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Abstract

There has been much interest in analyzing genome-scale DNA sequence data to infer population his-
tories, but inference methods developed hitherto are limited in model complexity and computational
scalability. Here we present an efficient, flexible statistical method, diCal2, that can utilize whole-
genome sequence data from multiple populations to infer complex demographic models involving
population size changes, population splits, admixture, and migration. Applying our method to
data from Australian, East Asian, European, and Papuan populations, we find that the population
ancestral to Australians and Papuans started separating from East Asians and Europeans about
100,000 years ago, and that the separation of East Asians and Europeans started about 50,000 years
ago, with pervasive gene flow between all pairs of populations.
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INTRODUCTION

Whole-genome sequences are now routinely available for population genetic analyses, and inference
methods that can take better advantage of genome-scale data have received considerable attention in
recent years. In particular, there has been much interest in methods that can use the genomic data
of individuals from multiple populations to infer complex models of population history. In addition
to being of historical interest, population demography is important to study because it influences
patterns of genetic variation, and understanding the intricate interplay between demography and
other evolutionary forces such as natural selection is a major aim in population genetics.

Inferring these demographic histories is computationally and statistically challenging. One class
of methods [1–8] based on the sample frequency spectrum (SFS) is computationally efficient but
ignores linkage information, and the minimax rate of convergence for such estimators is poor [9].
Also, their utility is limited by the fact that the number of model parameters that is theoretically
possible to estimate using the SFS alone is bounded by the sample size [10]. Methods [11–18] that
take linkage structure into account are empirically more statistically efficient and can be used to infer
models with many parameters even when the sample size is small. This is of practical importance,
since an increasing number of studies now seek to infer complex demographic models involving
multiple populations using only a small number of individuals sampled from each population (e.g.,
[19–22]). A popular demographic inference method of this kind is PSMC [11], which uses a pair
of sequences to infer piecewise-constant population size histories. Its extension, MSMC [16], can
use sequences sampled from a pair of populations to infer a genetic separation history in addition
to population size changes. A more recent method called smc++ [17] can scale to hundreds of
individuals, but it is able to analyze individuals from only a pair of populations that have diverged
without subsequent gene flow.

Parallel to these developments, an inference method called diCal (Demographic Inference using
Composite Approximate Likelihood) [14] was introduced to infer piecewise-constant effective popu-
lation size histories using multiple sequences, thereby providing improved inference about the recent
past. The key mathematical component of diCal is the conditional sampling distribution (CSD)
πΘ, which describes the conditional probability of observing a new sequence or haplotype given a
collection of already observed haplotypes, under a given population genetic model with parameters
Θ. The corresponding genealogical process can be formulated as a hidden Markov model (HMM),
enabling efficient inference.

In this paper, we extend diCal in several ways to develop a scalable inference tool for population
genomic analysis under general demographic models. To handle gene flow between populations, our
new method, called diCal2, builds on previous theoretical work [23] which introduced a CSD for
subdivided populations with unchanging continuous migration; that earlier work did not address
parameter estimation, which is the focus of this article. In contrast to MSMC, which does not ex-
plicitly model population structure, we consider fully parametric demographic models, including
subdivided population structure with migration that are easier to interpret. Our method also en-
ables inference under demographic models more general than the two-population clean-split model
currently implemented in smc++. Specifically, our method is flexible enough to model:

1. An arbitrary number of populations specified by the user.
2. An arbitrary pattern of population splits and mergers.
3. More general population size changes (e.g., piecewise-exponential).
4. Arbitrary migration patterns with time-varying continuous migration rates or pulse admixture

events.
5. An arbitrary poly-allelic mutation model at each site (including di- or tetra-allelic).
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These are significant improvements on the previous version of diCal [14], which could only be used
to infer piecewise constant population size changes in a single population.

In addition to these features, we introduce major computational improvements which enable
the use of whole-genome data. The mathematical details of our method and the computational
extensions are provided in Materials and Methods and SI Appendix, SI Text. Below we briefly
highlight the key technical advances.

