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Abstract 39 

EuroAmerican land use and its legacies have transformed forest structure and composition 40 

across the United States (US). More accurate reconstructions of historical states are critical to 41 

understanding the processes governing past, current, and future forest dynamics. Gridded 42 

(8x8km) estimates of pre-settlement (1800s) forests from the upper Midwestern US 43 

(Minnesota, Wisconsin, and most of Michigan) using 19th Century Public Land Survey (PLS) 44 

records provide relative composition, biomass, stem density, and basal area for 26 tree 45 

genera. This mapping is more robust than past efforts, using spatially varying correction 46 

factors to accommodate sampling design, azimuthal censoring, and biases in tree selection. 47 

We compare pre-settlement to modern forests using Forest Inventory and Analysis (FIA) data, 48 

with respect to structural changes and the prevalence of lost forests, pre-settlement forests 49 

with no current analogue, and novel forests, modern forests with no past analogs. Differences 50 

between PLSS and FIA forests are spatially structured as a result of differences in the 51 

underlying ecology and land use impacts in the Upper Midwestern United States. Modern 52 

biomass is higher than pre-settlement biomass in the northwest (Minnesota and north-53 

eastern Wisconsin, including regions that were historically open savanna), and lower in the 54 

east (eastern Wisconsin and Michigan), due to shifts in species composition and, presumably, 55 
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average stand age. Modern forests are more homogeneous, and ecotonal gradients are more 56 

diffuse today than in the past. Novel forest assemblages represent 29% of all FIA cells, while 57 

25% of pre-settlement forests no longer exist in a modern context. 58 

Lost forests are centered around the forests of the Tension Zone, particularly in hemlock 59 

dominated forests of north-central Wisconsin, and in oak-elm-basswood forests along the 60 

forest-prairie boundary in south central Minnesota and eastern Wisconsin. Novel FIA forest 61 

assemblages are distributed evenly across the region, but novelty shows a strong relationship 62 

to spatial distance from remnant forests in the upper Midwest, with novelty predicted at 63 

between 20 to 60km from remnants, depending on historical forest type. 64 

The spatial relationships between remnant and novel forests, shifts in ecotone structure and 65 

the loss of historic forest types point to significant challenges to land managers if landscape 66 

restoration is a priority in the region. The spatial signals of novelty and ecological change also 67 

point to potential challenges in using modern spatial distributions of species and communities 68 

and their relationship to underlying geophysical and climatic attributes in understanding 69 

potential responses to changing climate. The signal of human settlement on modern forests is 70 

broad, spatially varying and acts to homogenize modern forests relative to their historic 71 

counterparts, with significant implications for future management. 72 

Key Words: euroamerican settlement, land use change, public land survey, historical 73 

ecology, novel ecosystems, biomass, forest inventory and analysis, ecotone, forest ecology 74 
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Introduction: 75 

The composition, demography, and structure of forests in eastern North America have 76 

changed continuously over the last millennium, driven by human land use [1–5] and 77 

climate variability [6–9]. While human effects have been a component of these systems for 78 

millenia, the EuroAmerican settlement and industrialization period have increased 79 

anthropogenic effects by orders of magnitude [10–12]. Legacies of post-settlement land use 80 

in the upper Midwest [13] and elsewhere have been shown to persist at local and regional 81 

scales [5,14,15], and nearly all North American forests have been affected by the 82 

intensification of land use in the past three centuries. Hence, contemporary ecological 83 

processes in North American forests integrate the anthropogenic impacts of the post-84 

EuroAmerican period and natural influences at decadal to centennial scales. 85 

At a regional scale many forests in the upper Midwest (i.e., Minnesota, Wisconsin and 86 

