bioRxiv preprint doi: https://doi.org/10.1101/026658; this version posted September 11, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Selection on network dynamics drives differential rates of
protein domain evolution

BRIAN K. MANNAKEE! AND RYAN N. GUTENKUNST *2

! Division of Epidemiology and Biostatistics,
Mel and Enid Zuckerman College of Public Health, University of Arizona
2 Department of Molecular and Cellular Biology, University of Arizona

September 11, 2015

Abstract

The long-held principle that functionally important proteins evolve slowly has recently been
challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly
predicts that protein’s rate of evolution. However, the relevance of these studies to evolutionary
changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often
only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical per-
turbations, we developed an approach to use computational systems biology models to measure the
influence of individual reaction rate constants on network dynamics. We show that this dynamical
influence is predictive of protein domain evolutionary rate in vertebrates and yeast, even after con-
trolling for expression level and breadth, network topology, and knockout effect. Thus, our results
not only demonstrate the importance of protein domain function in determining evolutionary rate,
but also the power of systems biology modeling to uncover unanticipated evolutionary forces.

Over evolutionary time, every protein accumulates amino acid changes at its own characteristic
rate, which Zuckerkandl and Pauling likened to the ticking of a molecular clock [1]. Remarkably, this
evolutionary rate varies by orders of magnitude among proteins. Understanding the determinants of
this variation is a fundamental goal in molecular evolution research [2, 3, 4, 5]. Early theoretical work
suggested that functional constraints within proteins [1] and the functional importance of each protein
to the organism [6, 7] would be key factors in determining evolutionary rates. Yet, empirical studies
using knockouts have observed only weak effects. In bacteria [8, 9], yeast [10, 11], and mammals [12]
knockout studies conclude that essential proteins evolve only slightly more slowly than non-essential
proteins. Moreover, among non-essential genes in yeast, there is little to no correlation between the
effect of a protein knockout on growth rate, in a wide range of conditions, and that protein’s evolu-
tionary rate [13, 14, 11], particularly when controlling for expression level [15]. This poor correlation
between knockout effects and rates of protein evolution has led some researchers to conclude that
function-specific selection plays little role in determining evolutionary rates [4, 5]. This conclusion
is, however, contrary to theoretical expectations, the intuition of most molecular biologists, and the
reasoning behind much of comparative genomics [16], motivating our search for an alternative measure
of protein function.

We reasoned that knockouts do not mimic evolutionarily relevant mutations, which often have
small or moderate effects [17]. In particular, most amino-acid changes do not completely destroy a
protein’s function, but rather alter its biochemical activity to a greater or lesser extent [18]. The ideal
experiment would thus measure the functional effects of many random mutations on many proteins,
but such experiments remain challenging [19]. To overcome this experimental limitation, we undertook
a computational approach, using biochemically-detailed systems biology models to predict the effects
that small perturbations to protein activities will have on the dynamics of the networks in which they
function (Fig. 1). We ascribed high and low dynamical influence to protein domains for which amino
acid substitutions were predicted to have respectively large or small effects on network dynamics.
We hypothesized that network dynamics is a synthetic phenotype that is likely subject to natural
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Figure 1: Overview of analysis. A: Illustrative hypothetical signaling network. The dynamical
influence of the activator kinase-binding domain (A-KB) is calculated from the influences of the rate
constants of the reactions in which it is involved (highlighted in blue): phosphorylation, k; ; dephos-
phorylation, k5 ; kinase-binding, k:;f ; and kinase-unbinding, k5. B: Illustrative phylogenetic analysis
of the kinase-binding domain of the activator protein. C: Partial list of ordinary differential equations
that model the dynamics of this network. Here all reactions are assumed to be mass-action, but that
is not the case in all models analyzed. D: Dynamics of phosphorylated activator protein levels and
sensitivity of those dynamics to changes in rate constant k', following addition of ligand L. Small
increases in k; hasten the peak of phosphorylated activator protein and increase its steady-state level.
The dynamical influence of rate constant kj is calculated by summing such sensitivities for all molec-
ular species in the network. E: Illustrative plot comparing dynamical influence and evolutionary rate
for all domains in the network. A single multi-domain protein can contribute multiple data points.

selection. To test this hypothesis, we compared our predictions of dynamical influence with genomic
data on protein domain evolutionary rates in both vertebrates and yeast. We found that dynamical
influence is more strongly correlated with evolutionary rate than many previously known correlates.
Moreover, dynamical influence remains predictive when knockout phenotype, expression, and network
topology are controlled for. Dynamical influence thus offers new insight into selective constraint in
protein networks.

Results and Discussion

Dynamical influence quantifies the network consequences of small-effect mu-
tations

A biochemically-detailed systems biology model encapsulates vast amounts of molecular biology knowl-
edge in a form that can be used for in silico experimentation [20, 21]. In these models, protein bio-
chemical activities are quantified by reaction rate constants k [22]. To assess the phenotypic effects of
small changes in protein activity caused by mutations, we first calculated the dynamical influence of
each reaction rate constant (Materials and Methods). To do so, we calculated how a differential per-
turbation to that constant would change the concentration time course of each molecular species in the
network (Fig. 1D), for biologically-relevant stimuli. We then normalized those changes and integrated
the squared changes over time. Lastly, we summed over all molecular species in the network. The
dynamical influence of a rate constant is thus the total effect that small changes in that rate constant
would have on network dynamics.

The dynamical influence of each reaction rate constant quantifies its importance to network dy-
namics, but there is little data on evolutionary divergence of reaction rate constants to which we can
compare. To compare with the abundant genomic data detailing sequence divergence at the domain
level, we aggregated the influences of reaction rate constants for all reactions in which a given protein
domain is involved. Whenever possible, we analyzed at the domain level, because that is the level at
which distinct functions can be assigned to distinct regions of protein sequence [23]. Thus, we defined
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the dynamical influence D of a domain to be the geometric mean of the dynamical influences of the
reaction rate constants for reactions in which it participates (Fig. 1A).

Dynamical influence is correlated with protein domain evolutionary rate

To test whether dynamical influence is informative about protein evolution, we analyzed dynamic
protein network models from BioModels [24], a database which not only collects such models but also
annotates them with links to other bioinformatic databases [25, 26]. We considered only models with
experimental validation that were formulated in terms of molecular species and reactions, were runnable
as ordinary differential equations, and contained at least eight distinct UniProt protein annotations.
In total, we studied 12 vertebrate [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38] and 6 yeast [39, 40, 41,
42, 43, 44] signaling and biosynthesis models. We further annotated these models to connect molecular
species and reactions with particular protein domains (Dataset S1). For each model, we calculated
dynamical influences for each reaction rate constant using the stimulation conditions considered in the
model’s original publication (Text S1).
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Figure 2: Evolutionary rate is correlated with dynamical influence in signaling and biosyn-
thetic networks. Each point represents a protein domain, plotted given its evolutionary rate dN/dS
and dynamical influence. Spearman rank correlations p between dynamical influence and evolutionary
rate are generally negative, indicative of widespread purifying selection on network dynamics. Ex-
pression level is represented by marker size and is weakly correlated with evolutionary rate but not
significantly correlated with dynamical influence (Table 1). A: Vertebrate networks. Knockout essen-
tiality is represented by color, and is not significantly correlated with evolutionary rate or dynamical
influence (Table 1). B: Yeast networks. Knockout growth rate is represented by color, with red indicat-
ing a more severe phenotype. Knockout growth rate is not significantly correlated with evolutionary
rate or dynamical influence (Table 1).

