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Abstract

The role played by interlayer connections in shaping local responses and their
long-range coupling has not yet been fully elucidated. Here, we analyze a rate model of
a canonic local circuit with realistic anatomy. We find that this circuit generates a rich
repertoire of possible dynamical states, including an oscillatory regime in which gamma-
and beta-oscillations dominate in superficial and deep layers, respectively, in agreement
with experimental observations. This regime stems from non-linear inter-layer
interactions, independently from intrinsic resonance properties of distinct layers.
Moreover, by connecting two local circuits via cortico-cortical projections, the emergent
phase differences define a flexible and frequency-dependent inter-areal hierarchy. Such
dynamic patterns generally do not arise in randomized circuits, and the compatible
connectomes are rare, although not unique. Altogether, these results suggest that
inter-layer connectivity is homeostatically regulated to make local circuits fit to
integrate and multiplex signals from several sources in multiple frequency bands.

Author Summary

The local circuit of mammalian cortex presents a characteristic multilayered structure, 1

with feedforward (and feedback) cortico-cortical connections originating from (and 2

targeting) distinct and well defined layers. Here, we model how such a structure 3

fundamentally shapes the dynamical repertoire of local cortical oscillatory states and 4

their long-range interaction. Experimental evidence, matched by our simulations, 5

suggests that different cortical layers oscillate at different frequencies and that neuronal 6

oscillations at different frequencies are exploited for communication in different 7

directions. While this laminar specificity of oscillations is often explained in terms of 8

multiple inhibitory populations with different resonance properties, we show here that it 9

could alternatively emerge as a byproduct of the collective local circuit dynamics. Our 10

modelling study indicates furthermore that the empirically observed multi-frequency 11

oscillatory patterns cannot be reproduced in presence of an arbitrary interlayer 12
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connectivity. In this sense, therefore, we believe that the adopted connectome, derived 13

from neuroanatomical reconstructions, is “special”. Nevertheless, it is not unique, since 14

other, very different connectomes may also lead to a matching dynamical repertoire. 15

This suggests that a multiplicity of non-random canonical circuit templates may share 16

largely overlapping functions, robustly achieved and maintained via functional 17

homeostasis mechanisms. 18

Introduction 19

The microcircuits of mammalian brain cortex present prominent hallmark features such 20

as a six-layered architecture [1] and an organization into vertical columns [2]. 21

Remarkable regularities in the wiring between neuronal populations in different layers, 22

both within and between columns [3–8] have led to propose the existence of a 23

“canonical local microcircuit”, providing a building block for larger scale cortical 24

networks. This hypothesis culminated in the compilation of quantitative interlayer 25

wiring diagrams [9–11], which despite their approximations and limits [12], have proven 26

particularly attractive, bolstering theories about specialized roles of different 27

layers [13–15] as well as motivating computational investigations of the local 28

microcircuit function [11,16–20]. 29

The layered structure of cortical circuits also affects the generation and the 30

properties of brain oscillations. On the one hand, ascending and descending structural 31

connections originate from more superficial and deep layers, respectively [7, 21]. On the 32

other hand, oscillations of neural activity in different layers have different spatial spread 33

and power [22,23] and display spectral resonances at layer-dependent 34

frequencies [24–27], with gamma band oscillations arising in more superficial layers and 35

slower oscillations dominant in deeper layers [24,26]. Correspondingly, it was proposed 36

that inter-areal communication in different directions exploits oscillatory coherence in 37

different frequency bands [28–32]: gamma-band frequencies for bottom-up interactions, 38

and alpha-/beta-band frequencies for top-down interactions, matching the predominant 39

oscillations in the connections’ source layers. 40

However, these correlational observations do not allow to determine whether local 41

microcircuit connectivity plays an actual causal role in shaping layer-specific properties 42

of neural oscillations and of their flexible modulation by context. To demonstrate the 43

existence of a direct influence we adopt here a computational approach. Through 44

systematic simulations of a rate model embedding an anatomically realistic multi-layer 45

connectivity [10], we reveal that interlayer interactions give rise to a rich repertoire of 46

possible oscillatory modes. This dynamical repertoire includes robust regimes in which 47

the laminar separation between slower and faster oscillations emerges purely through 48

network mechanisms, not necessarily requiring the introduction of neuronal populations 49

with distinct intrinsic resonance frequencies, unlike in other models [33]. 50

Furthermore, we couple together multiple local circuits, mimicking the laminar 51

arrangement of feedforward and feedback long-range projections established between 52

regions at different levels in the hierarchy of cortical areas [21,34,35]. We observe that 53

the dynamics of the interacting local circuits, without need of further ad hoc 54

mechanisms, lead to the self-organized emergence of out-of-phase locking relations 55

between the locally generated multi-frequency rhythms, which are compatible with the 56

already mentioned frequency-specificity of top-down and bottom-up functional 57

interactions [31,32]. 58

Finally, we inquire whether the observed effect of interlayer connectivity on 59

multi-frequency oscillatory activity is to be attributed to unique properties of the 60

adopted connectome, or whether it is a general outcome of unspecific interlayer 61

interactions. To do so, we compare the self-organized oscillatory dynamics of our model 62

bioRχiv 2/47

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2015. ; https://doi.org/10.1101/026674doi: bioRxiv preprint 

https://doi.org/10.1101/026674
http://creativecommons.org/licenses/by-nc-nd/4.0/


with realistic anatomy with the one generated by models with randomized connectomes. 63

We find that random connectomes do not lead to a natural layer separation between 64

slower and fast oscillations. On the contrary, we are able to generate such a dynamical 65

regime only by carefully selecting the interlayer wiring among a highly restricted set of 66

connectivity configurations, which include the reference connectome by [10], but other 67

very diverse connectomes as well. Therefore, despite this lack of uniqueness, we provide 68

evidence that the empirical canonical microcircuit belongs at least to a very exclusive 69

club of degenerate structures all achieving a common target behavior, in a way 70

reminiscent of variability compensation and homeostasis mechanisms in other neuronal 71

systems [36–38]. This suggests the intriguing possibility that specific micro-circuit 72

patterns are selectively targeted and maintained through evolution and development, 73

because of the functional advantages for inter-areal communication [39] that the 74

associated multi-frequency oscillatory “dynome” [40] confers. 75

Results 76

Rate model of the canonical local circuit 77

We analyzed the dynamics of a rate model of a local cortical circuit, whose realistic 78

connectivity, illustrated in Figure 1, was inspired from anatomical studies. It consisted 79

of five layers (L1, L2/3, L4, L5 and L6), each containing one excitatory and one 80

inhibitory population-unit which represented the mean activity in the corresponding 81

population. The connection weights between all populations were taken to be 82

proportional to the relative number of synapses between excitatory (E) and inhibitory 83

(I) populations as measured by [10] (see Figure 1A–D). The actual strengths of 84

inter-population connections were then obtained by multiplying these relative numbers 85

by two phenomenological parameters, KE and KI, indicating global scales of the 86

strengths of excitatory and inhibitory connections, respectively. We assumed here, that 87

these parameters depended only on the type of connection (E or I) but were otherwise 88

independent of the target population. Note that ref. [10] did not report outgoing 89

connections from L1. Therefore, we ignored L1 in the following, given its lack of 90

influence on the dynamics of the other layers, reducing correspondingly the number of 91

neuronal populations explicitly included in the model to eight. 92

Connections in our model did not give rise to instantaneous interactions, but were 93

delayed by a time D, assumed for simplicity to be identical for intra- and interlayer 94

monosynaptic connections. The inclusion of delays favored the emergence of oscillations 95

in the firing rates when the column was stimulated by a constant baseline background 96

current IBG (received by all populations). Additional external inputs were targeting 97

specific layers (Figure 1E). As the anatomical connections were measured in area 17, 98

bottom-up input ILGN from LGN was sent to L4 and, to a lesser extent, L6, consistent 99

with the literature [7, 10,34,41]. Likewise, we mimicked horizontal connections from 100

other columns within the same cortical region via an input IHOR specific to L2/3 and 101

“top-down” connections from extra-striate cortices via an input ITD specific to L5. By 102

varying the levels of these inputs and their relative balance, different perceptual and 103

cognitive contexts can be phenomenologically emulated. For instance, increasing ILGN
104

can represent an increase of contrast of a centrally presented stimulus, and enhanced 105

IHOR or ITD the presence of modulatory signals from, respectively, the classical or the 106

extra-classical surround of the local circuit receptive field [42]. Alternatively, top-down 107

modulatory inputs from higher order cortical areas, such as, e.g., an “attentional 108

spotlight” sent by prefrontal areas [43] may be represented by a simultaneous increase of 109

both ITD and IHOR (analogously to [18]). 110
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Figure 1. Rate model for a local cortical circuit with realistic inter-layer
connectivity. We simulated a canonic cortical local circuit, considering one excitatory
(E) and one inhibitory (I) population per layer and connecting them via delayed
interactions using experimentally determined relative weights from [10] (reproduced
along the arrows in A-D). (E) Contextual bottom-up (“LGN”), horizontal (“HOR”)
and top-down (“TD”) influences extrinsic to the local circuit targeted specific
populations in accordance with their known layer-specificity (LGN input was weighted
following [10]). (F) We also analyzed the interaction of two local circuits assumed to
reside at different stages of the cortical hierarchy. Connections between areas had a
longer delay than within a column, and an ad hoc determined strength. Contextual
inputs (“ATT”) targeted the upper column to emulate activation of a top-down
modulating brain state (e.g. attention).

bioRχiv 4/47

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2015. ; https://doi.org/10.1101/026674doi: bioRxiv preprint 

https://doi.org/10.1101/026674
http://creativecommons.org/licenses/by-nc-nd/4.0/


Model generates a rich dynamical repertoire 111

For each fixed value of the background and external inputs, and depending on the 112

efficacies of excitatory and inhibitory interconnections, the model local circuit gave rise 113

to a large repertoire of different possible dynamical states, including steady, oscillatory 114

or chaotic firing modes. To assess the behavior for different values of KE and KI, we 115

simulated the activity of the model in different regions of the parameter space and 116

systematically extracted four summary statistics (see Materials and Methods) for each 117

layer which, taken together, provided a qualitative profile of the dynamical regime. The 118

first metric was the mean firing rate. The second was the relative fraction of low power, 119

defined as a layer’s integrated power spectrum below 30 Hz, Plo, divided by the summed 120

power spectrum over all frequencies, Ptot. The amplitude and the lag of the peaks 121

