Table 15 

S7–8. 16 

Results 17 

Robustness of the new method when used on proxy source populations 18 

A way of estimating the time of admixture was developed by separating 19 

the LD from source populations directly from that of the admixed population, 20 

which requested us to know the true ancestral source populations. However, 21 

identifying the true source populations is also a complicated and difficult 22 

problem. In most cases, only limited populations are available. In the 23 

appendix, it is shown that using the proxy populations similar to the true 24 
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source populations can show the exponential properties of weighted LD’s 1 

decay well. It is here claimed that using proxy populations can also reduce the 2 

confounding effect attributable to source populations’ LD. Here, YRI and CEU 3 

served as source populations from Africa and Europe, respectively, and 100 4 

admixed individuals were simulated using 100 generations’ admixture. This 5 

method was able to show the admixture time with the true source populations 6 

and pairs of source populations representing different parts of Africa and 7 

Europe, i.e. CEU-LWK, CEU-MKK, TSI-LWK, TSI-MKK, and TSI-YRI, very 8 

well (Figure S5–9).  9 

Robustness of the new method in various admixture models 10 

This method also involved using different admixture models. In order to 11 

render the results of the evaluation reliable, 10 independent admixed 12 

populations with haplotypes obtained from 113 unrelated CEU individuals and 13 

113 unrelated YRI individuals were simulated with data from all of 22 14 

autosomes. When the weighted LD was calculated, 100 individuals were 15 

sampled from current source populations (isolated for 100 generations with 16 

random mating) and admixed population separately. Under various admixture 17 

models, MALDmef was able to reconstruct the history of the admixture 18 

population well. For the one-pulse and two-pulse admixture models, 19 

MALDmef gave the time close to the true time of admixture for the continuous 20 

migration models, MALDmef was able to place most of the signals in a 21 

particular migration time interval (Figure 3). 22 

MALDER was also run on the same simulation data. MALDER is the only 23 

software that can deal with multiple-wave admixture. CHB and CHD were 24 

selected as the extra source populations and the starting distance was set to 25 
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0.005 Morgans and the bin size was set to 0.0002 Morgans. Under the HI 1 

model, our method revealed significant signals around the generation (100) 2 

we set for simulation (Figure S10), while MALDER gave us 8 significant 3 

signals of 10 independent simulations around 100 generations. Here, 5 of the 4 

8 signals were accompanied by significant signals above 250 generations, 5 

which could be caused by the LD from the source populations (Figure S11). 6 

For the multiple-wave admixture, we defined an estimation deviation (ED) to 7 

measure difference (distance) of the location between the true admixture 8 

signals and the detected admixture signals, which is defined as follows: 9 

$�� � min �|C� � C4567�|, |C� � C4567
|, … , |C� � C4567�|�.  Eq 23 

Where {C4567� , � � 1, 2, 3, … '} is the set of true admixture time and {C�} is 10 

the estimated times of admixture. In our simulations, the following was true:  11 

$�� � min�|C� � 20|, |C� � 100|�. 12 

The results under HI model can also be estimated as follows  13 

$�� � |C� � 100|. 14 

Under repeating simulations for the other various admixture models, the 15 

$� values of MALDmef were significantly smaller than the ED values based 16 

on MALDER, indicating that the current method is more precise and stable 17 

than MALDER (Figure 4). The details of estimation with MALDER and 18 

MALDmef on repeating simulations are shown in Figure S10–27. The current 19 

method was also used on the empirical admixed populations. 20 

Estimating admixture time using empirical data 21 

The current method was first applied to a few well-known admixed 22 

populations as in analysis reported by Alder(Loh et al. 2013) using an 23 

available public database(Rosenberg et al. 2002; Altshuler et al. 2010). 24 
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MALDmef can currently only deal with the two-way admixture when derived 1 

source populations or with the populations similar to the true derived source 2 

populations are available. However, the real admixture history could be much 3 

more complicated than assumed and many factors may affect the results of 4 

estimation. In order to interpret the time spectrum, three principles should be 5 