Using this novel method, we determined protein domain dynamical influence and evolutionary
rate for 18 conserved signaling and metabolic networks (Fig. 2). We quantified the strength of the
relationship between dynamical influence and evolutionary rate using Spearman rank correlations (p),
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correlation  p-value

Puw,D -0.23 <0.0001
P 0.25 0.0008
P x -0.14 0.0167
Purd -0.21 0.0004
Pu.C -0.18 0.0016
by B -0.12 0.2061
PG -0.02 0.8531
PD.B 017 0.0090
PD.X +0.09 0.0839
PD,d +0.07 0.1805
pp.C +0.06  0.2794
rbp.E +0.08 0.3378
PD,Gr +0.11 0.2429
Pw,D|B,X,d,C,E,Gr -0.13 0.0106

Table 1: Overall correlations between evolutionary rate, dynamical influence, and other
explanatory variables. Spearman rank (p) and rank biserial (rb) correlation coefficients for vari-
ables evolutionary rate dN/dS (w), dynamical influence (D), expression breadth (B, for vertebrates
only), expression level (X), interaction degree (d), interaction betweenness centrality (C'), knockout
essentiality (F), and knockout growth rate (Gr, for yeast only). Correlations were combined over
all analyzed models using the method of Hunter and Schmidt [51, 52], and p-values were calculated
via permutation (Materials and Methods) as well as [53, 54]. Dynamical influence is independently
predictive of evolutionary rate, as shown by the negative and statistically significant partial correlation
after controlling for all other variables.

and in 10 of 12 vertebrate networks and 6 of 6 yeast networks, we found a negative correlation. This
is consistent with the expectation that most sequences and networks evolve primarily under purifying
selection [45], in which natural selection is primarily acting to remove deleterious mutations from
the population. Mutations in protein domains with high dynamical influence are predicted to have
greater phenotypic effect and thus, in general, be more deleterious. So mutations in those domains are
more efficiently removed, and those domains evolve more slowly. Demonstrating the strength of our
approach, the two exceptional vertebrate models with a positive correlation, visual signal transaction
and interleukin 6 (IL-6) signaling, were recently identified as undergoing network-level adaptation
in humans using population genetic data [46]. Positively selected molecular changes in rhodopsin
associated with changes in absorption wavelength have been shown to effect dose-response behavior
in visual signal transduction [47, 48], suggesting that network-level adaptation may compensate for
changes in rhodopsin. As part of the innate immune system, I1-6 and its receptor evolve under
strong diversifying selection, so downstream proteins may evolve to maintain signal fidelity. Moreover,
viruses are known that directly interfere with proteins downstream of IL-6 [49, 50], potentially driving
additional adaptation. Dynamical influence is thus predictive not only about purifying selection but
also about adaptive selection.

The strength of the correlation between dynamical influence and protein domain evolutionary
rate varies considerably among networks (Tables S1 and S2). To assess the overall strength of the
relationship, we combined results across networks as a meta-analysis [51, 52]. This yielded a combined
rank correlation of p, p = —0.23, with a permutation p-value of p < 10~ (Table 1), indicating that
the overall pattern is highly unlikely to have arisen by chance.

Dynamical influence calculation is robust to modeling uncertainties

We measured dynamical influence using hand-built systems biology models; what effect do uncertainties
in these models have on our analysis? To be agnostic about what aspects of network dynamics are
critical to fitness, in calculating dynamical influence we summed over the integrated sensitivities of all
molecular species in the network. It is, however, often evident that the builders of each model had
specific molecular species in which they were most interested. If we restricted our dynamical influence
calculation to those species (Text S1), we found very similar correlation with domain evolutionary rate
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Figure 3: Effects of model uncertainty on dynamical influence. A: The correlation between
dynamical influence and evolutionary rate (dAN/dS) is similarly strong in all models if dynamical in-
fluence is evaluated using all model molecular species (“full”) or only those deemed most important
by the authors of the original study (“key”). B: Dynamical influences are strongly correlated be-
tween biologically-plausible parameter sets for a model of EGF/NGF signaling [27]. C: Models with
overlapping domains produce positively rank-correlated estimates of dynamical influence.

(Fig. 3A). Our results are thus not strongly sensitive to which aspects of network function are assumed
to be subject to natural selection.

Given a network model, substantial uncertainty can exist about the values of the rate constants
k [22], because they are difficult to measure directly and are thus often fit to experimental data on
network behavior [55, 56]. To assess the importance of this rate constant uncertainty to our results, we
used an ensemble of 2000 sets of rate constants [57] that were previously identified as consistent with
experimental data for one of our models of EGF/NGF signaling [27]. We calculated the dynamical
influence of all protein domains in the network using all these sets of rate constants and compared
10,000 randomly chosen pairs of sets of dynamical influences to each other. Dynamical influences
calculated using different plausible rate constant sets are highly correlated (Fig. 3B), with a median
rank correlation of 0.74, indicating that rate constant uncertainty does not strongly affect our results.

In addition to parameter uncertainty, different modelers may also make different assumptions when
studying the same network regarding forms of interaction, which molecular players to include, or which
conditions to consider. We assessed the effect of these assumptions using the models in our data which
consider overlapping protein domains. The rank correlation between dynamical influences calculated
for the same domains using different models varied considerably and was stronger for pairs of models
with larger numbers of overlapping domains (Fig. 3C and Table S3). Combining all these correlations
in a meta-analysis as before, we found an overall correlation of 0.26. For comparison, the correlation
between different groups measuring gene expression in log-phase growth of budding yeast is roughly
0.62 [58], while for degree in protein-protein interaction data, the correlation is 0.11 [59]. Thus model
uncertainty plays a strong but not dominant role in our analysis, and it is comparable to variables
that have previously been found to be informative about evolutionary rate.

The existence of overlapping protein domains might inflate statistical significance in our meta-
analyses across models. To control for this, we ordered the models by correlation between dynamical
influence and evolutionary rate (negative to positive) and recalculated all correlations, removing any
domains that had appeared in a previous model (Tables S4 and S5). Meta-analysis of these new
correlations yielded similar results (Table S6) to the analyses with all domains (Table 1), so overlapping
domains do not strongly affect our conclusions.
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Dynamical influence predicts evolutionary rates independently from previ-
ously known factors

Dynamical influence captures the phenotypic effect of small perturbations to protein domain activity,
but how does it correlate with previous factors linked to evolutionary rate? In multicellular organ-
isms, proteins that are expressed in more cell types (i.e., have higher expression breadth) evolve more
slowly [60], and this is true in the vertebrate networks we study (Table 1). The significant positive
correlation between dynamical influence and expression breadth (Table 1) suggests that protein do-
mains with key roles in these networks exert their effects across multiple tissues, providing a functional
explanation for the observed correlation between expression breadth and evolutionary rate.

Expanding from expression breadth, the strongest known correlate with protein evolutionary rate
is expression level. Proteins with greater expression evolve more slowly in both yeast [61] and verte-
brates [62], which may reflect the costs of protein mis-folding [15, 63, 64, 65] or mis-interaction [66]. In
our analysis, we find the expected negative correlation between evolutionary rate and expression level
(Table 1), but that correlation is notably weaker than that between evolutionary rate and dynamical
influence (Table 1). Indeed, dynamical influence is not significantly correlated with expression level
(Table 1), indicating that dynamical influence reveals previously unanticipated evolutionary pressures
beyond the strongest previously known correlate.

A significant advantage of our approach is that it captures how molecular inputs are integrated
into functional phenotypic outcomes that may be selected upon. One aspect of network biology that
has been previously considered in determining protein evolution is topology. Specifically, proteins
with more interaction partners (i.e., greater degree) [67] or more central locations within networks
(greater betweenness centrality) [68] evolve more slowly. Consistent with this previous work, we find
that domain evolutionary rate has a significant negative correlation with both protein degree and
betweenness centrality (Table 1). But, intriguingly, dynamical influence of protein domains is not
significantly correlated with degree or betweenness centrality (Table 1) of the corresponding proteins.
Why is the influence of topology not captured in our dynamics-based analysis of evolutionary rate?
Network topology is a crude measure of function; networks with the same topology can have different
dynamics and thus different functions [69]. Thus, our focus on network dynamics rather than topology
provides novel insight into protein domain evolution by directly quantifying system output.