(excluding the central, zero-delay one) of the autocorrelation of each layer’s trace 122

provided then the other two metrics. The lag of the first peak measured the period of 123

the fastest appreciable oscillatory structure in the time trace (for easier assessment we 124

present it as a multiple of L4E’s delay), whereas the value of the highest peak in the 125

autocorrelation quantified the degree to which the trace was either more periodic 126

(autocorrelation has values close to 1) or more chaotic (autocorrelation values close to 127

0). Plots of these quantities in dependence of KE and KI, which we will refer to as 128

dynamic regime profiles, summarize the behavior of the model circuit. 129

We first studied the behavior of the column in a condition of exclusive bottom-up 130

drive (ILGN “ 2, IHOR “ ITD “ 0), besides the always present background input. The 131

dynamic regime profiles of Figure 2A (and see Figs. S1 and S2 for other input 132

configurations) show that while firing rates varied smoothly with KE and KI, sharp 133

transitions were visible in the three other monitored metrics, revealing the existence of 134

homogeneous regimes, i.e. regions of the parameter space with qualitatively distinct but 135

internally uniform dynamics. 136

For weak inhibition the dynamics settled in a regime characterized by constant levels 137

of activity in all layers (representative traces are shown in Figure 2B, � marker), as it 138

would be observed in the case of asynchronous neuronal population firing with 139

homogeneous rate. A rate instability line was crossed for stronger values of KE beyond 140

which firing rates diverged (white region at the top right of the dynamic regime profiles). 141

The constant rate regime lost its stability as well for larger inhibition strengths. When 142

the absolute value of KI was gradually increased periodic oscillations emerged (traces in 143

Figure 2B, N marker), in which all the layers oscillated with a fast frequency (in the 144

Figure 2 (following page). Model yields various qualitatively different
possible dynamics. The model behavior was studied in dependence on two
phenomenological parameters, KE and KI, multiplying relative excitatory and
inhibitory weights provided by Fig. 1, respectively, to set the absolute connection
strength. (A) Parameter-dependence profiles for different summary statistics. Columns
refer to different layers. Rows show from top to bottom: mean activity; relative fraction
of low power (signaling, in oscillatory regimes, presence of slow oscillatory components);
time lag of autocorrelation’s first peak, in units of layer 4’s (signaling, in oscillatory
regimes, the period of main oscillatory component, relative to L4 fast rhythm); and the
amplitude of autocorrelation’s highest non-zero-lag peak (with small amplitudes
signaling temporally irregular or chaotic waveforms). Such dynamic profiles reveal
qualitatively different dynamics depending on efficacy of excitation (KE) and inhibition
(KI), with inferred phase boundaries summarized by the cartoon in panel C. Among the
possible phases we highlight: an asynchronous state (�), as well as oscillatory states
with fast (N) or nested fast/slow (�) frequencies. Panel (B) shows corresponding
example activity traces. See Figs. S1, S2 and S3 for additional information.
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gamma range) and similar relative amplitudes. When further increasing KI, more 145

complex oscillatory patterns were observed (example traces in Fig. 2B � marker, and 146

Fig. S3). Among them were apparently chaotic and periodic oscillations distinguished 147

by, respectively, low and high values of the autocorrelation’s highest peak (fourth row of 148

Fig. 2A), and which appeared to be locked across layers at various frequency ratios as 149

indicated by the delay of the autocorrelation’s first peak (third row of Fig. 2A). 150

Note that the parameters KE and KI are fixed for each given performed simulation. 151

This is a quite artificial situation. In vivo, we can expect that under the influence of 152

noisy drive, neuronal adaptation [44], short term plasticity [45], neuromodulation [46] 153

and other causes the effective strength scales of excitation and inhibition slightly change 154

over time and that, therefore, KE and KI fluctuate in the surroundings of an average 155

working-point. In that sense, the complete dynamic regime profile is indicative of the 156

diverse dynamical repertoire that the activity of a local circuit may sample at different 157

times, especially if the working point is close to different phase boundaries, which can 158

then be crossed by only slight changes of parameters (see Discussion). 159

For better visualization, we summarized all the qualitatively different dynamical 160

modes in a cartoon regime profile, sketched in Figure 2C. Even more phase subdivisions 161

could be generated by inspecting the relative phase of oscillation of the different layers. 162

Before analyzing interlayer phase differences, however, we will first study the dominant 163

frequencies of oscillations, which happen to be strongly dependent on the considered 164

layers and dynamical regimes. 165

Fast and slow oscillations dominate in superficial and deep 166

layers 167

The oscillatory trace obtained for the working point marked by � (referred to in the 168

following as the “fast/slow working point”) in Fig. 2B clearly shows that spectrally rich 169

oscillatory patterns can be generated by our model, simultaneously involving multiple 170

faster and slower frequencies which are expressed more or less prominently depending 171

on the considered layer. Notably, in the specific case of the fast/slow working point, L4 172

activity is dominated by a fast gamma-band oscillatory component around 71 Hz, which 173

is also strong in L2/3, while lower layers L5 and L6 are clearly dominated by slower 174

oscillatory frequencies in the alpha-/beta-range. This fact is intriguing, since as, 175

previously mentioned, a similar segregation in the frequency of neuronal rhythms 176

between superficial and deeper layers was observed also experimentally [24–27]. 177

The pattern of layer-specificity of frequency shown by the fast/slow working point 178

(�) is not obtained by a fine-tuning of parameters, but represents a feature shared by 179

an entire region in the KE-KI-plane, which we call the “fast/slow domain” and which is 180

represented in dark blue color in Fig. 2C . For each point belonging to this region (see 181

Materials and Methods for the calculation of its boundaries), we evaluated the relative 182

amount of low power Plo{Ptot for each layer. As shown by Fig. 3A (computed for the 183

same bottom-up input as in Fig. 2), within this region, deep layers’ 184

activities—particularly L5’s—was generally dominated by slow oscillations, whereas L4 185

developed almost exclusively fast frequency oscillations. L2/3 manifested an 186

intermediate behavior, with a balanced median value of Plo{Ptot across the whole region 187

of approximately 50 %. 188

The size and frequency distribution of the fast/slow domain depended on the specific 189

context, i. e. the applied values of the bottom-up (ILGN), horizontal (IHOR) and 190

top-down (ITD) inputs. In absence of horizontal or top-down drive, the size of this 191

region was relatively constant for a wide range of contrasts, ILGN (Fig. 3B), and for 192

each of them the average distribution of high and low power over the layers (Fig. 3C) 193

followed the same pattern as in Fig. 3A. 194
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Figure 3. Dominance of fast and slow oscillations in superficial and deep
layers, respectively. In the fast/slow regime (marked blue in Figs. 2C, S1C and S2C),
L4 and to a lesser degree also L23 were dominated by faster oscillations (i. e. low
fraction of low power Plo{Ptot) when the local circuit was driven by bottom-up inputs
only, as shown by the distributions in panel (A). Applying different combinations of
contextual inputs (horizontal input to L23 in panel (D), top-down input to L5 in panel
(G)) modulated these distributions, further increasing e.g. the fast frequencies
dominance in L23. This trend was also robust to changes in the stimulation strength
(C,F,I), with a dependence on contextual inputs (F,I) more non-linear than on the
bottom-up input (C). Likewise, the propensity to undergo such complex slow/fast
oscillations (measured by the size of the fast/slow regime) was relatively unaffected by
the strength of the bottom-up input (B), but peaked for specific horizontal and
top-down stimulations (E,H).
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Dynamic regime profiles computed for different contexts (see Figs. S1 and S2 for 195

applied horizontal and top-down input, respectively), showed that qualitatively similar 196

regimes and equivalently rich dynamical repertoires continued to exist. Nevertheless, 197

regime boundaries were distorted, producing variations of the extension and exact 198

localization of the regimes summarized by Fig. 2C. The fast/slow region was very robust 199

and continued to include the working point � on the KE/KI plane. The layer-dependent 200

pattern of Plo{Ptot, however, did change quantitatively. The distributions shown in 201

Fig. 3A were altered into the ones displayed by Fig. 3D (by adding an horizontal input 202

IHOR “ 2) or in Fig. 3G (by adding a top-down input ITD “ 2). In both these cases, 203

the power balance of the more superficial L2/3 was shifted toward the faster frequencies 204

of L4, while L5 continued to be dominated by slow frequencies. The dominance pattern 205

of fast and slow frequencies was essentially maintained—despite some non-monotonic 206

changes in L6—over the entire explored ranges of IHOR and ITD, and the segregation of 207

fast and slow frequencies in superficial and deep layers became even sharper for strong 208

top-down inputs (see Figs. 3F,I). In addition, changes of horizontal and top-down drive 209

also affected the size of the fast/slow phase. Unlike in the case of bottom-up drive ILGN, 210

changes in size with IHOR and ITD were non monotonic, with the fast/slow-region 211

reaching a maximum size for intermediate values of these contextual inputs. 212

Overall these analyses show that the fast/slow-region is robust—even actually 213

enhanced—by the application of inputs related to contextual modulation. 214

Dynamic phase leadership hierarchy between cortical layers 215

Besides variations in their spectral amplitudes at different frequency bands, the 216

oscillations generated by our model also displayed a remarkable diversity of possible 217

frequency-dependent interlayer phase-locking modes as a function of the strengths of 218

excitation, inhibition and of context. To determine frequency-resolved oscillation phases 219

we filtered each simulated time series in a narrow band around relevant frequency bands, 220

such as the peak beta frequency in L23 (“L23E-β band”), or the peak gamma 221

frequencies in L23 and L4 (“L23,4E-γ band”). After band-pass filtering, we identified 222

oscillatory maxima in distinct cycles and, based on their time-stamps, we defined 223

oscillation phase through a linear interpolation procedure. Details of the procedure for 224

frequency-dependent phase extraction are provided in Materials and Methods (see 225

Fig. S4A for a graphic summary). 226

We first considered the case of bottom-up drive only (ILGN “ 2, IHOR “ ITD “ 0). 227

Fig. 4A shows dynamic profiles for the relative phase of L23 with respect to other layers, 228

as a function of KE and KI. We then focused on selected working points of interest. 229