followed:  6 

(1) A signal with larger amplitude is more reliable than one with smaller 7 

amplitude.  8 

(2) A signal that remains on the time spectrum for longer than 250 9 

generations indicates that the chosen source populations are probably not 10 

similar enough to the real ancestral source populations or that the general 11 

two-way admixture model does not fit the data well.  12 

(3) A signal in the continuous time interval containing generation 1 may 13 

reflect the substructure of the admixed population but not the admixture.  14 

Based on these principles, MALDmef was first applied to the well-known 15 

admixed populations: African American (57 ASW individuals from HapMap), 16 

Mexican (86 MEX individuals from HapMap) and Uygur (10 Uygur individuals 17 

from HGDP). MALDER was also used to analyze these admixed populations.  18 

In our analysis with MALDmef, CEU (n = 113) and YRI (n = 113) were 19 

chosen as the ancestral populations of ASW. CEU (64 individuals) and 20 

American Indian (7 Colombians, 14 Karitiana, 21 Maya, 14 Pimas and 8 21 

Suruis) were chosen as the ancestral populations of MEX. Han (n = 34) and 22 

French (n = 28) were chosen as the ancestral populations of Uygur. The time 23 

of admixture of ASW was found to be about 4 to 5 generations ago (100–125 24 

years before present, assuming 25 years per generation) (Figure 5A). MEX 25 
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seems to experience two wave of admixture: ranging from 6 to 8 generations 1 

(150–200 years) ago and from 22 to 24 generations (550–600 years) ago, 2 

respectively (Figure 5B). Neither inferences on ASW nor those on MEX 3 

showed any significant signals on the time earlier than 250 generations ago, 4 

suggesting that the source populations chosen for ASW and MEX are similar 5 

enough to the true derived ancestral populations. The Uygur population has 6 

been reported to have much longer admixture history than ASW and MEX(Xu 7 

and Jin 2008; Xu et al. 2008; Jin et al. 2012; Qin et al. 2015). It showed three 8 

time intervals of admixture: 2 to 3, 27 to 30, and 182 to 195 9 

(182,189,190,194,195) (generations before present) (Figure 5C). The most 10 

significant signals lay in the interval of 27–30, suggesting that the major 11 

admixture creating the current population happened around 575 to 750 years 12 

ago, which is consistent with previous result on the recent admixture. 13 

However, the signals on the time interval from 182 to 195 generations ago 14 

may indicate the ancient admixture events. Because of the sample size 15 

limitation of LD-based method, an accurate inference on the ancient wave of 16 

admixture may be difficult to find for Uygur. Private screening of 92 fully 17 

sequenced individuals of Uygur indicated two highly confident admixture 18 

intervals: from 18 to 20 generations ago and from 83 to 95 generations ago, 19 

supporting the conclusion that an ancient admixture event helped create the 20 

modern Uygur. 21 

Loh et al. speculated that there could have been multiple waves of 22 

admixture in the history of MKK (Loh et al. 2013). In the current analysis, 113 23 

YRI and 113 CEU individuals were used to represent the source populations 24 

of the MKK (n = 156). Here 5 candidate intervals of admixture were identified, 25 
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having occurred: 13–16, 50–67, 107–139, 310–410, and 1190–1210 1 

(generations before the present). Only three of them, 13–16, 50–67, and 107–2 

139, seemed to be admixture signals, indicating that the three admixture 3 

events happened from 325–400, 1,250–1,675 and 2,675–2,475 years ago. 4 

The signals from between 1190 and 1210 generations ago may also indicate 5 

that the ancestral populations are not good enough to infer the time of 6 

admixture (Figure S28)  7 

Paralyzed analysis with MALDER was also conducted on these admixed 8 

populations (Table 2). For each admixed population, first all the populations in 9 

the full data were set as the reference populations to infer the admixture, and 10 

then the pair of populations with the highest amplitude for each wave of 11 

admixture were collected and used as the reference populations to re-run 12 

MALDER. MALDER showed good consistency in two rounds of inference. 13 

From the results with global populations as references, MALDER was able to 14 

determine the pair of populations that fit each wave of admixture best. Then 15 

we MALDmef was run with each pair of populations as the reference to the 16 

corresponding admixed population (Table3). Results showed that MALDmef 17 

was also very robust to the reference populations and it showed considerable 18 

consistency in each wave of admixture. However, with different reference 19 

populations suggested by MALDER, it detected signals from even earlier than 20 

250 generations back. This result indicated that those populations suggested 21 

by MALDER might not be the proper source populations to study the 22 

admixture under a two-way model.  23 

The MALDmef’s results were comparable to MALDER’s on the same 24 

admixed populations. In recently admixed populations, such as ASW and 25 
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MEX, MALDmef and MALDER had similar results but MALDmef had shorter 1 

time interval ranges. In the admixed population with related ancient admixture, 2 