These assessments of dynamical influence relative to known contributors to protein evolution clearly
indicate that our approach has uncovered previously unappreciated constraints on protein evolution.
Is this new insight sufficient to explain the conundrums raised by knockout experiments? In our data,
we found that the correlation between evolutionary rate and knockout measures of function was so
weak as to be insignificant (Table 1), consistent with prior work [12, 11]. Strikingly, across the eleven
vertebrate networks that include both essential and non-essential proteins and the six yeast networks
(for which knockout growth rate data is available), we find no statistical correlation between dynamical
influence and essentiality or knockout growth rate (Table 1). Thus, the highly significant correlation
between dynamical influence and evolutionary rate (Fig. 2, Table 1) provides a new perspective on the
influence of protein function on evolutionary rate.

But, evolutionary rates are complex and likely integrate selection on multiple processes [2, 3, 4, 5].
To assess the power of our approach in comparison with alternative integrative analyses, we used
partial correlation analysis [12]. Across all our networks, we find that when expression, network
topology, and knockout effect are controlled for, the correlation between protein domain evolutionary
rate and dynamical influence remains statistically significant (Table 1). Because the predictive power of
dynamical influence cannot be explained by other factors, it provides novel and previously inaccessible
insight into evolutionary rates.

Conclusions

Dynamical systems biology models offer great promise for developing and testing evolutionary hypothe-
ses [21, 70]. Previous topological and flux-balance analysis of networks has offered some insight into
protein evolution [71, 72], but dynamical models contribute substantial biological detail not previously
captured by these approaches. We have shown that incorporating that detail can explain the previous
lack of correlation between protein function and evolutionary rate. While dynamical models have pre-
viously been used to predict the phenotypic effects of mutations [73], here we uniquely compare such


https://doi.org/10.1101/026658
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/026658; this version posted September 11, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

predictions with genomic data sets to reveal previously unexplored links to evolutionary rate. Given
the rapid pace of progress in systems biology modeling [74], the anticipated advances in model scope
and validation will provide even more robust data sets to uncover previously unanticipated factors
influencing evolutionary processes.

Materials and Methods

Dynamical influence

We defined the dynamical influence x; of reaction rate constant k; by

Yy ¥ / (dz;k ymﬂ dt. (1)

stimulation molecular k=k*
conditions ¢ species y

Here y.(t) is the time course of molecular species y in condition ¢, evaluated using the rate constant
values k* from the original publication. The derivative dy.(t)/dk; of the time course with respect to
rate constant k; measures how sensitive that molecular species is to changes in that rate constant. To
make relative comparisons, we normalized these sensitivities by the value k; of the rate constant and
the maximum yny,x of molecular species y over all stimulation conditions. To find the total effect of
changes in k;, we squared these normalized sensitivities and integrated over the time course of each
stimulation condition, and we summed over all molecular species and stimulation conditions.

We defined the dynamical influence Dy of protein domain d to be the geometric mean of the
influences k of the N4 reaction rate constants for reactions in which that domain participates:

1

Ng Ng
Dy = (H Hr) . (2)
r=1

We took a geometric mean because rate constant sensitivities range over orders of magnitude [57].

We downloaded systems biology models in Systems Biology Markup Language (SBML) format [75]
from the Feb. 8, 2012 release of BioModels [24]. We calculated dynamical influence for all protein-
related biological parameters in each model, using SloppyCell [76] and simulating under the conditions
considered in each model’s original paper (Text S1). These parameters represent a variety of biolog-
ical phenomena, such as binding and catalytic constants and rates of diffusion and production. We
considered only those parameters representing rates of biochemical reactions that depend on protein
structure, because we expected constraint on those reactions to have the strongest effect on evolu-
tionary rates. Given the dynamical influences x for each reaction constant, we reviewed the literature
to determine the protein domain or domains at which the reaction occurs, and we assigned those
influences to that domain or domains (Dataset S1).

Evolutionary rates

We obtained molecular sequences for each protein from Homologene [77] and the Saccharomyces
Genome Database [78] (Fig. S1). We quantified protein or domain evolutionary rates using the ratio
dN/dS of the rates of nonsynonymous (dN) and synonymous (dS) DNA substitutions, calculated using
PAML [79]. Further details and methods for other correlates are in Text S1.
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1 Evolutionary rates

UniProt protein ID’s were acquired from the BioModels annotation in the SBML file for each model
and converted to NCBI Protein IDs for vertebrates or open reading frame (ORF) numbers for yeast.
Some models specified more than one Uniprot ID for a single protein, in cases where there is more
than one transcript identified and both appear to perform the same function (for example, MEK1 and
MEK2). Where more than one Uniprot ID was specified, we reviewed the model publication and the
protein network literature to select a single transcript. In the case of metabolic flux models that track
metabolites rather than proteins, we used the names of the enzymes involved in the reactions to find
the appropriate protein identifier.

Vertebrate homologous protein alignments were downloaded from the NCBI Homologene database [1],
and for each protein in the alignment, nucleotide sequence was downloaded from NCBI Entrez [1].
These nucleotide sequences were then used as a template to back-translate the Homologene protein
alignments to nucleotide alignments. Yeast gene information for the 7 species in the tree in Fig. S1B
was downloaded from the Saccharomyces Genome Database [2] on Nov. 19, 2012. These gene sequences
were translated to protein amino acid sequences using Biopython [3], aligned using ClustalW [4], and
then back-translated to aligned nucleotide sequence using the gene sequence as a template.

Protein domain annotation was done manually using literature review, based on information for
the human protein in vertebrate models or the Sa. cerevisiae protein in yeast. Evolutionary rates
were calculated using codeML from PAML Version 4.4b [5], with one dN/dS ratio per tree (model
0), the F3x4 codon substitution model, and a rooted tree, as in [6]. The Mgene=3 setting of codeml
was used to estimate a single dN/dS ratio per annotated protein domain. We required a minimum
of 4 homologs to include a gene in the analysis, and for each gene any species with more than one
homologue was excluded. Because instability is a concern when estimating multiple dN/dS ratios for
a single protein sequence, we iterated each codeml run until we acquired three models for which the
log-likelihood was within 0.01 of the lowest log-likelihood obtained and then used the model with the
lowest log-likelihood.

2 Gene expression and specificity

Vertebrate gene expression and tissue specificity data was compiled from the mouse GNF1M dataset
[7], downloaded from http://bioGPS.org/downloads. The data consist of microarray probes for a
number of tissue types, with each probe’s name including the corresponding gene name, which we
mapped to Ensembl gene IDs using Ensembl BioMart [8]. We restricted our analysis to normal adult
tissues as in Fig. S2 of [6]. To calculate the expression level corresponding to each microarray probe,
we took the arithmetic average over replicates of the same tissue and then took the geometric average
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over tissues. To calculate the expression level of each gene, we then took the arithmetic average of the
probe expression levels corresponding to that gene.

Yeast expression data [9] was obtained from http://younglab.wi.mit.edu/pub/data/orf_transcriptome.
txt and used without modification.