Choosing a working point very close to the transition between the constant rate- and 230

the periodic oscillations-domain (KE “ 0.05, KI “ ´0.65, marker x), all layers 231

oscillated with a dominant fast frequency (cf. Fig. 2A and associated spectra in 232

Fig. S4B). These fast oscillations were all in-phase locked, as revealed by the relative 233

phase histograms of Fig. 4 (derived from oscillation maxima time-stamps in Fig. S4C). 234

Moving further away from the homogeneous into the periodic oscillatory regime 235

(KE “ 0.15, KI “ ´1.2, marker o), oscillations of all layers remained fast but an 236

out-of-phase locking pattern emerged in which L23 lagged behind L4 and the other 237

layers (Fig. 4C and Fig. S4D). Thus, the fast-oscillating-regime (marked yellow in 238

Fig. 2C) is actually subdivided into in- and out-of phase sub-regimes (Fig. 4A). This 239

finding is in line with rigorous theoretical results about the phase-locking behavior of 240

simpler models with symmetrically interacting oscillatory neuronal populations [47]. 241

In the slow/fast-region (including the �-marked working point), phase relationships 242

were different for the slow and the fast frequency bands of the observed multi-frequency 243

rhythms. As evident from Figs. 4D and S4E, L23 was the phase-leading layer in the 244

slow frequency band, but it lagged behind the other layers in the gamma band. 245
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Figure 4. Frequency-dependent phase relations between cortical layers. (A)
Regime profiles for average inter-layer phase differences show that multiple possible
phase-locking patterns can be obtained in the model canonic local circuit. In particular,
the region of periodic fast oscillations is subdivided into an in-phase locking (see (B) for
phase difference distributions at the marker x working point) and an out-of-phase
locking (see (C) for phase difference distributions at the marker o) sub-regions. In the
fast/slow regime (including the fast/slow working point �) oscillations in layer 2 are
leading those in the other layers for slow frequencies (C, left column), whereas the
opposite was true for fast frequencies (C, right column). Similar phase difference
configurations were robust toward contextual inputs, e.g. additional horizontal inputs to
L23 (E). White background in panels (A) and (E) denote lack of appreciable oscillatory
power in the corresponding frequency band. See Fig. S4 for additional information.
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Addition of a horizontal input (ILGN “ 2, IHOR “ 2, Itd “ 0), lead, as previously 246

mentioned, to an expansion of the fast/slow region (Fig. 4E) with a largely similar 247

phase-difference landscape. 248

Dynamic phase leadership hierarchy between coupled local 249

circuits in distinct cortical regions 250

Experimental evidence suggests that feedforward and feedback communication in the 251

cortex might be subserved by fast and slow oscillations, respectively [28–32]. According 252

to the communication-through-coherence hypothesis, in the case of out-of-phase locking, 253

we expect that a stronger functional influence is exerted by the phase-leading onto the 254

phase-lagging population, due to the fact that, in this direction, the target population 255

receives the sent signals at a phase in which its excitability is elevated, favoring their 256

transduction and integration [48,49]. 257

Given the functional relevance of dynamic phase-locking patterns in inter-areal 258

communication, we then studied inter-layer phase relations when coupling together two 259

canonic local circuits in the arrangement of Fig. 1F. Such an arrangement mimics in a 260

simplified manner the layer specificity of cortico-cortical connections, giving rise to a 261

structural hierarchy of cortical areas [21,34,35]. In this configuration we could 262

distinguish a lower and an upper circuit module, meant to represent the canonic 263

multi-layer structure of two cortical areas at different stages of the cortical hierarchy. 264

Feedforward connections were assumed to proceed from population L23E of the lower 265

circuit to populations L4E and L4I of the upper circuit. Feedback connections 266

proceeded from L5E of the upper circuit to E and I populations in L23 and L5 of the 267

lower circuit (for details see Materials and Methods). Concerning contextual inputs, the 268

lower circuit received a bottom-up drive ILGN to L4 and L6, as in the case of the 269

isolated canonic local circuit, while the upper circuit received a top-down input current 270

IATT, identical for L23 and L5—i. e. identical to the joint application of IHOR and 271

ITD—, meant to represent a top-down signal activating attentional modulation by the 272

upper onto the lower circuit [50,51]. Note that a similar layer-specificity of 273

attention-related signals was assumed in other models [18–20]. 274

Phases and phase differences in Fig. 5 were determined as in Fig. 4, but instead of 275

comparing time series of different layers in one column we now considered relative 276

phases between matching layers in the lower and upper circuits (e.g. comparing L23 of 277

the upper circuit with L23 of the lower circuit, etc.). Given its rich spectral properties, 278

we focused on inter-circuit relations when the system was tuned to be at the fast/slow 279

working point into the fast/slow phase (robustly preserved by the weak coupling of two 280

circuits). 281

Without specific input, i.e. when the two-areal system was driven uniquely by 282

background input IBG “ 1 to all layers, the weak long-range coupling strength adopted 283

in our simulations was not enough to enforce stable phase relations between the circuits, 284

and correspondingly, the distributions of relative phases between matching layers were 285

broad and phase-locking often not significant (Figs. 5A and S5A). However, when the 286

lower circuit was driven in addition by a bottom-up drive (ILGN “ 2), phase relations 287

between the lower and the upper circuit became more tight, giving rise to out-of-phase 288

configurations in which lower circuit layers—and in particular L2/3 of the lower circuit, 289

the source of feedforward cortico-cortical projections—lead in phase over upper circuit 290

oscillations (Figs. 5B and S5B), potentially favouring bottom-up inter-areal functional 291

influences in both slow and fast frequency bands. 292

The situation changed in presence of emulated attentional modulation, when further 293

contextual inputs IATT where applied to the upper circuit (Figs. 5C and S5C). In this 294

case, while a bottom-up compliant phase-locking mode was maintained by all layers in 295
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Figure 5. Frequency-dependent phase leadership hierarchy between
connected cortical circuits. (A-C) Distributions of phase differences between
homologous layers of two inter-connected canonic cortical circuits at different stages of
the cortical hierarchy (cf. Fig. 1E) at the �-marked working point in fast/slow phase.
(A) During spontaneous activity (background noise only), no specific phase locking
between the different layers of the two circuits was found. (B) In presence of bottom-up
input to the lower circuit, oscillations in the lower circuit lead in phase those in the
upper circuit, consistent with a predominantly feedforward processing mode. (C) In
presence of an attention-mimicking input (IATT inputs to upper circuit), the phase
leadership hierarchy was frequency-dependent, with a feedforward processing mode in
the gamma-band as before, but a feedback processing mode for layers 23 and 5 in the
slow frequency band. Regime profiles for bottom-up input without (D) or in presence of
(E) attentional modulation show robustly similar phase relations in the whole fast/slow
phase. See Fig. S5 for additional information.
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the gamma-band, in the slow frequency band the upper circuit’s L2/3 and L5—the 296

source of feedback cortico-cortical projections—were now leading over the matching 297

layers in the lower circuit, in a way compliant with potentiated top-down functional 298

influence of the upper onto the lower circuit at slow frequencies. 299

Beyond this specific example, evaluating dynamic profiles of the average relative 300

phases (Figs. 5D,E) revealed that the entire phase including the considered fast/slow 301

working point exhibited a similar dynamic pattern of phase locking between the 302

columns (Figs. 5D,E). 303

Layer-specificity of frequencies may stem from interlayer 304

interactions 305

After characterizing the fast/slow phase and its robustness under variations of the input 306

configuration, we investigated possible dynamical mechanisms that may explain its 307

origin. In particular, we probed the causal role played by interlayer interactions. In 308

order to determine their importance, we systematically tuned the strength of all 309

excitatory and inhibitory interlayer couplings, by multiplying them with a factor Γ, 310

varying between 0 (no interlayer connections) and 1 (default interlayer connection 311

strength as above). We kept, on the other hand, the connectivities within each layer 312

unaltered, in order to maintain intrinsic properties like their resonance frequencies. 313

We focused on the fast/slow working point (�), in exclusive presence of bottom-up 314

input (no contextual modulation). When all the layers were fully disconnected, (Γ “ 0), 315

L2/3 and L4 oscillated periodically at fast frequencies around 60 Hz and 70 Hz, 316

respectively, as indicated by the harmonic peaks of the power spectra in Fig. 6A (top 317

panel). On the other hand, L5 and L6 did not oscillate, as their intra-layer recurrent 318

inhibitory interactions were not strong enough to destabilize the homogeneous 319

fixed-point of activity via a Hopf bifurcation toward an oscillatory state [47]. Note that, 320

with vanishing Γ and, therefore, in absence of the stabilizing effects of inter-layer 321

inhibition, L6 activity tended to diverge, due to its complete lack of local recurrent 322

inhibition, according to our chosen connectome [10], but most likely not in reality [52]. 323