Michigan) now have decreased species richness and functional diversity relative to forests 87 

of the pre-EuroAmerican settlement (hereafter pre-settlement) period [16–18] due to near 88 

complete logging. For example, forests in Wisconsin are in a state of regrowth, with an 89 

unfilled carbon sequestration potential of 69 TgC [19] as a consequence of these extensive 90 

land cover conversions and subsequent partial recovery following abandonment of farm 91 

lands in the 1930s. But while regional patterns may establish themselves across the 92 

midwest, the range of ecozones and patterns of land use in space and time result in both 93 

broad spatial patterns, but significant local to regional variation. For example, while fire 94 

suppression occured throughout the region effects of suppression have and will continue to 95 
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manifest themselves differently depending on the historical vegetation and biophyssical 96 

characteristics of the site or region. 97 

Legacies of land use are unavoidable at regional scales [20]. Under intensive land use 98 

change the natural processes of secession, senescense and the replacement of tree species 99 

in forests may be masked, or heavily modified by historically recent land use change. 100 

Broad-scale land use change can result in changes to forest structure and species pools that 101 

may result in non-stationarity within ecosystems that may not be apparent on the 102 

relatively narrow time scales at which ecology traditionally operates [21], meaning 103 

chronosequences may not be sufficeint to understand shifts in structure and composition. 104 

There is a history of recolonization of forested landscapes following agricultural clearance 105 

in the upper Midwest [22], pointing to the importance of understanding ecological 106 

trajectories and land use legacies in understanding modern forest dynamics [20]. Cramerel 107 

al.. [23] point to the literature of succession theory to indicate the likelihood that many old 108 

fields will return to a 'natural' state, but point out that recovery is not universal. In 109 

particular, intense fragmentation of the landscape can deplete the regional species pool, 110 

leading to failures of recruitment that would favor species with longer distance seed 111 

dispersersal [24]. In the upper Midwest long seed dispersal would favor species such as 112 

poplar (Populus sp.), white birch (Betula papyrifera) and some maple species (Acer sp.), at 113 

the expense of large-seeded species such as walnut (Juglans sp.), oak (Quercus sp.) and 114 

others. 115 

While there remains debate over the utility of the concept of novel ecosystems [25,26], the 116 

fact remains that there are now forest and vegetation communities on the landscape 117 
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without past analogues. The long term management of the systems and their associated 118 

services requires a broad understanding of the extent to which landscapes have been 119 

modified, and the extent to which land use change has potenitally masked underlying 120 

processes. It also requires a better understanding of the spatial (and temporal) scales at 121 

which novel ecosystems operate. While restoration efforts have generally focused on 122 

ecosystems at local scales, there is an increasing need to focus on management and 123 

restoration at landscape scales [27]. Thus a better understanding of the landscape-scale 124 

processes driving novelty, the spatial structure of novel ecosystems and their ecological 125 

correlates, is increasingly important. An understanding of landscape level processes 126 

driving ecological novelty can help prioritize intervention strategies at local scales [28], 127 

and give us a better understanding of the role of patches in restoring hybrid or novel 128 

landscapes. In particular, how important is the species pool to the development of novel 129 

landscapes? Are novel forests further from remnant forests than might otherwise be 130 

expected? Is novelty operating at landscape scales in the upper Midwest, and is the spatial 131 

distribution of new forests tied to historical patterns vegetation or losses of forest types 132 

from the historical landscape? 133 

The upper Midwestern United States represents a unique ecological setting, with multiple 134 

major ecotones, including the prairie-forest boundary, historic savanna, and the Tension 135 

Zone between southern deciduous forests and northern evergreen forests. The extent to 136 

which these ecotones have shifted, and their extent both prior to and following 137 

EuroAmerican settlement is of critical importance to biogeochemical and biogeophysical 138 

vegetation-atmosphere feedbacks [29], carbon sequestration [19], and regional 139 

management and conservation policy [30–33]. 140 
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Land use change at the local and state-level has affected both the structure and 141 

composition of forests in the Midwestern United States [16,17]. Homogenization and shifts 142 

in overall forest composition are evident, but the spatial extent and structure of this effect 143 

is less well understood. Studies in Wisconsin have shown differential patterns of change in 144 

the mixedwood and evergreen dominated north, the southern driftless and hardwood 145 

dominated forests in south-central Wisconsin, and the prairie and savanna ecosystems that 146 

bound the region to the south and west. Does this pattern of differential change extend to 147 