In PSMC and the earlier version of diCal, the demographic epochs and HMM discretization
intervals are both fixed, and the latter forms a strict refinement of the former. In contrast, dis-
cretization intervals and demographic epochs are decoupled in our improved version of diCal. For
example, population size change-points or population split times can vary freely and do not need to
coincide with discretization interval boundaries. This flexibility allows for more accurate parameter
estimation, especially for population split times.

Moreover, the CSDs for different haplotypes can be combined in various ways to devise a com-
posite likelihood that can be used in a maximum likelihood framework for parameter estimation.
Our implementation of the expectation-maximization (EM) algorithm allows any composite likeli-
hood that is composed of sums and products of CSDs, which includes the Product of Approximate
Conditionals (PAC) used by Li & Stephens [24] to detect recombination hotspots.

For substantial computational speedup, we implement a previously described “locus-skipping”
algorithm [25], which analytically and exactly integrates over contiguous stretches of non-segregating
loci. However, locus-skipping is less computationally efficient with missing data, and thus, missing
alleles should be imputed to take full advantage of the locus-skipping algorithm. To this end, we
implement an alternative speedup by grouping loci together into larger blocks. A similar speedup
was used in PSMC, but it treats the whole block as a single di-allelic site. In contrast, the blocks in
our method are viewed as full non-recombining haplotypes.

For complex demographic models, the likelihood function may have local optima. To address
this issue, we implement a flexible genetic algorithm and combine it with the EM procedure to
enable more efficient navigation of high-dimensional parameter space.

We applied our method to data from the Simons Genome Diversity Project (SGDP) [20] to
investigate the population history of Australians, East Asians, Europeans, and Papuans. There
has been some debate whether the population ancestral to Australians and Papuans (which we call
Australo-Papuans following [26]) split off prior to the divergence of East Asians and Europeans
(e.g., [26]), or whether East Asians and Australo-Papuans first split from Europeans (e.g., [27]). We
find substantial evidence in favor of the former hypothesis, but that there has been pervasive gene
flow between all of these populations since their divergence.

RESULTS

To demonstrate the flexibility, accuracy, and efficiency of our method, we performed an extensive
simulation study under a variety of biologically relevant demographic scenarios. DNA sequence
data were simulated using the software scrm [28]. We simulated 100 datasets for each demographic
scenario and set the haplotype length to 250 Mbp for each dataset. We used 1.25 × 10−8 per
generation for the per-site mutation and recombination rates and used a value of 100 kbp for the
value of the -l parameter in scrm, which determines the length of the recombination history to be
used during the simulation. Generation time was assumed to be 30 years. In each scenario, we used
our method to estimate all demographic parameters of the underlying model.
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Figure 1: Demographic models used in our simulation study. (A) Recent exponential pop-
ulation growth: An ancestral population of size NA undergoes a bottleneck at time TB, where its
size is reduced to NB. Growth starts at time TG at an exponential rate r. (B) Demographic model
of a population split: An ancestral population of size NA undergoes a strong bottleneck that starts
at time TB in the past, and reduces the population size to NB. At time TDIV, this population
then splits into two populations of size N1 and N2, respectively. Following the population split,
migrants are exchanged at a rate m. (C) Demographic model of three populations with pure splits:
An ancestral population of size NA splits into two populations of size NB and N3 at time T3. The
former then again splits into two populations of size N1 and N2 at time T1,2.

Recent exponential growth

The first model we investigated involves recent exponential population growth. To investigate the
performance of our method, we simulated data consisting of 10 haplotypes under the demographic
model depicted in Figure 1A. We fixed TB = 65 ka, TG = 15 ka, NA = 15, 000, and NB = 1, 800,
and used three different values for the growth rate r: 0.25%, 0.5%, and 1.0% per generation.

We used the leave-one-out composite likelihood (LCL) in our EM procedure combined with a
genetic algorithm to estimate all 5 parameters of the demographic model. For the genetic algorithm,
we chose 50 random starting points that were each optimized for 5 EM iterations. Then we chose
the 5 best parameter values (“parents”) and replaced each of them with an average of 3 “offspring”
parameter sets to obtain the next “generation”. These were then optimized for 5 EM iterations. We
repeated this procedure for 4 more “generations”, and reported the parameters that achieved the
overall maximal likelihood value. We found that the results are robust to the choice of composite
likelihood scheme.