Once interlayer interactions were turned on (e.g. at Γ “ 0.1, see Fig 6A, middle 324

panel), power spectra became more complex, developing a large number of different 325

peaks in all layers, among them peaks very near the original L2 and L4 fast frequencies, 326

f2 and f4, observed at Γ “ 0. We also observed peaks at a slower frequency (in the 327

alpha/beta range) given by the difference of these two frequencies fdiff “ f4 ´ f2 as well 328

as harmonics of fdiff , indicative of a quasi-periodic entrainment scenario [53]. Given 329

that oscillations at slower frequencies such as fdiff could not be observed at Γ “ 0, we 330

conclude that, in our simulations, such slower oscillatory components were caused by 331

interlayer interactions, unlike the local intrinsic origin of fast oscillatory components 332

within L2/3 and L4. 333

By further increasing the strength of these interaction up to Γ “ 1 (Fig. 6A, bottom 334

panel), the distributions of power spread to give rise to broad-band profiles, 335

super-imposed with vestiges of the line peaks present at weaker Γ, which were more or 336

less pronounced depending on the considered layer. In particular, the difference 337

frequency fdiff was still recognizable in the spectrum which suggests the onset of chaos 338

via quasi-periodicity [54]—as also observed in other, less detailed models of interacting 339

oscillating neural populations [47,48,55]. 340

This is further supported by bifurcation diagrams (Fig. S6B), in which the set of 341

observed values of local maxima are plotted against the control parameter Γ, giving rise 342

to tree plots whose increasingly complex branching structure describes the route to 343

chaos (similar analyses have been performed in [47,48]). Such bifurcation diagrams 344

show characteristic windows of regularity, i.e. narrow ranges of Γ in which oscillations 345
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Figure 6. Layer-dependent fast/slow oscillations may be engendered by
interactions between layers. (A) Power spectra of the oscillatory activity of
different layers in the fast/slow working point, as a function of the strength of inter-layer
coupling (modulated by a multiplier Γ). When layers are completely disconnected from
each other (top panel, Γ “ 0) L23 and L4 underwent intrinsically-generated periodic
oscillations at slightly different fast frequencies f4 and f2. Deep layers did not
intrinsically oscillate, but developed oscillatory activity already for a weak inter-layer
connectivity (Γ “ 0.1, middle panel). Appearance of new spectral peaks at frequencies
such as the difference frequency f4 ´ f2 indicates quasi-periodic oscillations. This peak
and the intrinsic L23 and L4 peaks were still visible at full inter-layer coupling (Γ “ 1,
bottom panel), even though spectra now developed an overall broad-band character,
due to chaotic inter-layer entrainment. (B) For comparison, we show also power spectra
for different inter-layer coupling strenghts in an analogous working point of a variant
circuit model, in which properties of L5 have been modified to make it an intrinsic
oscillator at a slow frequency f5. Gradual increase of inter-layer coupling revealed
transitions in the structure of power spectra highly reminiscent of panel (A), indicating
that quasi-periodicity and chaotic entrainment subsist even in presence of intrinsically
generated slow rhythms in L5. See Figs. S6 and S7 for additional information.
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are regular and periodic (i. e. exhibiting only few discrete values for their local maxima). 346

The spread of bifurcation trees for different layers, also reveal that chaos manifests itself 347

more strongly in L23, than in L4, despite the mutuality of their interaction. This 348

dynamical asymmetry may be interpreted as if L4 was effectively entraining L23 into 349

chaos, in analogy with a purely feedforward entrainment case in which the oscillations of 350

the driver population would remain perfectly unperturbed (cf. [48]). 351

While L4 power density was strongly concentrated in high frequency range for all 352

interlayer coupling scales 0 ď Γ ď 1 (Fig. S6B, blue line), the relative fraction of low 353

power grew markedly with Γ in layer 2/3 (Fig. S6A, orange line). Layers L5 and L6, 354

which lacked an intrinsic fast frequency resonance, as previously discussed, became 355

increasingly more integrated in the circuit as Γ grew from 0 to 1 such that at Γ “ 1 356

their waveforms resembled a low-pass filtered version of L2/3’s (see Fig. 2B, and 357

Fig. 6A, bottom panel), and, once they were sufficiently connected to the remaining 358

circuit (Γ Ç 0.2), like L2/3 they also acquired increasingly more slow power as Γ grew 359

towards 1 (Fig. S6A, green and pink lines). 360

Finally, the mutual entrainment dynamics between layers could be modulated by 361

changes in contextual inputs. For instance, as shown in Figs. S6C–D, adding an 362

increasing horizontal input stimulation to L2/3 (Fig. S6C) on top of the bottom-up 363

drive to L4 leads to a situation in which the effective dynamic roles played by L4 and 364

L23 are reversed. For strong horizontal stimulation, L23 is “strenghtened” and becomes 365

the effective driver of L4. Correspondingly, L23 oscillations are more periodic and L4 366

oscillations more irregular, hence the altered relative fractions of low power, reported in 367

Fig. 3F (in average over the entire fast/slow phase) and in Fig. S6D (in detail for the 368

fast/slow working point �). 369

Intrinsic and network-generated slow oscillations may co-exist 370

in the same local circuit 371

Oscillatory components slower than high gamma frequencies emerged in our model thus 372

as an effect of inter-layer interactions and disappeared when layers were disconnected 373

(Fig. 6A). However, experimental studies in vitro showed that slow oscillations in deep 374

layer can be pharmacologically induced even when infragranular layers are anatomically 375

disconnected from supragranular ones [24] and that L5 is sufficient to promote 376

synchronized activity at 1-12 Hz [56,57]. In order to account for these findings that our 377

original model cannot reproduce, we artificially modified its parameters ad hoc (see 378

Materials and Methods) to make L5 intrinsically oscillating at a slow frequency. Doing 379

so, we found that both intrinsic and network-generated slow oscillations may be 380

simultaneously present and, therefore, hard to disentangle. 381

The intrinsic slow resonator model also gave rise to a rich dynamical repertoire, 382

including a multiplicity of regimes for different choices of KE or KI. Fig. S7 shows 383

dynamical regime profiles, time-series from representative working points and a cartoon 384

regime diagram for the modified model, analogously to Fig. 2 for the original model. 385

Despite the appearance of additional regimes—such as a strictly periodic oscillatory 386

regime encompassing both fast and slow frequencies in different layers (denoted by the 387

M marker in Fig. S7B and C—, dynamical regimes reminiscent of those in the original 388

model could still be recognized. In particular, there existed, at the same localization in 389

parameter space as in Fig. 2, a regime of fast/slow oscillations. In analogy to the 390

original model we analyzed the generation of these oscillations for a slightly different 391

working point (denoted by ˝) through decoupling of the layers. Fig. 6B shows that, for 392

this working point, oscillations continued to switch from periodic to chaotic when 393

increasing the strength of the inter-layer coupling Γ. Due to the presence of an intrinsic 394

slow resonance, when the layers were disconnected (Γ “ 0) the power spectral density 395
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Figure 7. Layer-specific fast/slow oscillations are robust against small
changes of the connectome. We modified the original connectome by scaling
selected subsets of its connections by a continuously increasing modification factor. For
the six patterns of modification we adopted (see Materials and Methods for details), the
size of the fast/slow-region in the dynamic regime profiles remained nearly constant or
reduced only gradually when increasing the modification factor, indicating that
emergence of a fast/slow regime is a robust feature of the adopted connectome.

for L5 had a peak at around 21 Hz, incommensurate for our parameter choices with the 396

intrinsic power peaks of L23 and L4. Nevertheless, increasing Γ, spectra became 397

increasingly broader-band for all layers, as in absence of the L5’s intrinsic resonance 398

(compare Fig. 6B with Fig. 6A). At Γ “ 1, a vestige of the original intrinsic L5 peak at 399

f5 “ 21 Hz remained only barely visible, differing merely by a few Hz from the f4 ´ f2 400

peak whose origin lies in the quasi-periodic interaction with the other layers. Therefore, 401

in presence of noise as in vivo, these peaks with very different mechanistic 402

underpinnings—i.e., network interactions for the f4 ´ f2 peak, local intrinsic resonance 403

for the f5 peak—may be difficult to distinguish. 404

Thus, dynamical mechanisms based on intrinsic layer-specific resonances and on 405

inter-layer network-level interactions can coexist in the same model. Furthermore, these 406

mechanisms necessarily interact such that attributing the origin of fast/slow oscillations 407

to one or the other independent causes may appear questionable, as the behavior of a 408

complex system cannot be reduced to its components’ behaviours (see Discussion). 409

Layer-specificity of oscillation frequencies is robust again small 410

changes of the connectome 411

The adoption of the connectome experimentally quantified by Binzegger et al. [10] 412

naturally gave rise to a rich dynamical repertoire including a regime leading to the 413

experimentally observed layer-specificity of fast and slow oscillations. We therefore 414

investigated how tightly the occurrence of such a regime depended on choosing precisely 415

this specific connectome. Indeed, despite the unprecedented quality of the connectivity 416

exploration performed in [10], experimental uncertainty cannot be eliminated. 417

Furthermore, other studies [9, 11, 58] reported different connectivity diagrams, not fully 418

conforming to Binzegger et al’s. It is therefore important to analyze the robustness of 419

the identified dynome against changes of the adopted connectome. We did so for the 420

original model (i.e., without intrinsic slow resonator in L5) in presence of bottom-up 421

input only, presented above in Fig. 2. 422
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As a first step, we explored how the dynamical behavior of the model local circuit is 423

affected by small changes of the strengths of its connections. For computational reasons, 424

it was impossible to exhaustively explore the 64-dimensional space of disturbed matrices 425

around the reference Binzegger matrix. We therefore probed only modifications along 426

four selected directions of interest. To select these directions, we compared the 427

interlayer connectivity matrices given by Binzegger et al. [10] and Haeusler and 428

Maass [11] and identified four connection groups that were differing the most between 429

these two connectomes, potentially hinting at a more pronounced experimental 430

uncertainty in their determination. These connection groups were: inhibitory links with 431

L23 (L2IÑL2E and L2IÑL2I, we termed this modification mod22); L4 inputs to 432

excitatory population in L23 (L4EÑL2E and L4IÑL2E, termed mod42); inhibition from 433

L2 to excitatory population in L5 (L2IÑL5E, termed mod25); finally, mutual recurrent 434

inhibition in L5 (L5IÑL5I, termed mod55). We also modified simultaneously several of 435

these connection groups, terming: modX the combination of mod22, mod42 and mod25; 436

and, (all) all four of these modifications together. 437

Given its functional relevance, we focused on how robustly preserved the segregation 438

of fast and slow oscillation frequencies in superficial and deeper layers was. Therefore, 439

we measured the relative area occupied by regions in the simulated dynamic regime 440

profiles where the relative amounts of low power, Plo{Ptot were, respectively, greater 441

than 50 % in deep (L5E, L6E) and smaller than 50 % in superficial (L2/3E, L4E) layers. 442

The gradual changes of this relative area are plotted in Fig. 7 against the modification 443

factor α along the different probed directions (see Materials and Methods for details). 444