Minnesota and Michigan? To what extent are land-use effects common across the region, 148 

and where are responses ecozone-specific? Has homogenization [16] resulted in novel 149 

forest assemblages relative to pre-settlement baselines across the region, and the loss of 150 

pre-settlement forest types? Are the spatial distributions of these novel and lost forest 151 

types overlapping, or do they have non-overlapping extents? If broad-scale reorganization 152 

is the norm following EuroAmerican settlement, then the ecosystems that we have been 153 

studying for the past century may indeed be novel relative to the reference conditions of 154 

the pre-settlement era. 155 

Modern forest structure and composition data [34] play a ubiquitous role in forest 156 

management, conservation, carbon accounting, and basic research on forest ecosystems 157 

and community dynamics. These recent surveys (the earliest FIA surveys began in the 158 

1930s) can be extended with longer-term historical data to understand how forest 159 

composition has changed since EuroAmerican settlement. The Public Land Survey was 160 

carried out ahead of mass EuroAmerican settlement west and south of Ohio to provide for 161 

delineation and sale of the public domain beyond the original East Coast states [35,36]. 162 

Because surveyors used trees to locate survey points, recording the identity, distance, and 163 
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directory of two to four trees next to each survey marker, we can make broad-scale 164 

inferences about forest composition and structure in the United States prior to large-scale 165 

EuroAmerican settlement [37–40]. In general, FIA datasets are systematically organized 166 

and widely available to the forest ecology and modeling community, whereas most PLSS 167 

data compilations are of local or, at most, state-level extent. This absence of widely 168 

available data on settlement-era forest composition and structure limits our ability to 169 

understand and model the current and future processes governing forest dynamics at 170 

broader, regional scales. For example, distributional models of tree species often rely upon 171 

FIA or other contemporary observational data to build species-climate relationships that 172 

can be used to predict potential range shifts [41,42]. 173 

Here we use survey data from the original Public Lands Surveys (PLS) in the upper 174 

Midwest to derive estimates of pre-settlement (ca. mid-late 1800s) forest composition, 175 

basal area, stem density, and biomass. This work builds upon prior digitization and 176 

classification of PLSS data for Wisconsin [43,44] and for parts of Minnesota [17,45] and 177 

Michigan Michigan (USFS-NCRS http://www.ncrs.fs.fed.us/gla/). Most prior PLS-based 178 

reconstructions are for individual states or smaller extents [17,19,45,46] often aggregated 179 

at the scale of regional forest zones [16,17], although aggregation may also occur at the 180 

section [19] or township scale [47]. Our work develops new approaches to address major 181 

challenges to PLSS data, including lack of standardization in tree species names, azimuthal 182 

censoring by surveyors, variations in sampling design over time, and differential biases in 183 

tree selection among different kinds of survey points within the survey design at any point 184 

in time. The correction factors developed here are spatially varying, allowing us to 185 

accommodate temporal and spatial variations in surveyor methods. 186 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2015. ; https://doi.org/10.1101/026575doi: bioRxiv preprint 

http://www.ncrs.fs.fed.us/gla/
https://doi.org/10.1101/026575
http://creativecommons.org/licenses/by/4.0/


We aggregate point based estimates of stem density, basal area and biomass to an 8 x 8km 187 

grid, and classify forest types in the upper Midwest to facilitate comparisons between FIA 188 

and PLSS data. We compare the PLSS data to late-20th-century estimates of forest 189 

composition, tree stem density, basal area and biomass. We explore how forest 190 

homogenization has changed the structure of ecotones along two major ecotones from 191 

southern deciduous to northern evergreen forests and to the forest-prairie boundary. 192 