such as Uygur, MALDmef was more powerful and stable than MALDER in 3 

detecting the ancient admixture. MALDmef was able to predict the possible 4 

ancient admixture events that produced the modern Uygur population. With 5 

MALDmef, this can be supported by large sample sizes and dense markers. 6 

This is not the case with MALDER.  7 

Discussion 8 

A general admixture model was here used to demonstrate the dynamics of 9 

LD in admixed populations. A method was developed based on this model 10 

and applied to estimating the time of admixture of populations that has 11 

undergone two-way admixture, and for the first time, the admixture time 12 

spectrum was used to reveal numbers and times of admixture events having 13 

occurred in a particular population. This method and results should shed new 14 

light into the drawing of inferences in the population genetics of admixed 15 

populations.  16 

In this study, results confirmed that the extent of LD was composed of 17 

multiple exponential curves as a function of genetic distance in a certain 18 

admixed population formed by multiple waves of admixture from multiple 19 

source populations. Moreover, the confounding effects of source populations 20 

were demonstrated using mathematical description of the LD.  21 

In previous studies, LD from source populations was usually assumed to 22 

be negligible in admixture time inference(Patterson et al. 2012; Loh et al. 23 

2013; Pickrell et al. 2014). However, it was here shown to make up a major 24 
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part of the LD in admixed population, but the composition in the average 1 

values (in bins, determined by genetic distance) of weighted LD was rather 2 

small. The results of the current study showed the average proportion to be 3 

about 33% in the values of pairwise LD and the proportion to be about 2.8% in 4 

the average values of weighted LD. However, both these values decreased 5 

slightly as genetic distance increased. This indicated that using weighted LD 6 

could really help reduce the confounding effect of source populations, but 7 

choosing a starting distance might not be the best way to reduce the 8 

confounding effect of source populations. 9 

Based on these considerations, the new method we developed in this 10 

study was able to infer the time for multiple-wave admixture. In this method, 11 

the reference populations were first used to reduce the confounding effect of 12 

true. This method was very robust when the true ancestral source populations 13 

were not available, and it worked well by using reference populations similar 14 

to the source populations. The admixture-induced weighted LD extent curve 15 

was fit with hundreds of exponential functions, which provided a signal 16 

spectrum on time points ranging from 0–2,000 generations, which were within 17 

the range of most possible admixture events after the migration of modern 18 

humans “Out of Africa”. The jackknife method was used to produce a P-value 19 

on each time point and then determined the time intervals for the possible 20 

admixtures. Using various simulations, this method was demonstrated to be 21 

more accurate in estimating admixture time especially in the scenario of two-22 

way admixture than other available methods.  23 

This method, MALDmef, was used to analyze simulated data generated 24 

with a continuous admixture model. Results could also be interpreted as 25 
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multiple-wave admixture instead of the continuous admixture model, here 1 

simulated as the true model. This constitutes potential bias that could affect 2 

the interpretation of the results. Considering this issue, we propose a 3 

particular concept, namely effective admixture, i.e., continuous admixture 4 

that can be treated as a few single-pulse hybrid events. This treatment should 5 

at least make sense in the admixture modeling. The rationale is that the 6 

inference of admixture should be still valid even with a model assuming a 7 

scenario of hybrid-isolation, in a sense of critical parameters could still be 8 

estimated effectively, but the admixture process could not be assessed 9 

precisely. The method developed in this study, i.e., MALDmef, can be used to 10 

infer the effective admixture events.  11 

In the current analysis, it was observed that the weighted LD (one 12 

reference) of source populations (no admixture events) could also fit 13 

exponential functions closely with the major signals indicating very ancient 14 

events, such as, 1,250 generations ago, but the mechanism has yet to be well 15 

explained.  16 

Even though the current method infers the time of multiple-wave admixture 17 

under the two-way model, it still has many limitations regarding the 18 

complicated demographic history of admixed populations. For example, 19 

during time estimation with weighted LD, the effects of nature selection and 20 

inbreeding were not considered here; neither was the situation of multiple-way 21 

admixture. This was because the means by which the weight terms affect the 22 

LD in multiple-way admixture have yet to be worked out. However, the 23 

improved method developed in this study may facilitate the inference of 24 

admixture history, particularly in determining multiple-wave population 25 
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admixture. Future work should focus on developing methods capable of 1 

inferring multiple-way admixture.  2 

  3 
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Appendix 1 

This appendix describes the properties of the coefficients of the 2 

exponential terms with or without difference in allele frequency as weights. 3 

The source populations are assumed to be infinite in size and to remain so 4 

after the first admixture, so the unweighted coefficient is as follows:  5 

#������ � ����$�
�
���
�
�%�||� � %| � ��  Eq A1 

and the weighted coefficient is as follows:  6 

#/������ � ����$ � 
�
���
�
�%�"
0|� � %| � ��  Eq A2 

2��� is defined using Eq 17. Strictly speaking, both #������ and #/������ are 7 

the functions of � , and they consist of two parts: The part in the first 8 

parenthesis is determined by the admixture; the other is the conditional 9 

expectation, determined by the allele frequency difference between the two 10 

source populations. The part determined by the admixture is independent of 11 

the genetic distance between two markers. It can be regarded as constant 12 

during the extraction of time information from the exponential terms. The part 13 