For the modifications mod42, mod55 and mod25, as well as their combination modX, the 445

relative extension of the regions showing segregation of fast and slow frequencies in 446

superficial and deep layers, respectively, remained relatively constant at around 2.5 %, 447

matching approximately the size of the fast/slow phase including the fast/slow working 448

point � in the undisturbed connectome (compare Fig. 3B). 449

The system’s dynamics was more sensitive to the modification mod22, for which a 450

morphing factor of α “ 1.2 was sufficient to shrink the size of the occurrence of 451

layer-segregated frequency-dominances by about 50 %. When applying all modifications 452

at the same time (all) the segregation of fast and slow frequencies in superficial and 453

deep layers was not anymore observed starting from α “ 1.8. Nonetheless, also for the 454

modifications mod22 and all, sufficiently small morphing factors α preserved the 455

frequency segregation. This indicates that this dynamical behavior is robust. It does 456

occur when adopting precisely the Binzegger connectome, but also when assuming 457

connectomes which lie in its local neighbourhood in the space of possible connectomes, 458

i.e. which are obtained from it through a small continuous deformation. 459

Layer-specificity of oscillation frequencies is compatible with 460

multiple but non-random connectomes 461

As a second step, we explored the robustness of the layer-specificity of dominating 462

frequencies against more substantial changes of the connectome. To do so we generated 463

artificial connectomes, by randomizing all inter-layer connection strengths, but keeping 464

all intra-layer connections unchanged in order to preserve each layer’s intrinsic 465

properties. We analyzed the regime profiles of 100000 different randomized connectomes 466

searching the KE ´KI plane for a working point where all layers were oscillating, at 467

least one of them predominantely fast, and at least one of them predominantely slow 468

(see Materials and Methods for details). Remarkably, despite their not too stringent 469

nature, these constraints were simultaneously satisfied by merely 125 of the 100000 470

tested randomized connectomes (Fig. 8A). Moreover, in almost all of these 125 “good” 471

connectomes, the layer dominated by fast frequencies was superficial (L4 or L2/3) and 472
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Figure 8. Non-random connectomes are required for the emergence of
layer-specific fast/slow oscillations. We modified the original connectome more
extensively by fully randomizing all its inter-layer connections. (A) Considering these
randomized connectomes, we could identify a working point with layer-dependent
fast/slow oscillations (akin to the �-marked working point considered above) in barely
0.1 % of the connectomes (termed “good”) that we tested. (B) Linear dimensionality
reduction (PCA) did not reveal trivial features that could distinguish “good” (blue)
from “bad” (red) connectomes. (C) There were substantial differences between
alternative “good” connectomes, as shown by distributions of different connection
weights over the set of retrieved good connectomes. (D) The connectivity matrix on an
example randomized “good” connectome reveals clear differences with the
experimentally determined reference one. Despite these differences, this connectome
leads to dynamical regimes very similar to the ones of the original model, as indicated
by a comparison between its cartoon phase diagram in panel (E) and the one of Fig. 2C.
Matching colors are used for the asynchronous (black), the fast periodic (yellow) and
the fast/slow (blue) oscillatory regimes. See Fig. S8 for additional information and
examples.

bioRχiv 18/47

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2015. ; https://doi.org/10.1101/026674doi: bioRxiv preprint 

https://doi.org/10.1101/026674
http://creativecommons.org/licenses/by-nc-nd/4.0/


the layer dominated by slow frequencies was deeper (L5 or L6), just as in the original 473

Binzegger connectome and in agreement with experimental observations, probably 474

because of the strong inhibitory self-loop within L4 and L2/3 making them intrinsically 475

resonating at fast frequencies [47]. We can conclude, thus, that a slow/fast regime 476

generally did not emerge starting from a random interlayer connectivity. On the 477

contrary, its manifestation proved to be non trivial, requiring the selection of highly 478

specific connectomes compatible with it. 479

Although very rare and thus, in this sense, non-random, there existed, on the other 480

hand, more than just one “good” connectome. We therefore checked whether these 481

“good” connectomes were structurally similar, i.e. whether they shared some specific 482

structural feature, responsible for their overlapping dynamics. Given the small number 483

of “good” connectomes, we expected the values of the different couplings to be highly 484

interdependent. However, the precise patterns of interdependency proved hard to 485

identify adopting conventional dimensionality reduction approaches. Principal 486

component analysis (PCA) yielded no obvious separation of “good” from “bad” 487

connectomes. Fig. 8B shows a scatter plot of the first three PCA components of the 488

100000 randomly generated connectomes. The highlighted “good” connectomes were 489

distributed as raisins throughout the entire cloud of “bad” connectomes. Furthermore, a 490

more detailed inspection of the distribution of PCA components, illustrated by 491

Fig. S8A, failed to reveal any higher dimensional way of linearly separating “good” from 492

“bad” connectomes. Beyond linear covariance decomposition, we attempted also other 493

classification approaches—standard but more general and non-linear—, such as training 494

of multi-layer perceptrons [59] or random forest regression [60]. Such approaches could 495

correctly classify roughly 70% of the “good” connectomes used for training, but their 496

generalization performance (tested via cross-validation loss) dropped to random levels. 497

The identification of a much larger number of “good” connectomes would be required in 498

order to improve the training and avoid over-fitting, but it may be computationally too 499

demanding, given that in the order of 105 connectomes needed to be simulated in order 500

to obtain the dynamic regime profiles of in the order of 102 “good” connectomes. In 501

conclusion, thus, we were unable to identify any trivial common feature of those 502

connectomes which possessed a slow/fast regime. 503

As a matter of fact, the strengths of many connections varied among the “good” 504

connectomes in a (seemingly) unconstrained manner. Analyzing link by link the 505

distributions of the various interlayer connection couplings over the “good” connectomes 506

(Fig. 8C) we found that some excitatory connections, as well as the inhibitory 507

connections to layer 6I and in particular the connection 5IÑ4E could assume values over 508

very wide ranges. Other links, on the other hand—mostly inhibitory connections with 509

the noted exceptions—took on values within a much more restricted range, indicating a 510

tendency not to deviate too far away from their measured value in Binzegger’s reference 511

connectome. Fig. 8C also shows that connection strengths within the artificial “good” 512

connectomes tended to assume higher values compared to the original Binzegger 513

connectome. Moreover, the Frobenius norm (i. e. the squre root of the sum of squared 514

entries) of the connectome matrices was higher for all randomized connectomes than for 515

the original Binzegger connectome. While our randomization procedure might induce a 516

bias towards higher matrix entries (as the entries are drawn from a uniform distribution, 517

while the Binzegger connectome possesses relatively few strong, but many weak entries, 518

see Materials and Methods for details) this could nevertheless hint to homeostatic 519

plasticity mechanisms maintaining the cost in synaptic resources at a low level [61]. 520

Fig. 8D (as well as Figs. S8C,E) illustrates exemplarily how pronounced differences 521

between randomized “good” and the original Binzegger connectomes could be. Despite 522

the difference in wiring, the associated regime diagrams still showed familiar features 523

(see Fig. S8B for the regime profiles on which these phase diagram cartoons are based). 524
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In particular, as in Figs. 2A,C, we could clearly identify a rate instability line (right 525

upper corner), an homogeneous regime (upper left corner) destabilizing into a periodic 526

oscillation regime with all layers oscillating at fast frequencies (regime marked in yellow 527

in Fig. 8E, and in Figs. S8D,F), and, although at a different location in the parameter 528

space, the characteristic fast/slow oscillation regime (marked in blue in Fig. 8E, as well 529

as in Figs. S8D,F), that was, by definition, required to be present for this “good” 530

connectome. The dynome of the randomized connectome included also other regimes, 531

not necessarily supported by the original Binzegger connectome, but we did not attempt 532

matching them systematically, as they were not our main interest. 533

Finally, we coupled together to mimic hierarchical cortico-cortical interaction as in 534

Figs. 1 and 5, two canonical circuits with the alternative “good” connectome of Fig. 8D. 535

Interestingly, also in this case we could identify regimes with a frequency-dependent 536

phase-leadership hierarchy, in which the upper circuit was phase-leading in slow 537

frequency bands and the lower circuit in fast frequency bands (Fig. S8G). However, we 538

did not study systematically how robust such phases are for the connectome of Fig. 8D, 539

nor did we check whether similar regimes occur for all “good” connectomes or only for 540

certain, thus further shrinking their number, when additional constraints are added (see 541

Discussion). 542

Discussion 543

Connectomics generally assumes that structural connections in the brain are crucial to 544

constrain its function [62]. In line with this general tenet, our analysis indicated that 545

simulations based on a realistic local circuit connectome could account for system states 546

with high potential functional relevance. More specifically, we showed that a local 547

cortical circuit embedding an experimentally determined multi-layer connectivity 548

architecture robustly lead to a dynamical regime in which oscillations in the gamma- 549

and alpha-/beta- frequency range occur predominantly in upper and lower layers, 550

respectively, reminiscent of experimental findings [24,26]. By coupling two of such 551

circuits through laminar-specific cortico-cortical connections, in order to mimic 552

interaction between different stages of the structural cortical hierarchy [21,34], we found 553

that the relative phases of neural oscillations in different circuit modules and layers 554

spontaneously self-organized to favour feedforward communication-through-coherence in 555

the gamma-band and—when a top-down signal (like the allocation of attention) was 556

phenomenologically emulated—feedback communication-through-coherence in slower 557

frequencies. Likewise, these results are compatible with empirical evidence [30, 32]. Last 558

but not least, we established that random connectomes would lead to qualitatively 559

different dynamical behaviors, confirming from a dynamical perspective the importance 560

of gathering high-quality structural connectivity data [63] and of utilizing them in 561

theoretical or computational work [64]. 562

Beyond a linear one-to-one mapping between structure and function, we stress 563

nevertheless that a given fixed structural topology can give rise to a multiplicity of 564

dynamical regimes and thereby to very different functional connectivities [48, 65], which 565

is not surprising from a dynamical systems perspective. When the working point of the 566

local circuit is chosen to give rise to to be in vicinity of phase transition boundaries, 567

noisy fluctuations or weak modulatory biases may thus easily trigger qualitative 568

modifications of circuit behavior in absence of any structural connectivity change. For 569

instance, the analyses of Fig. 2 indicate that, for our deterministic model, at least three 570

phases lie within very narrow ranges of the effective strengths of excitation and 571

inhibition: the homogeneous phase (� marker); the periodic phase (N marker), with 572

multiple possible variants of inter-layer phase relations; and, the fast/slow phase (� 573

marker) on which our study chiefly focused. Selecting a working point in these 574
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parameter ranges may hus lead to a rich in vivo dynamics in which asynchronous firing 575

alternates, as an effect of fluctuations, with spectrally complex oscillatory epochs, that 576

have layer-specific dominant frequencies and give rise to meta-stable transient 577

phase-locking. Note that working points that are close to all the three aforementioned 578

phases, would also lie at the edge of a rate instability line (at the upper right of 579