Using analog analyses, we identify lost forests that have no close compositional counterpart 193 

today and novel forests with no close historical analogs. This work provides insight into the 194 

compositional and structural changes between historic and contemporary forests, while 195 

setting the methodological foundation for a new generation of maps and analyses of 196 

settlement-era forests in the Eastern US. 197 

Methods: 198 

Public Lands Survey Data: Assembly, and Standardization 199 

The PLSS was designed to facilitate the division and sale of federal lands from Ohio 200 

westward and south. The survey created a 1 mile2 (2.56 km2) grid (sections) on the 201 

landscape. At each section corner, a stake was placed as the official location marker. To 202 

mark these survey points, PLSS surveyors recorded tree stem diameters, measured 203 

distances and azimuths of the two to four trees 'closest'to the survey point and identified 204 

tree taxa using common (and often regionally idiosyncratic) names. PLSS data thus 205 

represent measurements by hundreds of surveyors from 1832 until 1907, with changing 206 

sets of instructions over time (Stewart, 1979). 207 
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The PLSS was undertaken to survey land prior to assigning ownership (Stewart 1935, 208 

White 1983), replacing earlier town proprietor surveys (TPS) used for the northeastern 209 

states [2,48]. The TPS provided estimates of relative forest composition at the township 210 

level, but no structural attributes. The PLSS produced spatially explicit point level data, 211 

with information about tree spacing and diameter, that can be used to estimate absolute 212 

tree density and biomass. PLSS notes include tree identification at the plot level, 213 

disturbance [49] and other features of the pre-settlement landscape. However, 214 

uncertainties exist within the PLSS and township level dataset [50]. 215 

Ecological uncertainty in the PLSS arises from the dispersed spatial sampling design (fixed 216 

sampling every 1 mile), precision and accuracy in converting surveyor's use of common 217 

names for tree species to scientific nomenclature [51], digitization of the original survey 218 

notes, and surveyor bias during sampling [38,50,52,53]. Estimates vary regarding the 219 

ecological significance of surveyor bias. Terrail et al. [54] show strong fidelity between 220 

taxon abundance in early land surveys versus old growth plot surveys. Liu et al [38] 221 

estimate the ecological significance of some of the underlying sources of bias in the PLSS 222 

and show ecologically significant (>10% difference between classes) bias in species and 223 

size selection for corner trees. However Liu et al. [38] also indicate that the true sampling 224 

error cannot be determined, particularly because most of these historic ecosystems are 225 

largely lost to us. 226 

Kronenfeld and Wang [55], working with historical land cover datasets in western New 227 

York indicate that direct estimates of density using plotless estimators may be off by nearly 228 

37% due to azimuthal censoring (i.e., the tendency of surveyors to avoid trees close to 229 
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cardinal directions), while species composition estimates may be adjusted by between -4 to 230 

+6%, varying by taxon, although Kronenfeld [56] shows adjustments of less than 1%. These 231 

biases can be minimized by appropriate analytical decisions; many efforts over the years 232 

have assessed and corrected for the biases and idiosyncrasies in the original surveyor data 233 

[17,38,39,53,55,57–60]. And, even given these caveats, PLSS records remain the best 234 

source of data about both forest composition and structure in the United States prior to 235 

EuroAmerican settlement. 236 

This analysis builds upon and merges previous state-level efforts to digitize and database 237 

the point-level PLSS data for Wisconsin, Minnesota and the Upper Peninsula and upper 238 

third of the Lower Peninsula of Michigan. These datasets were combined using spatial tools 239 

in R [61,62] to form a common dataset for the upper Midwest (Fig 1) using the Albers Great 240 

Lakes and St Lawrence projection (see code in Supplement 1, file: step_one_clean_bind.R; 241 

proj4: +init:EPSG:3175). 242 
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 243 