3 Gene essentiality and dispensibility

We downloaded mouse knockout phenotype data from the Mouse Genome Informatics database [10]
at http://www.informatics.jax.org/phenotypes.shtml on July 11, 2011. We assembled pheno-
type information for homozygous knockouts and coded a gene as essential if it resulted in one of the
following phenotypes: abnormal reproductive system physiology, prenatal lethality, perinatal lethality,
postnatal lethality, premature death, abnormal reproductive system morphology, lethality at weaning,
preweaning lethality, partial lethality, and all sub-phenotypes of these phenotypes. If homozygous
knockout of a gene did not cause one or more of these phenotypes we coded it as non-essential. To
validate our parsing of this data, we compared against the results of [11].
Data for yeast knockout growth rate on YPD media were obtained from the file Regression_Tcl hom.txt

downloaded from the Stanford YDPM database http://www-deletion.stanford.edu/YDPM/YDPM_
index.html on March 13, 2013.

4 Network degree and centrality

We downloaded protein-protein interaction data for both humans and yeast from the Interologous
Interaction Database [12] on April 20, 2012. These data take the form of a list of interactions between
two proteins, and the dataset from which the interaction was curated. Because we were interested
in experimentally verified interactions we restricted our analysis to the HPRD, BIND, IntAct, and
INNATEDB datasets for humans and the Krogan_Core, Yu_GoldStd, YeastHigh, YeastLow, and BIND
datasets for yeast. We used the python package NetworkX [13] to load these lists of interactions and
compute each protein’s degree and its betweenness centrality, which is the fraction of all of the shortest
paths between protein pairs in the network that pass through that protein.

5 Permutation testing

In our statistical tests, our null model was typically that dynamical influence or evolutionary rate were
uncorrelated with other protein domain properties. Because domains share reactions, their influences
are not independent, and thus we could not simply permute them to simulate our null model. Instead,
we permuted the influences of reaction parameters, which are the most basic unit of our analysis,
and then recalculated the influence for each domain based on the new sets of parameter influences.
Similarly, many of the correlates with which we compare are defined on the protein level, not the
domain level. In these cases, we permuted at the protein level.

6 Models considered

6.1 EGF/NGF signaling [14]

Brown et al. developed a dynamic model of the EGF/NGF signaling network in rat pheochromocytoma
(PC12) cells. We downloaded the SBML file BIOMD0000000033 . xm1 from the BioModels database and
used it without modification. We simulated this model under two different conditions, 100 ng/ml EGF
and 50 ng/ml NGF, as described in [14]. Protein domain, parameter, and reaction assignments are in
Dataset S1. In addition to our primary analysis, we calculated dynamical influence over a restricted
subset of proteins containing only activated Erk.

6.2 Arachodonic acid signaling [15]

In order to gain insights related to anti-inflammatory drug interaction and design, Yang et al. created
and studied a dynamic model of the arachadonic acid signaling network in human polymorphonuclear
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leukocytes. We downloaded the SBML file BIOMDO000000106.xm1 from the BioModels database and
used it without modification, integrating the model between 0 and 60 minutes as in [15]. The model
contains reactions that create and destroy each tracked molecular species. We excluded these because
they are not reactions between modeled proteins. Protein domain, parameter, and reaction assignments
are in Dataset S1. In addition to our primary analysis, we calculated dynamical influence over a
restricted subset of proteins containing w-LTB4 and 15-Hete.

6.3 EGF/NGF signaling [16]

Sasagawa et al. developed a model of ERK signaling networks, with parameters derived by fitting
model dynamics to in vivo dynamics in PC12 cells, and studied network dynamics under a variety
of stimulation conditions. We downloaded SBML file BIOMDO0O00000049.xml from the BioModels
database and used it without modification. For all conditions simulated we integrated the network
from 0 to 3600 seconds (60 minutes) as in [16]. The SBML file is coded for constant stimulation by 10
ng/ml EGF, and this is the first of the conditions we simulated. We simulated constant stimulation
by 10 ng/ml NGF by using SloppyCell to set EGF concentration to 0 and NGF concentration to 10
ng/ml. Sasagawa et al. also investigate the effect of ramping the concentration of EGF (or NGF)
from 0 to 1.5 ng/ml over the course of the simulation. To accomplish this we created assignment rules
in SloppyCell which updated the EGF (or NGF) concentration at each time step of the integration,
setting it equal to 1.5 * (time/3600) ng/ml. As in the fixed simulation conditions, the network was
stimulated by EGF or NGF, but not both. Protein domain, parameter, and reaction assignments are
in Dataset S1. In addition to our primary analysis, we calculated dynamical influence over a restricted
subset of proteins containing only activated Erk.

6.4 EGF/MAPK cascade [17]

Schoeberl et al. modeled the EGF signaling pathway, comparing simulated time courses with experi-
mental time courses in HeLa cells under several experimental conditions. We downloaded the SBML
file BIOMD0O000000019.xml from the BioModels database. The model specifies the value of parame-
ter k5 as a piecewise function of another parameter C, and piecewise functions are not supported by
SloppyCell, so we removed the piecewise function from the SBML file and used SloppyCell to create
two SBML events that replicate it. We simulated the model under three experimental conditions from
[17], namely stimulus with 50, 0.5, and 0.25 ng/ml EGF. For all conditions we simulated from 0 to 60
minutes. The model includes receptor internalization reactions which is not modeled mechanistically,
and we excluded these reactions from our analysis. Protein domain, parameter, and reaction assign-
ments are in Dataset S1. In addition to our primary analysis, we calculated dynamical influence over
a restricted subset of proteins containing only activated Erk.

6.5 Myosin phosphorylation [18]

Maeda et al. developed a computational model of thrombin-dependent Rho-kinase activation and
myosin light chain phosphorylation in human umbilical vein endothelial cells. We downloaded the
SBML file BIOMDO000000088.xm1 for this model from the BioModels database. Some parameter
names were duplicated, so we modified the model SBML file to assign unique parameter names and
used the published parameter values (see Dataset S1). The only simulation condition we considered
was the 0.01pM thrombin stimulation published in the SBML file, and we integrated the model from
0 to 3600 seconds as in [18]. We ignored reactions occurring in the extra-cellular compartment, partic-
ularly thrombin/thrombin-receptor interactions, and assigned all other reactions to protein domains
as outlined in Dataset S1. We did not calculate a sensitivity for the parameter ratio, because it is
always multiplied by another parameter V_.max whose sensitivity we did calculate. SloppyCell inter-
prets rate laws in terms of changes in concentration rather than changes in amount as called for by
the SBML specification, so we adjusted reaction stoichiometries by a factor of 1/(compartment size)
for reactants in compartment c2, the only compartment in all the models we consider with size not
equal to 1. In addition to our primary analysis, we calculated dynamical influence over a restricted
subset of proteins containing phosphorylated myosin light chain (pMLC) and phosphorylated myosin
phosphatase targeting subunit 1 (pMYPT1).
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6.6 Extrinsic apoptosis [19]

Albeck et al. developed a model of TRAIL-induced apoptosis and used it to analyze extrinsic apoptosis
in HeLa cells. We downloaded the SBML file BIOMD0000000220 . xm1 from the BioModels database and
used it without modification. We simulated the model for 10 hours under the 50 ng/ml TRAIL stimulus
condition encoded in the SBML file. We excluded extra-cellular reactions involving TRAIL, as well as
intra-cellular reactions involving DISC and the TRAIL-DISC complex, because the protein components
of the DISC are not specified in the model. We also excluded transport across the mitochondrial
membrane and binding of proteins to the inner mitochondrial membrane, because these reactions are
not mechanistically specified in the model. Protein domain, parameter, and reaction assignments
are in Dataset S1. In addition to our primary analysis, we calculated dynamical influence summing
over a restricted subset of proteins containing Caspase 3, Caspase 8, cytosolic Smac, and cytosolic
Cytochrome C.