Violin plots representing the accuracy of the inferences are shown in Figure 2A and Supplemen-
tary Figure S1. Analysis of the simulated data shows that in these scenarios, all parameters are
estimated with little variability. However, the results indicate that the estimate of the exponential
growth rate is biased upward. This bias is somewhat counterbalanced by a slight downward bias of
the time when growth starts, and the population size before growth starts. In fact, the estimates
lead to very accurate contemporary population sizes. We note that it is possible to empirically
correct for biases in applications via simulation. Furthermore, using more sequence data for each
individual reduces the variability of the estimates. We stress that our method accurately estimates
recent exponential growth rates using only 10 haplotypes. This is far less than the sample size
(thousands to tens of thousands) required by SFS-based methods to get reasonable estimates; see
Bhaskar et al. [5] and references therein.

Population split

We also investigated a model of a past population split, depicted in Figure 1B. This model allows
for a bottleneck before the populations split and subsequent gene flow following the split. We first
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Figure 2: Accuracy results of our method, diCal2. Each violin plot shows the base-2 logarithm
of the relative error (estimate/truth) for the analysis of 100 simulated datasets. Thus, a value of 0
corresponds to an exact estimate, whereas +1 is a two-fold over- and −1 is a two-fold underestimate.
True parameter values are shown on the x-axis. (A) The recent exponential growth model shown
in Figure 1A with expansion rate r = 0.5% per generation. Parameter estimates were obtained
using only 10 haplotypes, which is much less than the sample size (thousands to tens of thousands)
required by SFS-based methods to get good estimates. (B) Accuracy results for the clean-split
model (no gene flow, m = 0) shown in Figure 1B with divergence time TDIV = 20 ka. Using
only two haplotypes in each extant population, the parameters of this clean-split model could be
estimated very accurately. (C) Accuracy results for the isolation with migration (IM) model shown
in Figure 1B with divergence time TDIV = 40 ka, and migration probability m = 0.00025. As in
the clean-split case, only two haplotypes in each extant population were used. Most parameter
estimates show little bias or variability. See the text for further discussion. (D) Accuracy results for
the three-population model shown in Figure 1C, using two haplotypes in each extant population.

focused on the case with no gene flow, i.e., with migration probability m = 0.
We simulated datasets with two haplotypes in each of the extant populations. We simulated 100

datasets each for TDIV = 10 ka and 20 ka, with the remaining parameters set to TB = 70, 000 ya,
NA = 20, 000, NB = 1, 800, and N1 = N2 = 5, 000. This scenario has recently been used in a
study of the demographic history of Native Americans [19]. In addition, we simulated 100 datasets
with TDIV = 70 ka, setting NB = NA = 20, 000, thereby also removing the need for TB. For the
genetic algorithm, we used 60 random starting points, and 6 “parents” for each of the following 4
“generations” for the cases TDIV = 10 ka and 20 ka, and 40 starting points and 5 “parents” for the
case TDIV = 70 ka. We used the LCL.

Figure 2B and Supplementary Figure S2 show the accuracy of the estimator. These empirical
results demonstrate that our method is able to estimate the parameters in this clean-split model with
high accuracy. Most parameters show little bias and the empirical distributions are very narrow.
Only the estimates of the extant population sizes N1 and N2 for TDIV = 10 ka and TDIV = 20
ka show a somewhat higher variability. Since this time frame is very recent on an evolutionary
timescale, either more sampled haplotypes or more sequence data are required to better estimate
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these parameters.

Isolation with migration

We also investigated the demographic model shown in Figure 1B allowing for positive gene flow
after the ancestral population splits into two. We set the migration probability to m = 0.00025;
i.e., an individual from population 1 can have a parent from population 2, and vice versa, with a
probability of 0.00025 per generation. Using this migration probability, we simulated 100 datasets
each consisting of two haplotypes in each extant population, using TDIV = 40 ka, TB = 70 ka, NA =
20, 000, NB = 1, 800, and N1 = N2 = 5, 000. We also simulated 100 datasets using TDIV = 70 ka,
NB = NA = 20, 000, and N1 = N2 = 5, 000. In the former case we used 70 starting points and
6 “parents” for each “generation” in the genetic algorithm, whereas for the later we used 50 and 5,
respectively.