Fig. 2C). This feature has been associated with non-linear amplification capabilities, 580

useful for stimulus selection [66], or to the occurrence of neuronal avalanching 581

behavior [67], even if the simplifications inherent to our model (see later) do not allow 582

us to deal with these phenomena in our study. 583

A fixed structural connectome can not only give rise to switching between multiple 584

functional states (“functional multiplicity” [68]), but our study also illustrates the 585

complementary case: multiple well distinct structural connectomes engendering 586

analogous functional states (“structural degeneracy” [68]). Through a non exhaustive 587

search we determined that roughly a hundredth of all tested random inter-layer wiring 588

diagrams are compatible with the existence of a network-generated fast/slow oscillatory 589

regime. These connectomes could have largely equivalent regime profiles, but we have 590

also shown that they do not share any obvious structural feature responsible for their 591

common dynamical behaviour. The failure of linear dimensionality reduction 592

approaches such as PCA indicates that any criterion for predicting that a connectome 593

will be “good” would necessarily be a non-linear function of a high-dimensional vector 594

of connectivity parameters. More general and non-linear classification approaches such 595

as training of multi-layer perceptrons [59] or random forest regression [60] may be used 596

to learn this criterion from brute-force extracted samples of “good” connectomes. 597

Nevertheless, our preliminary attempts to do so have failed to achieve generalization 598

performances above chance level. Larger training sets would then be needed to extract 599

predictive information via machine-learning approaches, but obtaining them may be 600

computationally too demanding, given that to identify Op102q “good” connectomes we 601

already had to perform a systematic parameter exploration for Op105q randomized 602

connectomes. 603

The fact that it is possible to artificially build different connectomes with similar 604

dynamical properties does not necessarily imply that such alternative connectomes may 605

actually be implemented somewhere in the brain. Many studies indeed advocate the 606

existence of a unique canonic local circuit repeated with minimal variants throughout 607

the entire cortex [5, 7, 69–72]. On the other hand, this view has also been criticized, 608

because of large differences in local circuits found between areas and species [73–75]. 609

Other studies proposed that multiple canonic circuit types may exist and be adopted by 610

different brain areas [76,77]. However, it is not clear whether these differences in 611

structure correspond to actual differences in function [78]. Our computational approach 612

suggests that both small local modifications of the “standard” canonic local circuit 613

(Fig. 7), and suitable global rewirings transforming it into one of the alternative “good” 614

connectomes may have a limited impact on the emergent dynamical repertoire. 615

Unfortunately, we still miss a systematic charting of local circuit variants in the cortex. 616

For the moment it is therefore impossible to verify to which extent some of our 617

synthetically generated “good” connectomes match existing cortical circuits, although 618

experimental information to attempt this task may become available within the next 619

few years, thanks to ongoing large-scale efforts [79]. 620

We defined a connectome as “good” only in virtue of its capacity to give rise to a 621

fast/slow oscillatory regime. Obviously, however, we do not expect this capacity to be 622

the unique purpose of the canonic local cortical circuit(s). It is possible that when 623

additional target functions are prescribed, the actual number of “good” connectomes 624

drops even more, as an effect of additionally imposed constraints. Structural degeneracy 625

may even vanish, and a single, or just a few, canonic circuits be retained when the true 626
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or, at least, a more complete ensemble of criteria to be fulfilled is assumed. Another 627

possibility is that many circuits may implement the same dynamical and functional 628

repertoire, but that only a few of them have been actually selected during evolution or 629

development because they are, in addition, optimal in some sense (wiring length, 630

communication efficiency, compliance with developmental chronology, etc.) [80–83]. A 631

potential hint to the presence of an optimization mechanism akin to developmental 632

homeostatic plasticity [84] may be the small overall cumulative synaptic weight of the 633

reference connectome derived from [10] compared to the other artificially generated 634

connectomes. Finally, a third scenario is that structural degeneracy subsists even when 635

the number of constraints is increased, because—beyond mere redundancy—it is useful 636

from a system’s perspective, conferring additional robustness to some canonic set of 637

essential functions against unexpected perturbations or ecological changes [85]. Such a 638

scenario is known for instance to occur in invertebrate neural systems devoted to vital 639

functions [36–38,86]. Again, more systematic connectivity reconstructions are required 640

in order to substantiate one or the other conjecture. 641

At the present stage, we can only acknowledge that the local cortical circuit wiring 642

diagram of Fig. 1—as well as the alternative connectomes of Figs. 8D and many 643

others—play a key role in the genesis of non-trivial dynamical regimes such as the 644

fast/slow oscillatory phase, but we cannot fully explain why this is the case. Our anlyses 645

have nevertheless revealed that, in our model, fast oscillations generated intrinsically 646

within specific layers engender slower oscillatory components. Note that, as discussed in 647

relation with Fig. 6B and Fig. S7, different mechanisms for the generation of slow 648

oscillations may coexist. In particular inter-layer entrainment is not incompatible with 649

the existence of intrinsic slow-frequency resonances in infragranular layers [24, 33, 56, 57]. 650

On the contrary, the fact that the collective activity of all neuronal populations in these 651

layers already tends to develop slow oscillations due to entrainment may favour the local 652

recruitment of interneuronal populations intrinsically resonating at these slow 653

frequencies. Our model predicts that the inter-layer entrainment dynamics can be 654

biased by changes in contextual inputs or stimulation of specific layers (cf. Fig. S6) and 655

this prediction may allow to probe the presence of inter-layer entrainment in future 656

experiments, by checking whether “devil’s staircase”-like transitions in oscillatory 657

properties, such as frequency and power ratios, are induced when a control parameter is 658

smoothly varied (cf. discontinuous steps in the Plo{Ptot curves of Fig. S6A and C). 659

Interactions between layers may also be interrogated optogenetically through 660

selective stimulation of specific neuronal populations in specific layers [87–89]. 661

Nevertheless, different experiments often yield incompatible results and the direct 662

interpretation of stimulation effects in terms of circuit mechanisms has proven 663

difficult [90]. The extreme simplifications adopted in our model—such as a collective 664

neural mass description of neuronal populations ignoring neuronal diversity and specific 665

micro-connectivity and timing patterns [91–93]—may cast doubt on the reliability of 666

quantitative predictions based on it. Nevertheless, from a qualitative perspective our 667

study anticipates that the effects of selective stimulation would strongly depend on the 668

actual working point of the system. Furthermore these effects would be complex and 669

not limited to simple transient and local changes of the firing rate, but also affecting 670

phase relations, power spectra of oscillations in different layers, stability of entire 671

dynamical regimes, and other properties at the system level (cf. Figs. 3, 4, S1 and S2). 672

Several models before ours have explored how multi-layer connectivity shapes 673

dynamics. A previous study from our group [55] already investigated the impact of 674

inter-layer connections on induced cortical oscillatory activity, linking the emergence of 675

broad-band oscillatory spectra to inter-layer entrainment. Noteworthy, this earlier 676

model involved interacting populations of spiking neurons, rather than rate units and 677

included a very simplified layer structure, reduced to just two layers, thus confirming 678
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the robustness of the effective entrainment dynamical phenomenon against changes of 679

the model architecture. 680

Other independent studies incorporated a more realistic layer structure. For 681

instance, Binzegger and colleagues implemented a computational rate model of a local 682

cortical circuit [66] based on their experimental anatomical reconstructions. This study 683

conjectured that the circuit working point must be close to a rate instability, as we also 684

suggest, but did not explore the possibility of functional multiplicity nor the generation 685

of oscillatory behavior. 686

Wagatsuma, Potjans and colleagues studied the dynamics of one or multiple coupled 687

canonic local circuits, performing efficient and detailed large-scale spiking network 688

simulations and phenomenologically modelling the action of attention [18–20]. Their 689

model gave rise to a regime of activity, characterized by realistic, generally very low, 690

spontaneous firing rates for all layers, which increase from superficial to deeper layers 691

with the exception of L6E. In comparison, firing rates in our model also followed a 692

similar pattern (cf. Fig. 2A, first row), except that firing rates in L6E were much higher. 693

Nevertheless, such discrepancy could be ascribed to the (potentially erroneous) lack of 694

feedback connections from L6I to L6E in our connectome inspired from [10], unlike in 695

the connectivity scheme in [18–20], where anatomical information from additional 696

sources was used [58]. Furthermore, Wagatsuma, Potjans and colleagues described 697

effects of attention on single layer firing rate, i.e. a reduction in L4 and an increase in 698

L23 and L5. Note that similar antagonistic variations of rate in different layers can be 699

caused by contextual modulations even in our model, but in a way which depends on 700

the chosen working point (compare Fig. 2A with Fig. S1A and S2A). However, as [66] 701

before them, Wagatsuma, Potjans and colleagues also ignored the possible generation of 702

synchronous oscillations, focusing instead on an asynchronous regime. 703

Besides, [55], only few modelling works explicitly accounting for cortical layer 704

structure addressed oscillatory behavior, and if so, they either did not find substantial 705

inter-layer differences in this behavior [94], or did not perform layer-specific spectral 706

analyses [95]. The present study intends to amend this gap, reporting a rich repertoire 707

of different possible oscillatory configurations, with different layer-dependent power 708

spectra as well as local and long-range phase-locking profiles. Nevertheless all these 709

configurations are stable states in our model, giving rise to sustained oscillations. They 710

thus correspond to an elevated level of synchrony which is certainly unrealistic with 711

respect to in vivo oscillations that are stochastically bursting and short-lived (see, 712

e.g. [96]). Nevertheless, we expect that the stable oscillatory states of our deterministic 713

rate model provide a good hint about the properties of the meta-stable oscillatory 714

transients that a corresponding noise-driven spiking model would generate, when tuned 715

to be at the edge of developing oscillatory synchrony [47,55,97,98]. 716

Models by Haeusler and colleagues [11,99] finally focused on yet another perspective, 717

finding that the canonic local circuit structure is beneficial for local computations, like 718

e.g. pattern classification of current and past inputs. Our rate model is unfit to address 719

questions linked to spike-based local information processing. Our perspective interest 720

goes rather toward the modelling of self-organized information routing, given that layer 721

structure shapes out-of-phase phase-locked oscillations in a way which is likely to 722

profoundly impact on the efficiency of communication between neuronal populations [49]. 723