6.7 EGF /Insulin crosstalk [20]

Borisov et al. developed a model of the Ras/Erk signaling system that incorporates mechanisms of
cross-talk between the EGF and Insulin signaling pathways and tested it in HEK293 cells. We down-
loaded the SBML file BIOMD0000000223.xml from the BioModels database and used it without modifi-
cation. This SBML model, however, was altered slightly from the originally published model by adding
an extra-cellular compartment of size 34. While the model page on the BioModels website says this
allows for the use of the original concentrations of EGF we found that this did not create the correct
dynamics. Rather than altering the model by changing the size of the extra-cellular compartment we
multiplied the desired concentrations of EGF by 34, which produced the correct model dynamics. We
simulated the model under four different experimental conditions, 0.01nM or 1 nM EGF with 0 or 100
nM Insulin, as described in [20]. This model contains a reaction in which Aktl activates mTor via a
chain reaction among a number of proteins that are not included in the model. As a result we only
applied this reaction’s sensitivity x to the Aktl kinase domain, but not to mTor. This is the only
reaction in the model in which mTor appears, so mTor was excluded from our analysis of this model.
Protein domain, parameter, and reaction assignments are in Dataset S1. In addition to our primary
analysis, we calculated dynamical influence summing over a restricted subset of proteins containing
active (doubly phosphorylated) Erk and phosphorylated Akt.

6.8 G1 cell cycle progression [21]

Haberichter et al. constructed a dynamical model of mammalian G1 cell cycle progression in order to
simulate cell cycle progression dynamics in proliferating cells continuously exposed to growth factors.
We downloaded the SBML file BIOMD0O000000109. xm1 from the BioModels database and used it without
modification. We simulated the model under the experimental conditions encoded in the SBML file,
integrating for 1000 minutes. The model includes reactions that create and destroy proteins, which we
excluded from our analysis because they do not involve interaction with any other protein in the model.
Protein domain, parameter, and reaction assignments are in Dataset S1. In addition to our primary
analysis, we calculated dynamical influence summing over a restricted subset of proteins containing the
two activation states, hypo- and hyper-phosphorylated, of retinoblastoma tumor suppressor protein
pRb.

6.9 ErbB signaling [22]

Birtwistle et al. built a model of ErbB signaling that describes the response of the signaling network
to stimulus of all four ErbB receptors with EGF and HRG (heregulin), comparing model dynamics
to dynamics in MCF-7 human breast cancer cells. We downloaded SBML file BIOMDO000000175 . xm1
from the BioModels database and used it without modification. Experimental conditions in the paper
include stimulation with 0 nM, 0.5 nM, and 10 nM EGF and HRG in each possible combination
of those three stimuli, for a total of 12 experimental conditions, and we simulate each of these 12
conditions for 2000 seconds. As in other models we excluded receptor internalization reactions that
are not mechanistically described in the model. Protein domain, parameter, and reaction assignments
are in Dataset S1. In addition to our primary analysis, we calculated dynamical influence summing
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over a restricted subset of proteins containing active (doubly phosphorylated) Erk and phosphorylated
Akt. In particular, we used the normalized active Erk and Akt concentrations described in [22].

6.10 Wnt/Erk crosstalk [23]

Kim et al. created a model of the Erk and Wnt pathways to investigate the effect of a positive feedback
loop resulting from crosstalk between Wnt and Erk signaling, and they compared model dynamics
with experimental results in HEK293 cells. We downloaded the SBML file BIOMDO000000149 .xml
from the BioModels database and used it without modification. This model includes a protein X which
is postulated to mediate the feedback between the two pathways; it is transcribed as a result Wnt
signaling and activates B-raf in the Erk network. We did not include reactions for transcription and
degradation of protein X, because they are not mechanistically specified. We did, however, include
the reaction in which protein X activates B-raf, which occurs on the Ras-binding domain (RBD) of
B-raf, because binding at the RBD is the mode of activation of B-raf, and the reaction is modeled in
the same way as Ras activation of B-raf. We excluded creation and destruction of S-catenin as well
as degradation of Axin, since they are not mechanistically described in the model. Protein domain,
parameter, and reaction assignments are in Dataset S1. In addition to our primary analysis, we
calculated dynamical influence summing over a restricted subset of proteins containing active (doubly
phosphorylated) Erk and the $-catenin/TCF complex.

6.11 Rod phototransduction [24]

Dell’Orco et al. developed a model of rod phototransduction specifically aimed at describing the
mechanism of light adaptation in rod cells, verifying it by reproducing the results of several pre-
vious light adaptation response experiments in mouse rod cells. We downloaded the SBML file
BIOMDO000000326.xml from the BioModels database and used it with minor modification. We removed
two piecewise assignment rules, because SloppyCell does not handle piecewise rules, and replaced them
with SBML events. We simulated six flash intensities, replicating those used to create Figure 7 in the
publication, by setting the parameter £lashOMag to 1.54, 12.5, 45.8, 184, 800, and 2000. The parame-
ter kP1_rev represents the rate of dissociation of phosphodiesterase from activated G-alpha molecules,
and is set to zero in this model, so we excluded it from our analysis. Protein domain, parameter, and
reaction assignments are in Dataset S1. In addition to our primary analysis, we calculated dynamical
influence summing over a restricted subset of molecular species containing only cyclic GMP.

6.12 IL-6 signaling [25]

Singh et al. developed a model of IL-6 signaling encompassing the Jak/STAT as well as MAP kinase
pathways in human hepatocytes. We downloaded the SBML file BIOMDO000000151.xml from the
BioModels database and used it without modification. We simulated the experimental conditions
encoded in the model, 10 ng/ml IL-6 stimulus and an initial Shp2 concentration of 100 nM. The model
includes transcription, translation, and mRNA translocation for the protein SOCS which are not
mechanistically detailed, so we excluded them. Protein domain, parameter, and reaction assignments
are in Dataset S1. In addition to our primary analysis, we calculated dynamical influence summing
over a restricted subset of proteins containing only active STAT3 dimers in the nucleus.

6.13 Trehalose biosynthesis [26]

Smallbone et al. created a model of the trehalose biosynthesis pathway in Sa. cerevisiae. We down-
loaded the SBML file BIOMD0000000380 . xm1 from the BioModels database and used it without mod-
ification. This model reaches a steady state, and the model was validated by comparing the steady
state concentrations of the metabolites in the model with experimental results in yeast experiencing
heat shock. We simulated the model under the heat shock condition used in the publication, and ran
the model for 50000 seconds, at which point all metabolites had reached steady state concentrations.
The model creates C1b2 in a reaction that is not mechanistically specified, and we excluded this re-
action from our analysis. Protein domain, parameter, and reaction assignments are in Dataset S1. In
addition to our primary analysis, we calculated dynamical influence summing over only the metabolite
of interest, trehalose-6-phosphate.
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6.14 Glycolysis [27]

Talser et al. created a model of carbohydrate flux under oxidative stress conditions in Sa. cerevisiae.
We downloaded the SBML file BIOMD0O000000247 . xm1 from the BioModels database and used it with
substantial modification. The model file in the BioModels database included unfitted parameter val-
ues, but model author Markus Ralser generously provided us with the parameter values they obtained
by fitting the model to experimental data, and we reparameterized the SBML file accordingly. We
simulated the wild-type experimental conditions encoded in the model for 100 minutes. Protein do-
main, parameter, and reaction assignments are in Dataset S1. In addition to our primary analysis, we
calculated dynamical influence summing over the ratio of NADH to NADPH, the quantity of interest.

6.15 Cell cycle regulation [28]

Chen et al. developed a model of the cell cycle in Sa. cerevisiae in order to investigate the complex
mechanisms of cell cycle control. We downloaded the SBML file BIOMDOO00000056.xml from the
BioModels database and used it with substantial modification. This model was constructed with
some reactions combined into assignment rules, making it impossible to use SloppyCell to calculate
dynamical influence for individual reaction parameters. We separated these assignment rules into
individual reactions and added those reactions to the model file, replacing the assignment rules. In
order to verify that the modified model was correct we replicated Figures 3 and 6 from the publication.
The model contains reactions causing the degradation of various proteins by SCF, which is not included
in the model, and these reactions are not mechanistically described, so we excluded them from our
analysis. We simulated the wild-type experimental conditions encoded in the paper for 200 minutes
as in Figures 3 and 6 of the publication. Protein domain, parameter, and reaction assignments are
in Dataset S1. In addition to our primary analysis, we calculated dynamical influence summing over
measures of the timing of cell cycle events; MASS, BUD, ORI, and SPN.