Figure 2C and Supplementary Figure S3 show the accuracy of the estimator. In both scenarios,
we used the pairwise composite likelihood (PCL). Again, most parameter estimates show little bias
or variability, the exceptions being NB and m in the first scenario. However, we note that the
evolutionary timescales involved are, again, rather short, and thus the number of events informative
about these parameters is small. In practice, the variability could be reduced by using additional
chromosomes.

Three-population model

Lastly, we simulated data under the model depicted in Figure 1C relating three extant populations.
Under this model, an ancestral population of size NA splits into two populations of size NB and
N3 at time T3. The one of size NB then splits into two populations of size N1 and N2 at time
T1,2. We simulated 100 datasets with two haplotypes in each of the extant populations. We set the
parameters to T1,2 = 30 ka, T3 = 60 ka, NA = 20, 000, NB = 3, 000, and N1 = N2 = N3 = 5, 000.
For the genetic algorithm, we chose 70 starting points, and 6 “parents”, and used the LCL. Figure 2D
shows the accuracy of our method. Again, the empirical distribution of the estimates show little
bias or variability. To our knowledge, our method is the first coalescent-HMM based method that
can analyze a scenario with 3 extant populations each with more than one haplotype.

Application to Simons Genome Diversity Project (SGDP) data

We used our method to investigate the pattern of population splits between Australians, East Asians,
Europeans, and Papuans. There has been some debate about the relative ordering of population
splits; specifically, there has been competing evidence about whether East Asians and Europeans
split most recently (e.g., [26]) or whether Australo-Papuans and East Asians split most recently
(e.g., [27]). To date these splits, we used Australian, French, Han, and Papuan individuals from the
SGDP [20] and fit models for each of the six possible pairs of these populations, allowing for recent
population size changes and pulse admixture. The model is depicted in Figure 3, and additional
details are given in Materials and Methods. The estimates of the divergence time TDIV and admixture
fraction p together with confidence intervals obtained using a parametric bootstrapping approach are
presented in Table 1. We found compelling evidence that Australo-Papuans and Eurasians diverged
first, about 100 ka, with subsequent French-Han divergence at 53.6 ka, and the Australian-Papuan
divergence at 33.9 ka. Note that while these estimates of divergence times are largely consistent with
a tree, some estimates appear to imply slightly different split times (for example the Australian-Han
divergence time is about 15 ka earlier than the Australian-French divergence time): this is likely
due to model misspecification resulting from an overly simplistic model.
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Figure 3: The demographic model used for the analysis of the French, Han, Papuan, and Australian
population from the SGDP dataset. The ancestral population has two periods of constant size,
then splits into two, and each of the extant populations has again 2 periods of constant size.
Additionally, there is a symmetric pulse admixture event at TADM, replacing p% of the ancestors in
each population.

Table 1: Estimates of the divergence time TDIV (in ka) and the admixture percentage p (in %) for
the respective pair of populations from the SGDP dataset. The 95% confindence intervals obtained
from the parametric bootstrap procedure are shown in square brackets.

Han Papuan Australian
French 54 ka [52,55] 106 ka [104,108] 106 ka [105,108]

14.8% [14.4,15.2] 23.5% [23.0,24.0] 25.0% [24.3,25.7]
Han 113 ka [110,115] 91 ka [91,91]

26.3% [25.0,27.7] 24.5% [23.7,25.4]
Papuan 34 ka [33,35]

15.4% [14.6,16.1]

We also found evidence of pervasive recent gene flow. In particular, we found pulse admixture
proportions of 15-26% between each pair of populations all occurring 5-20 ka. We note that our
model cannot capture all of the intricacies of human demographic history: there has likely been
continuous gene flow between all populations punctuated by a few mass migrations. Our gene flow
estimates likely attempt to capture both of these modes simultaneously along with indirect gene
flow through intervening populations. While it is unlikely that about a quarter of any population
was replaced by a geographically distant population, our results suggest that since their divergences
tens of thousands of years ago, these populations have exchanged a considerable number of migrants.