Indeed, it has already been shown that changes in phase relations between collective 724

population oscillations affect the routing of information codewords conveyed by spike 725

patterns [48,98,100]. Our study suggests thus that the canonic local circuit 726

structure—or structures, taking into account the possibility of structural degeneracy—is 727

particularly fit to to implement communication-through-coherence simultaneously across 728

multiple frequency bands, in contrast to local computations, for which random wiring 729

architectures may also performing equally well as connectome-based circuits [101]. 730
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Ultimately and naturally, our multi-layer model could be adopted as a neural mass 731

describing the regional activity of a brain region embedded within a larger-scale 732

mean-field model of thalamo-cortical networks [102–104]—incorporating weighted 733

connectivity information about feedforward and feedback cortico-cortical projections, as 734

well other possibly relevant pathways, such as the laminar-specific connections with the 735

pulvinar [105]—in order to reproduce the emergence of brain-wide multi-frequency 736

coherence networks [31,106,107], to probe the determinants of their alteration in 737

pathological conditions [108] and to understand how their dynamics might be 738

controlled [109,110]. 739

Materials and Methods 740

Model 741

We simulate the rate response rkα of a population α P tEpxcitatoryq, Ipnhibitoryqu in 742

layer k P t1, 2&3, 4, 5, 6u. Each layer receives recurrent inputs with a delay D “ 0.1 time 743

units from within the column. The strength of these inputs, denoting the total charge 744

induced into the postsynaptic population lβ (k P t1, 2&3, 4, 5, 6u, β P tE, Iu) over all 745

existing connections lβ Ñ kα is written as γlβkαK
lβ
kα where γlβkα is the fraction of all 746

synapses from population β to population α that are formed between layers l and k; 747

values for γlβkα were taken from Fig. 12 in [10]. Klβ
kα then gives the total number of 748

synapses between populatoins β and α times the average charge induced in the 749

postynaptic population due to a single spike in the presynaptic population. We decided 750

to use Klβ
kα as parameters and explore the influence of these parameters on the behavior 751

of the model. To make this feasible, we made the simplifying assumption that 752

Klβ
kα « Kβ , thus reducing the effective number of parameters to two, KE and KI. 753

Apart from recurrent input the column is driven by four kinds of constant external 754

currents. All layers receive the same background current Ibg modeling diffuse neuronal 755

noise. Bottom-up stimuli influence the model column via currents ILGN, ILGN{3 and 756

ILGN{6 sent to layers L4E&I, L6E and L6I, respectively, in accordance with [10]; the 757

strength of ILGN can be interpreted as the contrast of the stimulus. Contextual 758

influences on the column are divided into horizontal, Ihor, and top-down, Itd, currents, 759

targeting layer L2/3E&I and L5E&I, respectively, as suggested by experimental 760

evidence [?]. A cartoon illustrating the complete circuit is shown in 1. 761

The total input into each layer, Itot, from both intrinsic and extrinsic sources is is 762

assumed to activate the layer, if completely uncoupled from the others and after 763

transients have settled, to a level given by the f ´ I-curve 764

F pItotq “ maxp0 A, Itotq 1
A¨time unit . In summary, our model column was governed by 765

the equations 766

τkα 9rkαptq “ ´rkαptq ` F

˜

Ibgkα ` I
LGN
kα ` Ihorkα ` I

td
kα `

ÿ

lPLayers

ÿ

β“E,I

γlβkαKβrlβpt´Dq

¸

(1)
For simplicity, the relaxation time constants τkα were taken to be 1 time unit for all k 767

and α. 768

When considering two coupled columns we extended that model by introducing
feedforward connections from the lower column’s layer 2E to the upper column’s layer 4
(both the excitatory and inhibitory population), and feedback connections from the
upper column’s layer 5E to the lower column’s layer 2 and 5 (both the excitatory and
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inhibitory populations). The complete equations read

τℵαk 9rℵαkptq “ ´ rℵαkptq`

F
´

Ibgℵαk ` I
LGN
ℵαk ` I

hor
ℵαk ` I

td
ℵαk

`
ÿ

lPLayers

ÿ

β“E,I

γlβαkKβrℵlβpt´Dq

`Klr

ℵ´1
ÿ

i“1

δα,4ri2Ept´Dlrq

`Klr

NCols
ÿ

i“ℵ`1

pδα,2 ` δα,5qri5Epr ´Dlrq

¸

where Ncols “ 2, 1 ď ℵ,i ď Ncols denote columns (which are ordered ascendingly 769

according to their position in the cortical hierarchy), δα,x is the Kronecker-symbol, Klr 770

scales the efficacy of the long-range connections (we used Klr “ 1), Dlr is the delay of 771

long-range connections (we chose Dlr “ 10D) and all remaining parameters are as 772

previously described. 773

The rate equations have not specifically been obtained through a mean-field 774

reduction, but they do resemble a simplified Wilson-Cowan equation [111]. They were 775

integrated with a custom written C code using a Runge-Kutta algorithm with time step 776

0.0001 time units. To overcome initial transients the first 200 time units (i. e. 2 000 000 777

time steps) were discarded and data anslysis was performed on the subsequent 220 time 778

steps. Deviating from that, Figs. 4B,D,F are calculated from time series with 221 time 779

steps. As initial condition for the delay differential equation we assumed that all time 780

series were 0 for times t ď 0. 781

Data analysis 782

All data analysis was performed in Python. Power spectra were calculated using 783

Welch’s method with a window size of 219 time steps, a window overlap of 218 time 784

steps and with the time series’ means subtracted. To make frequencies concrete, we set 785

the transmission delay D to 10/3 msec, i.e. the time unit to 10D “ 1{30 sec, i.e. the 786

sampling frequency to 3 ¨ 105 Hz. Therewith, we defined low power Plo as the summed 787

power spectral density between 0 Hz and 30 Hz, and the total power Ptot as the sum of 788

the power spectrum over all frequencies. 789

Cross-correlations were estimated by F´1rFrkα ¨ Frlβs where F denotes the fast 790

Fourier transform, F´1 the inverse fast Fourier transform, and Frlβ the complex 791

conjugate of Frlβ . 792

Cartoon regime profiles were obtained by semi-transparently overlying all layers’ 793

profiles for the rate, fraction of low power, first delay and highest value of the 794

autocorrelation and then tracing “obvious” boundaries. While some judgment calls had 795

to be made this procedure is in no way critical as it only serves to highlight qualitative 796

differences and similarities of the dynamics for different values of KE,I. 797

To assess the extent of the slow/fast-region we determined those points in the 798

dynamic response profile that are “neighbors” of the point pKE,KIq “ p0.24,´1.4q, 799

neighbors of these neighbors, and so on. For that matter, a point on the grid of sampled 800

KE,I values, reachable with one step either orthogonally or diagonally from a given 801

source point is called a “neighbor” if it fulfills the condition that the fraction of low 802

power was smaller than 0.999999 in all layers and greater or equal than 0.6 in at least 803

one layer. We checked that the pKE,KIq points selected by this operational definition 804

correspond to the visible outline of the slow/fast regime in the dynamic regime profiles. 805
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Oscillation phases 806

Fig. S4A illustrates how relative phases for oscillations of a predominant frequency are 807

calculated: The power spectrum was estimated with Welch’s method as described above, 808

then the global maxima of the power spectral density of layer 2 in the frequency band 809

8-30 Hz, of layer 2 in the frequency band 30-90 Hz, and of layer 4 in the frequency band 810

30-90 Hz were determined, and for each of these frequencies the time series of all 811

populations, subsampled by a factor of 256 for performance reasons, were filtered with a 812

finite-impulse-response filter, using a Kaiser-window of length 210 with parameter 813

β “ 3.5 and a pass-band of ˘2 Hz around the peak frequencies. 814

To determine the relative phase between the oscillations in population a relative to 815

population b, local maxima were detected in the filtered time series of these populations. 816

Assume for the moment that population b possesses at most as many local maxima as 817

population a. For each local maximum t
pbq
i of population b we then located the times 818

t
paq
j and t

paq
j´1 of the closest local maximum of population a occurring after and before 819

t
pbq
i , respectively. Let dright “ t

paq
j ´ t

pbq
i and dleft “ t

pbq
i ´ t

paq
j´1. Therewith, we defined 820

the relative phase as dright{pdleft ` drightq and the phase-locking index φ as 821

φ “ xexpp2πidright{pdleft ` drightqqyi, where x¨yi denotes averaging over all local maxima 822

of b. In case population b had more local maxima than population a we used 1´ φ. 823

Note that while we usually used 220 time steps (after the initial transients) for each 824

time series, the right panels of Figs. 4B,D,F are calculated from time series with 221 825

time steps. 826

Alternative model with slow intrinsic oscillator in L5 827

To introduce a slow intrinsic oscillator into layer 5 we multiplied the matrix elements 828

5I Ñ 5E and 5I Ñ 5I in the original Binzegger connectome [10] by a factor of 400. 829

When all interlayer connections were then set to 0 (i. e. Γ “ 0) layer 5 could exhibit a 830

peak in its power spectral density that was absent without this modification (see 831

Figs. 6A,B top panels). Moreover, for full interlayer coupling (Γ “ 1) and at least under 832

bottom-up input (ILGN “ 2) L5 was then oscillating at predominantely slow (i. e. 833

smaller than 30 Hz) frequencies as long as KI Æ ´0.8 (see Fig. S7A). 834

Robustness of results against small changes of connectome 835

We compared the connectome from [10, Fig. 12] to the one from [11, Fig. 1] by 836

normalizing each separately with its respective maximum value and looking for the six 837

biggest absolute values in the difference which were divided into four groups. The 838

matrix elements of each group were then modified in order to determine their effects on 839

the dynamics of the model column. In summary, we used the following manipulations: 840

first, we changed the couplings CL2IÑL2E Ñ CL2IÑL2E{α and CL2IÑL2I Ñ CL2IÑL2I{α 841

(we termed this modification mod22); second, CL4EÑL2E Ñ αCL4EÑL2E and 842

CL4IÑL2E Ñ αCL4IÑL2E (mod42); third CL2IÑL5E Ñ αCL2IÑL5E (mod25); fourth, 843

CL5IÑL5I Ñ αCL5IÑL5I (mod55); fifth, the last three of these modifications together 844