6.16 Mitotic exit [29]

Queralt et al. developed a model of the initiation of mitotic exit in Sa. cerevisiae induced by down-
regulation of the phosphatase Cdc50. We downloaded the SBML file BIOMDO0O00000409.xm1 from the
BioModels database and used it without modification. This model contains reactions creating and
destroying proteins Clb2, Cdc20, securin, separase, Cdc5, and Cdcl5 which are not mechanistically
described in the model, and we excluded these reactions from our analysis. We simulated the wild
type conditions encoded in the model for 50 minutes, as in Figure 7 of the publication. Protein do-
main, parameter, and reaction assignments are in Dataset S1. In addition to our primary analysis, we
calculated dynamical influence summing over only the concentration of active separase.

6.17 Mitotic exit [30]

Vinod et al. created a computational model of mitotic exit in Sa. cerevisiae aimed at investigating the
role of separase and Cdcl4 endocycles. We downloaded the SBML file BIOMDO000000370.xml from
the BioModels database and used it with substantial modification. This model was constructed using
rate rules rather than reactions in SBML. Because SloppyCell our analysis is focused on reactions, we
converted the rate rules to reactions, ensuring that the model remained correct by using it to generate
Figure 2 from the publication. The model includes reactions creating, destroying, or (de)activating
proteins CIb2, Sicl, Clnl, Cdc20, Cdhl, Swib, Pdsl, Espl, Cdc5, Polo, and MBF which are not
mechanistically detailed, and we excluded these reactions from our analysis. We simulated the wild-
type experimental conditions encoded in the model for 120 minutes as in Figure 2 of the publication.
Protein domain, parameter, and reaction assignments are in Dataset S1. In addition to our primary
analysis, we calculated dynamical influence summing over only the concentration of active separase.

6.18 Pheromone pathway [31]

Kofahl and Klipp modelled the dynamics of the Sa. cerevisiae pheromone pathway. We downloaded the
SBML file BIOMDO000000037 .xm1 from the BioModels database and used it without modification. The
model includes reactions for the destruction of Ste2 and the export of Bar that are not mechanistically
detailed, and we excluded them from our analysis. We simulated the wild-type experimental conditions
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encoded in the model for 30 minutes, as in [31]. Protein domain, parameter, and reaction assignments
are in Dataset S1. In addition to our primary analysis, we calculated dynamical influence summing
over only the concentration of complexes M and N, which include Farl and are required for polarized
growth and cell cycle arrest respectively.

7 Dataset S1

Excel file of data for network parameters and protein domains. Each model corresponds to two
sheets. The first sheet contains the reaction parameters, their dynamical influences, and the reactions
they correspond to. The second sheet contains the protein and domain data, including assignment of
reactions to domains and corresponding references (as PubMed IDs) [32, 33, 34, 35, 36, 37, 38, 39, 40,
41,42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70,71, 72,73, 74, 75,76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120,
121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,
142,143, 29, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162,
163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183].
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Model Pw,D Pw,B w, X Pw.d Puw,C by, B PD,B PD,X PD.d PD,C ™D, B Pw,D|B,X,d,C,E,Gr

(p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N)

EGF/NGF signaling[14] 20.56 20.60 T0.51 T0.22 T0.21 T0.34 F0.55 0.31 0.03 0.08 F0.84 20.30
(0.0054, 32)  (0.0063, 28)  (0.0265, 28)  (0.3346, 32)  (0.3716, 32)  (0.4800, 31)  (0.0040, 28)  (0.1312, 28)  (0.8534, 32)  (0.6599, 32)  (0.0135, 31) (0.1284, 27)

Arachadonic acid signaling[15] -0.54 +0.01 -0.12 -0.35 -0.35 +0.43 +0.72 +0.82 +0.10 -0.16 -0.05 +0.39
(0.1140, 11)  (0.9941, 10)  (0.7858, 10)  (0.3853, 10)  (0.3840, 10)  (0.3790, 10)  (0.0643, 10)  (0.0209, 10)  (0.8162, 10)  (0.7292, 10)  (0.9403, 10) (0.3271, 9)

EGF/NGF signaling[16] -0.29 -0.45 -0.39 -0.08 -0.09 -0.73 +0.05 -0.01 +0.36 +0.38 +0.13 -0.33
(0.1633, 39)  (0.0474, 33)  (0.0872, 33)  (0.7184, 39)  (0.6775, 39)  (0.0268, 38)  (0.7831, 33)  (0.9468, 33)  (0.0336, 39)  (0.0279, 39)  (0.6569, 38) (0.0619, 33)

-0.35 -0.30 -0.32 -0.12 -0.16 +0.16 +0.34 +0.36 +0.16 +0.17 -0.38 -0.13
EGF/MAPK cascade([17] (0.1217, 20)  (0.2521, 20)  (0.2268, 20)  (0.6520, 20)  (0.5734, 20)  (0.7953, 18)  (0.1318, 20)  (0.1158, 20)  (0.5014, 20)  (0.4716, 20)  (0.3117, 18) (0.5915, 18)

Rho-kinase activation[18] -0.23 -0.15 +0.05 -0.46 -0.40 +0.29 -0.25 -0.26 +0.12 +0.00 +0.44 -0.37
§ (0.1619, 30)  (0.5804, 28)  (0.8516, 28)  (0.0362, 30)  (0.0854, 30)  (0.4092, 24)  (0.2557, 28)  (0.2317, 28)  (0.5735, 30)  (0.9892, 30)  (0.1238, 24) (0.0714, 24)

Extrinsic apoptosis[184] -0.27 -0.27 -0.06 0.10 0.15 +0.04 +0.17 -0.28 +0.05 -0.04 -0.30 -0.04
(0.2618, 29)  (0.3801, 26)  (0.8550, 26)  (0.7262, 29)  (0.6305, 29)  (0.9216, 28)  (0.4990, 26)  (0.2696, 26)  (0.8267, 29)  (0.8689, 29)  (0.3507, 28) (0.8686, 25)

EGF/Insulin crosstalk[20] -0.25 -0.19 -0.20 -0.04 -0.07 -0.46 +0.40 +0.21 +0.01 +0.03 +0.55 -0.16
(0.1675, 43)  (0.4150, 42)  (0.3913, 42)  (0.8605, 43)  (0.7697, 43)  (0.2228, 43)  (0.0176, 42)  (0.2145, 42)  (0.9388, 43)  (0.8824, 43)  (0.0617, 43) (0.3214, 42)

Q1 cell cycle progression[21] -0.24 -0.10 +0.18 -0.51 -0.43 -0.23 +0.22 -0.06 +0.59 +0.58 +0.38 +0.20
(0.5880, 15)  (0.8334, 14)  (0.6915, 14)  (0.1606, 15)  (0.2666, 15)  (0.7663, 14)  (0.5238, 14)  (0.8504, 14)  (0.0472, 15)  (0.0554, 15)  (0.6067, 14) (0.4957, 14)

ErbB signaling[22] -0.20 -0.21 -0.07 -0.24 -0.19 -0.19 +0.09 +0.08 -0.07 +0.00 -0.45 -0.29
(0.2496, 41)  (0.2570, 38)  (0.6986, 38)  (0.1689, 41)  (0.2952, 41)  (0.5310, 39)  (0.5781, 38)  (0.6258, 38)  (0.6572, 41)  (0.9914, 41)  (0.1017, 39) (0.0831, 36)