Fig 1. The domain of the Public Land Survey investigated in this study. The broad domain 244 

includes Minnesota, Wisconsin and the upper two thirds of Michigan state. A 8x8km grid is 245 

superimposed over the region to aggregate data, resulting in a total of 7940 cells containing 246 

data. 247 

We took several steps to standardize the dataset and minimize the potential effects of 248 

surveyor bias upon estimates of forest composition, density, and biomass. All steps are 249 

preserved in the supplementary R code (Supplement 1: step_one_clean_bind.R). First, we 250 

excluded line and meander trees (i.e. trees encountered along survey lines, versus trees 251 

located at section or quarter corners) because surveyor selection biases appear to have 252 

been more strongly expressed for line trees, meander trees have non-random habitat 253 
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preferences [38], and the inherent differences in sampling design between line, meander 254 

and corner points. We used only the closest two trees at each corner point because the 255 

third and fourth furthest trees have stronger biases with respect to species composition 256 

and diameter [38]. Corner points were used only if 1) there were at least two trees at a 257 

survey point, 2) the two trees were from different quadrants (defined by the cardinal 258 

directions), and 3) there were valid azimuths to the trees (a defined quadrant with an angle 259 

between 0 and 90) and valid diameters (numeric, non-zero). 260 

Many species-level identifications used by PLSS surveyors are ambiguous. Statistical 261 

models can predict the identity of ambiguous species [51], but these models introduce a 262 

second layer of uncertainty into the compositional data, both from the initial surveyors' 263 

identification, and from the statistical disambiguation. Given the regional scale of the 264 

analysis, and the inherent uncertainty in the survey data itself, we chose to avoid this layer 265 

of taxonomic uncertainty, and retained only genus-level identification (Supplement 2, 266 

Standardized Taxonomy). The ecological implications for the use of genera-level 267 

taxonomies are important for this region. While fire tolerance is fairly well conserved 268 

within genera, shade tolerance can vary. Betula contains shade intolerant B. paperyfera and 269 

the intermediate B. alleghaniensis, while Pinus contains the very shade intolerant P. 270 

banksiana, the intolerant P. resinosa and the shade tolerant P. strobus. For cases where 271 

shade tolerance (or fire tolerance) varies strongly within a genera we examine the data to 272 

determine the suitability of the assignment, or extent of confusion within the assigned 273 

genera. 274 
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In areas of open prairie or other treeless areas, e.g. southwestern Minnesota, surveyors 275 

recorded distances and bearings to 'Non Tree' objects. When points were to be located in 276 

water bodies the point data indicates 'Water'. Points recorded "No Tree" are considered to 277 

have been from extremely open vegetation, with an estimated point-level stem density of 0 278 

stems ha-1. We based our estimates on terrestrial coverage, so water cells are excluded 279 

completely. Hence, absence of trees at "No Tree" locations does reduce the gridded 280 

estimates of terrestrial stem density, but absence of trees at 'Water' locations does not. 281 

Digitization of the original surveyor notebooks introduces the possibility of transcription 282 

errors. The Wisconsin dataset was compiled by the Mladenoff lab group, and has 283 

undergone several revisions over the last two decades in an effort to provide accurate data 284 

[30,38,43,44,51]. The Minnesota transcription error rate is likely between 1 and 5%, and 285 

the treatment of azimuths to trees varies across the dataset [37]. Michigan surveyor 286 

observations were transcribed to mylar sheets overlaid on State Quadrangle maps, so that 287 

the points were displayed geographically, and then digititized to a point based shapefile 288 

(Ed Schools, pers. comm.; Great Lakes Ecological Assessment. USDA Forest Service 289 