that matters is the conditional expectation. If the genetic distance � is large 14 

enough that 
�
���  is independent of 
�
�%� , the value of 15 

$�
�
���
�
�%�||� � %| � ��  will be zero, but the value of 16 

$ � 
�
���
�
�%�"
0|� � %| � �� should be a certain constant that measures 17 

the genetic distance between source populations 1 and 2. In this way, #/������ 18 

can help infer the exponential terms related to the admixture more effectively 19 

than #������ 20 
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Another problem addressed here is the property of #/������, when only get 1 

the populations close to the true source populations were available to 2 

calculate the weighted LD. Suppose population 3 is similar to population 1 3 

and population 4 to population 2, they follow a genealogical relationship 4 

described in Figure S29. The weight used here is as follows: 5 


�8���
�8�%�.  Eq A3 

Then  6 

#/������ � ����$ � 
�
���
�
�%�
�8���
�8�%�"0|� � %| � �� 

. 

Eq A4 

Under the same assumption, the genetic distance � is considered large 7 

enough that 
�
��� and 
�8��� are independent of 
�
�%� and 
�8�%�.  8 

#/������ � ����$ E�
79���
79�%��
 ,|� � %| � �F, Eq A5 

Here, G represents the shared ancestral population of 1 and 3 and � is the 9 

shared ancestral population of 2 and 4. In situation in which the true source 10 

populations are not available or cannot be identified, populations similar to the 11 

source populations can be used to calculate weighted LD. 12 

Software 13 

C++ Source codes of MALDmef can be found at: 14 

http://www.picb.ac.cn/PGG/resource.php 15 
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Figure legends 1 

 2 

Figure 1: A general admixture model with K source populations and n 3 

waves of admixture. See Table S1 for notation. 4 

 5 

Figure 2: Full exponential spectrum for fitting extending weighted LD in a 6 

simulated admixed population. A) Exponential spectrum without separating 7 

the confounding LD from the source populations. B) Exponential spectrum 8 

with separating the confounding LD from the source populations. 9 

 10 

Figure 3: Evaluation of the performance of MALDmef under various 11 

admixture models. The blue vertical dash line represents the true simulated 12 

admixture time. Sim-1 to Sim-4: one-pulse admixture of 200, 100, 50 and 20 13 

generations ago. Sim-5 to Sim-8: two-pulse admixture at 20 and 100 14 

generations ago. Sim-9 to Sim-12: continuous admixture from 20 to 100 15 

generations ago (Sim-9 and Sim-10) and from 70 to 100 generations ago 16 

(Sim-11 and Sim-12).  17 

 18 

Figure 4: Performance of MALDmef and MALDER in various simulations. 19 

One-side t-test was performed to calculate the significance of the differences 20 

between ED values of MALDmef and MALDER. The detailed parameters for 21 

each simulation are given in Table S7. 22 

 23 

Figure 5: Full exponential spectrum for fitting extending weighted LD in 24 

admixed populations. A) ASW; B) MEX; C) Uyghur. 25 

 26 
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Table 1: Absolute ratio of LD from source population to the LD of the 1 

admixed population 2 

Bin 

interval 

(Morgan) 

Raw LD Average
#
 Raw LD  

Average Weighted 

LD  

Prop
& 

Median
$ 

Prop Median Prop Median 

[0,0.05) 39.4% 0.48 39.4% 0.36 39.4% 0.032 

[0.05, 0.1) 12.4% 0.45 12.4% 0.33 12.4% 0.028 

[0.1, 0.15) 7.1% 0.46 7.1% 0.33 7.1% 0.028 

[0.15, 0.2) 6.7% 0.45 6.7% 0.33 6.7% 0.028 

[0.2, 0.25) 6.3% 0.45 6.3% 0.33 6.3% 0.029 

[0.25, 0.3) 6.1% 0.45 6.1% 0.33 6.1% 0.029 

[0.3, 0.35) 5.8% 0.45 5.8% 0.33 5.8% 0.028 

[0.35, 0.4) 5.6% 0.45 5.6% 0.33 5.6% 0.028 

[0.4, 0.45) 5.4% 0.45 5.4% 0.33 5.4% 0.028 

[0.45, 0.5) 5.3% 0.45 5.3% 0.33 5.3% 0.027 

For each value of pairwise LD, there is a corresponding genetic distance between the 3 

pair of SNPs. For convenience, the LD value and the corresponding genetic distance 4 

are called as the LD point. According to the value of the genetic distance, the LD 5 

point can be placed in bins. 6 
&

: Proportion of the number of LD points in the bin to all the number of LD points. 7 
$
: Median value of the ratio measured using Eq 17 with the LD points in each bin. 8 