Additional details about the data, data processing, and parameter settings for our method
are presented in Materials and Methods. All parameter estimates, bootstrap results, and measures
of goodness-of-fit evaluated using cross-coalescence rate curves may be found in Supplementary
Table S1 and Supplementary Figure S4.

DISCUSSION

The results described above demonstrate that our method can efficiently and accurately estimate
demographic parameters in biologically relevant scenarios. Our method has recently been used to
study the history of Native American peoples [19,21,22] due to the flexible framework underlying the
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method enabling the consideration of a wide range of population histories. Aside from demographic
inference, we note that our method can be utilized in other population genetic problems of interest,
such as model selection (see, for example, Supplementary Information 18.4 of [21]). Furthermore,
the posterior decoding of latent variables in our CSD can be used in detecting admixture tracts [29],
estimating fine-scale recombination rates in admixed individuals, distinguishing ancestral and in-
trogressed polymorphism, and detecting incomplete lineage sorting. Also, applying our CSD in
methods for phasing genotypes, imputing missing sequence data, and detecting identity-by-descent
tracts [30] would make it possible to properly account for demography, thus potentially improving
accuracy. Lastly, it is straightforward to incorporate temporal samples (ancient DNA sequences)
into our method [21], which leads to further interesting applications.

MATERIALS AND METHODS

Here, we briefly describe our method, a composite likelihood framework to estimate demographic
parameters using EM. Further details are provided in SI Appendix, SI Text. We also describe our
analysis of the SGDP data.

Demographic inference using diCal2

A central building block of our novel method diCal2 for demographic inference is the conditional
sampling distribution (CSD) πΘ(h|α,n). It denotes the probability of observing the sequence or
haplotype h in sub-population α, given that the haplotypes n have already been observed in their
respective sub-populations and the underlying demography is described by the parameters Θ. The
CSD can be described using a sequentially Markovian genealogical process [31,32] that approximates
the true conditional genealogical process. Subsequent approximations to this sequential process lead
to an HMM with finite hidden state space that can be used to efficiently compute approximate CSDs.
We provide the details of the HMM approximations in Section 1 of Supporting Information Text.
The CSDs presented in Steinrücken et. al. [23] and Sheehan et. al. [14] can be obtained as special
cases of the model presented here.

The CSD can then be used to define composite likelihood functions, which in turn enables us to
perform maximum composite likelihood inference of the demographic parameters Θ. We can use any
such composite likelihood function that is composed of sums and products of CSDs, for example,
the product of approximate conditionals (PAC) framework which has been used successfully by Li
and Stephens [24] to infer recombination hotspots.

To find the parameter values that maximize this composite likelihood, we employ the composite
likelihood in the standard expectation-maximization (EM) framework [33]. While in principle all
parameters of the model can be inferred, we focus on the demographic parameters Θ. Since it is not
possible to derive a closed form solution for the maximum in the maximization step in general, we
employ numerical optimization schemes, like the Nelder-Mead simplex algorithm [34] to efficiently
determine the requisite maximum. We provide mathematical details for the implementation of the
EM algorithm in Section 3 of Supporting Information Text.

In Section 4 of Supporting Information Text, we provide details on the implementation of the
“locus-skipping” algorithm, and the alternative speedup that groups loci into larger blocks. Fur-
thermore, in Section 5 of Supporting Information Text, we provide mathematical details of the
modifications to the trunk genealogy to increase accuracy. Finally, we describe in Section 6 of
Supporting Information Text how to employ a discretization for the HMM computations that dif-
fers from the partition induced by the demography and remains fixed throughout the optimization
procedure.