Wnt/BErk crosstalk[23] -0.08 -0.28 -0.28 -0.32 -0.47 +0.45 -0.27 -0.48 -0.07 -0.27 +1.00 +0.62
s (0.8021, 15)  (0.4462, 15)  (0.4502, 15)  (0.3833, 15)  (0.1678, 15)  (0.6059, 12)  (0.3329, 15)  (0.0676, 15)  (0.8124, 15)  (0.3254, 15)  (0.1276, 12) (0.0274, 12)

. +0.42 +0.10 +0.46 +0.11 +0.10 +0.09 +0.26 +0.37 +0.26 +0.17
Rod phototransduction[24] (0.2028, 19) (0.7317, 17) (0.0874, 17) (0.6942, 19) (0.7142, 19) (0.7697, 17) (0.4067, 17) (0.1884, 19) (0.3921, 19) (0.5581, 15)

IL-6 signaling[25] +0.45 -0.20 -0.32 -0.45 -0.36 +0.00 +0.02 +0.12 -0.19 -0.14 -0.06 +0.43
(0.0928, 26)  (0.4972, 25)  (0.2821, 25)  (0.0915, 26)  (0.2004, 26)  (1.0000, 26)  (0.9270, 25)  (0.5599, 25)  (0.3314, 26)  (0.4729, 26)  (0.8453, 26) (0.0318, 25)

Table S1: Correlations in vertebrate models. Spearman rank (p) and rank biserial (rb) correlation coefficients for variables evolutionary rate dN/dS
(w), dynamical influence (D), expression breadth (B), expression level (X), interaction degree (d), interaction betweenness centrality (C'), and knock-out
essentiality (E). Domains with missing values for any correlate were dropped prior to calculating correlations, and N represents the number of domains used

in the analysis.

Model w, Pu, X w, w, by, Pu,Gr PD,X D,d PD,C ™D B PD,Gr Pw,D|B,X,d,C,E,Gr

(p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N)

Trehalose biosynthesis[26] T0.75 F0.32 20.56 20.90 F0.60 20.05 T0.14 F0.56 F0.80 70.20 T0.34 T0.91
(0.0718, 7) (0.5041, 7) (0.3728, 5) (0.0831, 5) (0.2883, 7) (0.9161, 7) (0.7899, 7) (0.3667, 5) (0.1370, 5) (0.8596, 7) (0.4565, 7) (0.0502, 5)

Glycolysis(27] -0.41 +0.85 +0.33 +0.04 +0.12 -0.22 -0.33 -0.20 -0.02 +0.14 -0.03 -0.11
(0.0958, 18)  (<0.0001, 18)  (0.1922, 17)  (0.8707, 17)  (0.7292, 18)  (0.3841, 18)  (0.1815, 18)  (0.4515, 17)  (0.9283, 17)  (0.6558, 18)  (0.8986, 18) (0.6940, 17)

Gell eycle regulation[28] -0.41 -0.32 -0.44 -0.21 -0.08 -0.00 +0.16 +0.07 -0.16 +0.17 -0.14 -0.40
(0.0207, 29) (0.1009, 29) (0.0218, 29)  (0.2923, 29)  (0.7466, 29)  (0.9928, 29)  (0.3959, 29)  (0.7239, 29)  (0.3946, 29)  (0.4428, 29)  (0.4604, 29) (0.0297, 29)

Mitotic exit[29] -0.36 -0.47 -0.42 -0.16 +0.35 -0.26 +0.26 +0.22 +0.02 -0.73 +0.52 +0.04
i (0.2476, 17) (0.0549, 17) (0.0933, 17)  (0.5653, 17)  (0.4030, 17)  (0.3115, 17)  (0.2932, 17)  (0.3782, 17)  (0.9481, 17)  (0.0424, 17)  (0.0247, 17) (0.8903, 17)

Mitotic exit[30] -0.31 -0.28 -0.40 -0.16 -0.12 +0.05 +0.25 +0.01 -0.14 -0.08 +0.12 -0.29
> (0.1362, 27) (0.2125, 27) (0.0646, 27)  (0.4586, 27)  (0.6393, 27)  (0.8377, 27)  (0.2045, 27)  (0.9495, 27)  (0.4863, 27)  (0.7306, 27)  (0.5383, 27) (0.1464, 27)

Pheromone pathway[31] -0.09 -0.21 -0.17 -0.28 -0.27 +0.23 +0.40 -0.28 +0.16 -0.37 +0.36 -0.21
(0.6949, 23) (0.4093, 23) (0.5066, 23)  (0.2507, 23)  (0.3980, 23)  (0.3507, 23)  (0.0635, 23)  (0.2048, 23)  (0.4501, 23)  (0.1627, 23)  (0.0987, 23) (0.3242, 23)

Table S2: Correlations in yeast models. Spearman rank (p) and rank biserial (rb) correlation coefficients for variables evolutionary rate dN/dS (w),
dynamical influence (D), expression level (X), interaction degree (d), interaction betweenness centrality (C'), knock-out essentiality (E), and knock-out
growth rate (Gr). Domains with missing values for any correlate were dropped prior to calculating correlations, and N represents the number of domains

used in the analysis.
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EGF/NGF signaling [16]

EGF/MAPK cascade [17]

EGF /Insulin crosstalk [20]

ErbB signaling [22]

IL-6 signaling [25] Mitotic exit [29] Mitotic exit [30]

EGF/NGF signaling [14] +0.12, 23 +0.13, 12 +0.86, 13 +0.46, 14 +0.17, 10
EGF/NGF signaling [16] +0.13, 16 +0.08, 17 +0.32, 19 +0.30, 10
EGF/MAPK cascade [17] -0.05, 11 -0.00, 18 +0.54, 10
EGF /Insulin crosstalk [20] +0.00, 19 -0.39, 10
ErbB signaling [22] -0.36, 9

Cell cycle regulation [28] +0.52, 15 +0.63, 22

Mitotic exit [29] +0.79, 17

Table S3: Between-model correlations between protein domain dynamical influences.
domains, shown is the Spearman rank correlation and number of overlapping domains.