(modX); and sixth, all of the first four modifications at the same time (all); we run 845

simulations for all of these six modifications for values 846

α P t1, 1.01, 1.025, 1.05, 1.125, 1.5, 2u on a grid KE “ 0 . . . 0.3 and KI “ ´3 . . . 0 with 847

stepsize ∆KE,I “ 0.01 and assessed how the fraction of working points pKE,KIq 848

(excluding those with diverging rates rkα) where the relative amount of low power 849

Plo{Ptot was above and below 50 % in superficial and deep layers, respectively, changed 850

with α. 851
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Randomized connectomes 852

We randomized the Binzegger connectome to determine its relevance. To that end each 853

connection was assigned a random value from a uniform distribution that was specific to 854

the type of connection, E Ñ E, E Ñ I, I Ñ E or I Ñ I. The lower and upper bounds 855

of these distributions were the minimum and maximum values of all matrix elements in 856

the original Binzegger connection matrix belonging to the resepective connection type. 857

Connections to and from layer 1, as well as those within a layer were completely 858

disregarded in this procedure. 859

For each randomized connectome we simulated bottom-up input (ILGN “ 2, 860

Ihor “ Itd “ 0) for a grid of working points, KE “ 1{30 . . . 1, KI “ ´10 . . . 0 with a step 861

size of ∆KE,I “ 1{30 which was traversed in order of increasing distance to the 862

reference working point pKE,KIq “ p0.21,´1.4q. To speed up the search, we first run a 863

coarse-grained simulation for each working point, with a temporal step size of 0.001 and 864

analzed 216 time steps (after the initial transients). If total power Ptot in all layers was 865

above 10´5 and there existed at least one layer with more than 25 %, and at least one 866

other layer with less than 75 % of relative amount of low power Plo{Ptot, we run another 867

simulation for the same working point with the same, more fine-grained parameters that 868

we used in the rest of the analyses, that is with a time step of 0.0001 and with 220 time 869

steps (after the initial transients). If we found that Ptot ą 10´5 in all layers, and that 870

there existed at least one layer with more, and at least one other layer with less than 871

75 % of Plo{Ptot we stopped traversing the grid of working points for the given 872

connectome and termed it “good”. 873

Figure details 874

In Figs. 2, S1, S2 and S3 used working points, defined by the tuple pKE,KIq, were 875

� “ p0.05,´0.3q, N “ p0.1,´1q and � “ p0.21,´1.4q, İ “ p0.05,´1.7q, ‹ “ p0.05,´2q, 876

đ “ p0.05,´2.5q, § “ p0.13,´1.8q, ˛ “ p0.24,´2.3q, “ p0.28,´2.9q, “ p0.225,´2.9q. 877

In Fig. 2B panels show excerpts of 50000 (�,N) and 200000 (�) time steps. 878

In Fig. 3, bottom-up input (panels A) was simulated with ILGN “ 2, 879

bottom-up+horizontal input (panels B) with ILGN “ IHOR “ 2, and 880

bottom-up+top-down input (panels C) with ILGN “ ITD “ 2. 881

In Fig 4, used working points pKE,KIq were x “ p0.05,´0.65q, o “ p0.15,´1.2q, 882

� “ p0.21,´1.4q. 883

In Figs. 6 and S7, used working points, defined by the tuple pKE,KIq, were 884

N “ p0.1,´0.5q, M “ p0.1,´1q, ˝ “ p0.22,´1.4q 885
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Supporting Figures

Figures S1 to S8.
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Figure 9 (following page). [Figure S1] Dynamical regime profiles under
bottom-up and horizontal (i.e. to L23) stimulation. All panels analogous to
Fig. 2, but with additional input from horizontal connections to L23, in addition to
bottom-up drive (ILGN “ IHOR “ 2, ITD “ 0). Asynchronous, all-fast and mixed fast
and slow oscillatory phase are still visible, and are marked in panel C with the same
color (dark gray, yellow and dark blue, respectively) as in Fig. 2C.
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Figure 10 (following page). [Figure S2] Dynamical regime profiles under
bottom-up and top-down (i.e. to L5) stimulation. All panels analogous to
Fig. 2, but with additional input from top-down connections to L5, in addition to
bottom-up drive (ILGN “ ITD “ 2, IHOR “ 0). Asynchronous, all-fast and mixed fast
and slow oscillatory phase are still visible, and are marked in panel C with the same
color (dark gray, yellow and dark blue, respectively) as in Fig. 2C.
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Figure 11. [Figure S3] Additional example traces. Time-series of neural activity
from the remaining working points marked in Fig. 2C. No contextual modulation is here
applied (ILGN “ ITD “ 0, IHOR “ 0)

Figure 12 (following page). [Figure S4] Definition of phase and
phase-relations within a local circuit. (A) Illustration of our procedure for
extracting frequency-resolved phase. After subsampling the original time series (for
performance reasons) we apply a finite impulse response filter with a pass-band of
˘2 Hz around a predominant frequency of the power spectral density, detect the local
maxima in the filtered time series and interpolate linearly between the maxima to
assign a relative phase to a target event, like a local maximum detected in the same way
in another time series. (B) Power spectra for working points marked in Fig. 4 and
limits of the narrow-frequency bands (fast and slow) used for filtering. (C-E)
Time-stamps of local maxima in L23 (orange) relative to those in the other layers for a
short time-segment. Different rows correspond to bla bla. . . ?. These time-stamps are
extracted from the entire generated time-series and used to determine relative phases
between oscillations in different layers and construct the histograms of their distribution
in Figs 4B-D.
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Figure 13. [Figure S5] Phase-relations between interacting circuits at
different stages of the cortical hierarchy. Time-stamps of local maxima in
different layers of the lower canonic circuit (see color for legends). Different rows
correspond to different layers. A grey dot correspond to time-stamps of the
corresponding layer in the upper circuit.
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Figure 14 (following page). [Figure S6] Chaotic entrainment between layers
leads to broadband fast/slow oscillations. (A) Fractions of low power relative to
total power for different layers in the � working point (selected corresponding spectra
are shown in Fig. 6A), as a function of the strength scale of inter-layer coupling Γ. (B)
Corresponding bifurcation diagram, obtained plotting, for each value of Γ, a different
dot for each observed value of oscillation maxima amplitudes. Cumulation of different
dots for different Γ values results into tracing a tree structure, alternating sections with
a discrete number of thin branches (corresponding to regular periodic oscillations,
eventually period-doubled), with dense bands in which oscillation amplitudes cover
continuous ranges of values (corresponding to chaotic oscillations). Details on the
construction of these bifurcation diagrams can be found in [47,48]. (C–D) Same as
panels A and B, respectively, but as a function of the level of horizontal input to L23,
IHOR. Discontinuities in the relative ratio of low power —associated to sharp qualitative
transitions in the shape of power spectra (A,C)—, as well as the matching windows of
regularity in bifurcation diagrams (B,D) support the idea that oscillations undergo a
transition to chaos through a quasi-periodic route, as an effect of inter-layer entrainment.
Note that the relative spread of amplitude values throughout the entrainment process is
different for L4 and L23. For instance, in panel B, L4 oscillation amplitudes indeed
display smaller relative modulations than L23’s oscillations. Note that in an ideal direct
entrainment scenarion (rather than mutual) the bifurcation diagram for the driver
would be a pure line, corresponding to the unique stable value of the driver’s fast
oscillation amplitude. This different modulation amplitudes for L4 and L23 suggest
that, for pure bottom-up drive in absence of modulation from horizontal inputs, L4 acts
as an “effective driver” for L23. However, contextual modulation can change the
effective role of these two layers in the inter-layer entrainment dynamics. Panel D
shows indeed, that by increasing sufficiently IHOR, L23 can also be promoted to the role
of effective driver, driving L4 into manifest chaos. Correspondingly, L4’s relative ratio of
low power increases to higher values than for L23 when IHOR is strong (panel C).
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A

B D

C

Figure 15 (following page). [Figure S7] Dynamical repertoire for the
alternative model with intrinsic slow frequency resonance. We present here
dynamic profiles (panel A), time-series from selected working points (panel B) and a
cartoon phase diagram (panel C), when the original model is modified to include an
intrinsic resonance at slow frequency in L5. All panels are constructed analogously to
Figs. 1 (ILGN “ 2, IHOR “ ITD “ 0). A fast/slow oscillatory regime originated by
inter-layer entrainment (cf. Fig. 6B) is found at a similar position in the phase diagram
as for the original model (denoted by a dark blue region, ˝ working point). Different
types of periodic oscillatory regimes can be found, including one in which L4 and L23
oscillate at fast frequency, while L5 oscillates endogenously at a slow frequency close to
its intrinsic resonance (M working point, “intrinsic fast/slow regime”) and one in which
even L4 and L23 too develop a slow main period matching the one of L5, superposed
with a smaller amplitude fast component (N working point, “all slow regime”)
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Figure 16 (following page). [Figure S8] Additional results about
randomized “good” connectomes. (A) Distributions of relevant PCA components
for “good” and “bad” connectomes overlap. Violin widths (blue, “good” connectomes;
red, other randomized connectomes) change along the left y-axis, describing
distributions of the values of the first 24 PCA components (x-axis). Together, these 24
PCA components capture most of the variance, as indicated by the plot of cumulatively
captured variance (line with black circles, right y-axis). Blue and red violins overlap
almost completely indicating that PCA cannot separate “good” from “bad”
connectomes. (B) Regime profiles for the fraction of low power for the “good”
connectome illustrated in Figs. 8D,E. Panels (C,D) and (E,F), show two more
examples of randomized “good” connectomes analogous to Figs. 8D,E. (G) We coupled
two local circuits with the alternative “good” connectome of Figs. 8D,E, to mimic
interaction between cortical circuits at different hierarchical levels, as in Fig. 1F and 5.
Shown here are the dynamic profiles for the relative phase between L23 of the lower
circuit and L23 of the upper circuit in presence of bottom-up input only. Although we
did not attempt a systematic study of the effects of contextual modulation or attention,
these profiles reveal a richness of possible frequency-dependent locking patterns
comparable with Fig. 5D.
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