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2019. ; https://doi.org/10.1101/026591doi: bioRxiv preprint 

https://doi.org/10.1101/026591
http://creativecommons.org/licenses/by-nc-nd/4.0/


Runtime

The runtime of the basic EM is linear in the number of haplotypes times the number of CSDs in
the composite likelihood and quadratic in the number of populations involved. The E-step depends
linearly on the length of the haplotypes, whereas the M-step is independent of this quantity. The
exact complexity and runtime of parameter estimation depends on the composite likelihood used,
the details of the genetic algorithm, and the number of parameters to estimate. The analyses of the
simulated data presented in this section were performed on a cluster of AMD Opteron processors.
The raw sequential runtime of analyzing a single dataset averaged 100–120 CPU-hours, but by taking
advantage of the independence structure of the composite likelihood and the genetic algorithm, we
were able to decrease the runtime to an average of 15–20 wall clock hours, using up to 16 cores in
parallel. The one exception was the Three-population model, where the parallelized version took on
average 70 wall clock hours, due to the more complex demographic model and the increased number
of haplotypes.

SGDP analysis

For the analysis of the SGDP data we used the following individuals: B_Australian-3, B_Australian-
4, S_French-1, S_French-2, B_French-3, S_Han-1, S_Han-2, B_Han-3, S_Papuan-1, S_Papuan-
3, and B_Papuan-15. The data were phased using Shapeit [35] with read-based phasing (phased
data provided by I. Mathieson), and all sites in Heng Li’s 75bp universal mask [20] were treated
as missing. As in our simulations, we used a mutation rate and recombination rate of 1.25 × 10−8

per-base per generation, and assumed a generation time of 30 years. For each pair of populations,
we used all of the individuals from those populations and used all of the autosomes to fit a model
where each population has a constant size from present to 5 ka, and another constant size from 5 ka
until the divergence time of the populations. The ancestral population is assumed to be a constant
size from the divergence time until 100 ka, beyond which we infer a separate constant size. We
allow a symmetric pulse migration between the two populations. To fit this model, we performed 4
iterations of the genetic algorithm, starting from 15 arbitrary points, keeping the 3 best particles at
each iteration, and then spawning a total of 10 particles. Each genetic algorithm iteration consisted
of 6 EM iterations for each particle, using the LCL. For computational efficiency, we grouped loci
into 2.5 kbp bins, and discretized time with 8 log-uniformly spaced break points between 1.5 ka and
5 Ma.

As seen in the simulations, the raw inferred parameters may be biased. To address this issue and
infer confidence intervals, we performed a parametric bootstrap using msprime [36]. For each pair of
populations, we simulated 10 full genome datasets, and re-ran our method on each of these datasets.
Our reported estimates are “de-biased” estimates, obtained by subtracting the estimated bias from
our raw estimates. We then used the bootstraps to estimate a standard deviation for each parameter,
and reported confidence intervals based on a normal approximation (i.e. the de-biased estimate
±1.96 standard deviations) To avoid having these de-biased estimates or confidence intervals fall
outside of the domain of the parameters (e.g. negative population sizes, times, or pulse proportions
or pulse proportions > 100%), all de-biasing and confidence intervals were computed in log-space
for population sizes and times and in logit-space for pulse proportions. The resulting estimates and
confidence intervals were then transformed back to their natural space using the exponential map
and logistic map, respectively. We note that this procedure means that our estimates are unbiased
in log-space or logit-space, and may be slightly biased in their natural scale. All parameter estimates
and bootstrap results are presented in Supplementary Table S1.

To assess goodness of fit, we used MSMC to infer cross-coalescence rate curves (CCRs) on the real
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data, and then on data simulated under our de-biased estimates, presented in Supplementary Fig-
ure S4. For each pair of populations, we used a single diploid from each population (B_Australian-3,
S_French-1, S_Han-1, and S_Papuan-1), using all of the autosomes and again treating all sites in
Heng Li’s 75bp universal mask as missing. We simulated 5 replicates of each pair of populations to
assess the variability in the MSMC CCRs. The CCRs are qualitatively similar between the real and
simulated data, and the fit is quite good for a model with only 9 parameters. As discussed above,
introducing additional size changes and migration rates would likely improve the fit.

Software availability

The algorithms described here are implemented in a new version of the software package diCal2,
which is available for download at https://sourceforge.net/projects/dical2.
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