#
: Average values are calculated from raw or weighted LD. First, the LD points were 9 

sorted according to the genetic distance. Then, with every 100 sorted LD points, the 10 

averages of the LD value and genetic distance were taken as the LD value and 11 

genetic distance as the new LD points. At last, these new LD points were placed in 12 

the bins and the proportion and median were calculated. 13 

 14 
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Table 2 Time of admixture (generations) determined using MALDmef 1 

with selected reference populations. 2 

Admixed 

population 

Reference 

populations 
Time 1 Time 2 Time 3 Time 4 Time 5 

ASW CEU;YRI 
4-5 

2.02 � 10��� 
    

MEX 
CEU;American 

Indian 

6-8 

0.00506 

22-24 

0.00561 
   

MEX 
American Indian; 

YRI 

8-9 

3.38 � 10�� 

32-38 

0.0481 

810-830 

0.00129 
  

MKK CEU;YRI 
13-16 

0.0205 

50-67 

0.0456 

107-139 

0.0499 

310-410 

0.0284 
 

MKK TSI;YRI 
17-19 

0.00271 

64-79 

0.0337 

115-160 

0.0494 

185-188 

0.0481 

590-670 

0.0147 

Uyghur French;Han 
2-3 

1.82 � 10�� 

27-30 

0.0448 

182-195 

0.0484 
  

Uyghur Basque;Han 
2-4 

0.0385 

29-31 

0.00377 

157-164 

0.0427 

690-750 

0.0441 
 

Uyghur 
Sardinian; 

Japanese 

2-3 

2.79 � 10�� 

32-35 

0.0149 

209-211 

0.0421 

710-790 

0.0253 
 

In each time cell, the biggest P-value is provided under the detected time 3 

interval.  4 

 5 
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Table 3: Time of admixture (generations) determined using MALDER 1 

with global scanning and selected populations 2 

Admixed 

pop 
Reference pop Time 1 Time 2 Time 3 Time 4 

ASW HapMap 

2.7+/-0.5 

(Z=5.27) 

CEU;YRI 

12.0 +/- 4.4 

(Z=2.76) 

CEU;YRI 

  

ASW CEU;TSI;YRI 

1.3 +/- 2.8 

(Z=0.47) 

CEU;YRI 

6.1+/- 3.2 

(Z=1.92) 

CEU;YRI 

70.3+/- 60.7 

(Z=1.16) 

TSI;YRI 

 

MEX 

HapMap+ 

American 

Indian (HGDP) 

5.2 +/- 1.9 

(Z=2.78) 

Indian;TSI 

19.8 +/- 9.7 

(Z=2.05) 

Indian;YRI 

  

MEX 
American 

Indian; TSI;YRI 

4.2+/- 1.6 

(Z=2.67) 

Inidian;TSI 

15.1 +/- 4.0 

(Z=3.82) 

Inidian;YRI 

  

MKK HapMap 

3.3 +/- 0.7 

(Z=4.51) 

TSI;YRI 

23.7+/- 6.4 

(Z=3.69) 

CEU;YRI 

107.8 +/- 

32.7 (Z=3.29) 

TSI;YRI 

495.2 +/- 255.1 

(Z=1.94) 

 TSI;YRI 

MKK YRI;CEU;TSI 

3.1 +/- 0.8 

(Z=3.87) 

TSI;YRI 

20.3 +/- 6.4 

(Z=3.19) 

YRI;CEU 

80.3+/- 28.3 

(Z=2.84) 

TSI;YRI 

292.7 +/- 121.5 

(Z=2.41)  

TSI;YRI 

Uyghur HGDP 

4.3 +/- 2.4 

(Z=1.79) 

Basque; Han 

40.9 +/- 7.4 

(Z=5.52) 

Japanese; 

Sardinian 

  

Uyghur 

Basque;Han; 

Japanese; 

Sardinian 

4.6 +/- 2.6 

(Z=2.12) 

Basque;Han 

41.4 +/- 7.0 

(Z=5.92) 

Japanese; 

Sardinian 

  

For each wave of admixture, we listed the pair of populations with the biggest 3 

amplitude value under the Z score. 4 

 5 

 6 
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