For each pair of models with at least four overlapping

Model Pw,D w, Puw,X Pw,d Puw,C oy, B D, D, D, D, ™D E Pw,D|B,X,d,C,E,Gr
(p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N
- - Z0.56 20.60 S0.51 20.22 T0.21 S0.34 F0.55 F0.31 F0.03 F0.08 F0.84 20.30
EGF/NGF signaling[14] (0.0054, 32) (0.0054, 28) (0.0256, 28) (0.3363, 32) (0.3618, 32) (0.4694, 31) (0.0048, 28) (0.1389, 28) (0.8508, 32) (0.6578, 32) (0.0159, 31) (0.1213, 27)
Arachadonic acid signaling[15] -0.54 +0.01 -0.12 -0.35 -0.35 +0.43 +0.72 +0.82 +0.10 -0.16 -0.05 +0.39
achadonic acid signaling| 1o (0.1140, 11) (0.9948, 10) (0.7827, 10) (0.3901, 10) (0.3828, 10) (0.3794, 10) (0.0607, 10) (0.0216, 10) (0.8169, 10) (0.7336, 10) (0.9367, 10) (0.3088, 9)
. ) -0.11 -0.24 -0.45 +0.01 -0.13 -0.68 +0.36 +0.55 +0.36 +0.40 +0.18 -0.14
EGF/NGF signaling[16] (0.7471, 16) (0.6336, 14) (0.3152, 14) (0.9872, 16) (0.7841, 16) (0.2025, 15) (0.2909, 14) (0.0989, 14) (0.2404, 16) (0.1822, 16) (0.7080, 15) (0.6155, 14)
N -1.00 -0.95 -0.74 -0.26 -0.95 +0.95 +0.74 +0.26 +0.95 +1.00
EGF/MAPK cascade[17] (0.0965, 4) (0.3385, 4) (0.6616, 4) (1.0000, 4) (0.3313, 4) (0.1766, 4) (0.2968, 4) (0.8922, 4) (0.1774, 4) (1.0000, 2)
Rho-kinase activation[18] -0.23 -0.15 +0.05 -0.46 -0.40 +0.29 -0.25 -0.26 +0.12 +0.00 +0.44 -0.37
(0.1619, 30)  (0.5813, 28)  (0.8462, 28)  (0.0413, 30)  (0.0882, 30)  (0.4127, 24)  (0.2597, 28)  (0.2299, 28)  (0.5669, 30)  (0.9896, 30)  (0.1200, 24) (0.0743, 24)
Extrinsic apoptosis[184] -0.27 -0.27 -0.06 +0.10 +0.15 +0.04 +0.17 -0.28 +0.05 -0.04 -0.30 -0.04
pop (0.2618, 29)  (0.3769, 26)  (0.8496, 26)  (0.7248, 29)  (0.6216, 29)  (0.9250, 28)  (0.5075, 26)  (0.2686, 26)  (0.8319, 29)  (0.8769, 29)  (0.3676, 28) (0.8654, 25)
. -0.09 -0.02 -0.09 -0.20 -0.25 -0.38 +0.57 +0.19 +0.08 +0.13 +0.36 -0.25
EGF/Insulin crosstalk[20] (0.6875, 25) (0.9485, 24) (0.7839, 24) (0.5342, 25) (0.4285, 25) (0.5168, 25) (0.0160, 24) (0.4445, 24) (0.7498, 25) (0.6007, 25) (0.3774, 25) (0.2500, 24)
G1 cell eyele progression[21] -0.24 -0.10 +0.18 -0.51 -0.43 -0.23 +0.22 -0.06 0.59 0.58 +0.38 +0.20
> cycle progress (0.5880, 15)  (0.8404, 14)  (0.6865, 14)  (0.1570, 15)  (0.2656, 15)  (0.7639, 14)  (0.5206, 14)  (0.8509, 14)  (0.0484, 15)  (0.0603, 15)  (0.6034, 14) (0.4920, 14)
ErbB signaling[22] +0.03 -0.05 +0.30 -0.34 -0.18 -0.17 +0.23 +0.41 -0.14 -0.24 -0.83 -0.52
g g (0.9111, 14) (0.9047, 11) (0.4661, 11) (0.3379, 14) (0.6485, 14) (0.8328, 14) (0.4610, 11) (0.1753, 11) (0.6212, 14) (0.4017, 14) (0.1571, 14) (0.1025, 11)
Wnt/Brk crosstalk[23] -0.24 -0.28 -0.38 -0.37 -0.59 +0.14 -0.40 -0.50 -0.14 -0.29 +1.00 -0.52
(0.4991, 11)  (0.5178, 11)  (0.3507, 11)  (0.3687, 11)  (0.1332, 11) (0.9418, 8) (0.2103, 11)  (0.1141, 11)  (0.6703, 11)  (0.3772, 11) (0.2296, 8) (0.1720, 8)
) . +0.42 +0.16 +0.56 +0.16 +0.13 -0.02 +0.21 +0.36 +0.18 +0.17
Rod phototransduction[24] (0.2383, 17) (0.6213, 15) (0.0584, 15) (0.5937, 17) (0.6595, 17) (0.9458, 15) (0.5313, 15) (0.2705, 17) (0.5839, 17) (0.5392, 15)
IL-6 signaling[25] -0.22 +0.06 -0.33 -0.50 -0.21 -0.80 +0.04 +0.22 +0.11 -0.04 -0.10 +0.06
-0 signaling (0.6960, 11)  (0.8688, 10)  (0.3796, 10)  (0.1220, 11)  (0.5343, 11)  (0.5792, 11)  (0.8949, 10)  (0.5000, 10)  (0.7061, 11)  (0.9100, 11)  (0.8977, 11) (0.7987, 10)

Table S4: Correlations in yest models with duplicate domains removed. As in Table S1, but removing any domain that appeared in a previous

model (in the order shown).

Model w, Pu, X Puw, Pw,C by, B Pw,Gr PD,X PD,d PD,C ™D E PD,Gr Pw,D|B,X,d,C,E,Gr

(p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N) (p-val, N)

Trehalose biosynthesis(26] 20.75 F0.32 20.56 20.90 F0.60 0.05 7014 F0.56 10.80 20.20 2034 20.91
s s ; (0.0718, 7) (0.4947, 7) (0.3687, 5) (0.0828, 5) (0.2829, 7) (0.9205, 7) (0.7788, 7) (0.3719, 5) (0.1360, 5) (0.8569, 7) (0.4502, 7) (0.0484, 5)

Glycolysis[27] -0.34 +0.85 +0.36 +0.06 +0.13 -0.20 -0.28 -0.23 -0.06 +0.17 -0.11 -0.13
yeolysis (0.1970, 16)  (0.0003, 16)  (0.1676, 16)  (0.8342, 16)  (0.7124, 16)  (0.4504, 16)  (0.3008, 16)  (0.3974, 16)  (0.8099, 16)  (0.5935, 16)  (0.6762, 16) (0.6349, 16)

el eyclo regulation[28] -0.41 -0.32 -0.44 -0.21 -0.08 -0.00 +0.16 +0.07 -0.16 +0.17 -0.14 -0.40
(0.0207, 29)  (0.0967, 29)  (0.0206, 29)  (0.2930, 29)  (0.7493, 29)  (0.9935, 29)  (0.4067, 29)  (0.7221, 29)  (0.3938, 29)  (0.4467, 29)  (0.4557, 29) (0.0326, 29)

o +1.00 +1.00
Mitotic exit[29] (1.0000, 2) (1.0000, 2)

Mitotic exit[30] +0.50 +0.50 +1.00 +1.00 +0.00 +0.50 -0.50 +0.50 +0.50 +1.00 -0.50 +0.98
(1.0000, 3) (1.0000, 3) (0.3316, 3) (0.3374, 3) (1.0000, 3) (1.0000, 3) (1.0000, 3) (1.0000, 3) (1.0000, 3) (0.6659, 3) (1.0000, 3) (0.3313, 3)

Pheromone pathway [31] -0.06 -0.18 -0.05 -0.17 -0.21 +0.19 +0.40 -0.32 +0.15 -0.38 +0.37 -0.18
(0.7952, 22)  (0.4792, 22)  (0.8507, 22)  (0.4933, 22)  (0.5026, 22)  (0.4477, 22)  (0.0663, 22)  (0.1402, 22)  (0.5079, 22)  (0.1615, 22)  (0.1014, 22) (0.4075, 22)

Table S5: Correlations in yeast models with overlapping domains removed. As in Table S2, but removing any domain that appeared in a previous
model. (in the order shown)
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correlation  p-value

puD 022 0.0010
P, 020 0.0509
DX 005 05103
Puod -0.19 0.0142
e -0.18 0.0219
rbo.p 018 0.1499
Pus,Gr +0.01  0.9181
PD.5 10.19  0.0300
PD,X +0.07 0.3344
PD,d +0.07 0.3193
pD.C +0.05  0.4546
rbp & 4014 0.2057
PD,Gr +0.03 0.8096
Pw,D|B,X,d,C,E,Gr -0.20 0.0035

Table S6: Overall correlations with overlapping domains removed. Meta-analyses as in Table 1,
but based on the correlations without overlapping domains (Tables S4 and S5).
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Figure S1: Phylogenetic trees for species used in this study. Branch lengths represent amino
acid divergence.
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