Northern Research Station. Rhinelander, WI. http://www.ncrs.fs.fed.us/gla/), carrying two 290 

potential sources of transcription error. Preliminary assessment of Southern Michigan data 291 

indicates a transcription error rate of 3 - 6%. To reduce errors associated with 292 

transcription across all datasets, we exclude sites for which multiple large trees have a 293 

distance of 1 link (20.12 cm) to plot center, trees with very large diameters (diameter at 294 

breast height - dbh > 100 in; 254 cm), plots where the azimuth to the tree is unclear, and 295 

plots where the tree is at plot center but has a recorded azimuth. All removed plots are 296 
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documented in the code used for analysis (Supplement 1: step_one_clean_bind.R) and are 297 

commented for review. 298 

Data Aggregation 299 

We binned the point data using an 64km2 grid (Albers Gt. Lakes St Lawrence projection; 300 

Supplement 1: base_calculations.R) to create a dataset that has sufficient numerical power 301 

for spatial statistical modeling and sufficient resolution for regional scale analysis [63]. 302 

This resolution is finer than the 100km2 gridded scale used in Freidman and Reich [45], but 303 

coarser than township grids used in other studies [19,56] to provide a scale comparable to 304 

aggregated FIA data at a broader scale. Forest compositional data is based on the number 305 

of individuals of each genus or plant functional type (PFT) present at all points within a 306 

cell. Stem density, basal area and biomass are averaged across all trees at all points within 307 

the cell. 308 

Stem Density 309 

Estimating stem density from PLSS data is based on a plotless density estimator that uses 310 

the measured distances from each survey point to the nearest trees at the plot location 311 

[64,65]. The Morisita density estimator is then modified to minimize error due to different 312 

sampling geometries and several known surveyor biases [17,38,39,53,55,57–60]. The 313 

standardized approach for this method is well validated, however surveyors did not use a 314 

consistent approach to plot level sampling. Survey sampling instructions changed 315 

throughout the implementation of the PLSS in this region and differed between section and 316 

quarter section points and between internal and external points within a township [36,38]. 317 
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Our approach allows for spatial variation in surveyor methods by applying various 318 

spatially different correction factors based not only on the empirical sample geometry, but 319 

also on known surveyor biases deviating from this design [57]. These estimates are based 320 

on empirical examination of the underlying data, and have been validated using 321 

simulations on stem mapped stands [57]. 322 

We estimate stem density (stems m-2) based on a on a modified form of the Morisita two-323 

tree density estimator, which uses the distance-to-tree measurements for the two closest 324 

trees at each point [66]. Our modified form uses explicit and spatially varying correction 325 

factors, modeled after the Cottam correction factor [67], that account for variations in 326 

sampling designs over time and among surveyors. All code to perform the analysis is 327 

included in Supplement 1. 328 

We estimate the basic stem density (stems m-2) using the point-to-tree distances for the 329 

closest trees to each point within a defined number of sectors around the point (Reference 330 

64 eqn 31.): 331 

λm2̂ =
k−1

π×n
× ∑

k

∑ (rij)
2k

j=1

N
i=1  (1) 332 

where λ is density ; k is the number of sectors within which trees are sampled, N is the 333 

number of points over which estimates are aggregated, r is the distance of point-to-tree (as 334 

m). This estimate can be modified by a refinement of the Cottam quadrant factors [66,67] 335 

which recognizes that different sampling designs, and the order of the distances in different 336 

quadrants (or sectors) carry specific weights. This correction, herein called κ, accounts for 337 

different sampling designs. When either four quadrants or trees are sampled (point quarter 338 
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design), or when two trees in opposite semicircles (point halves design) are sampled, the 339 

equation is accurate and κ = 1; when the two trees are in the nearest of two quadrants (two 340 

nearest quadrants design), κ = 0.857; and when two trees are in quadrants on the same 341 

side of the direction of travel (one-sided or interior half design), κ = 2. This parameter, in 342 

Cottam's notation [67], is a divisor of the denominator above, or here, the mathematically 343 

equivalent multiplier in the numerator of the reciprocal of the squared distances. 344 

We further simplify the density estimate in equation (1) so that it is calculated at each point 345 

(N=1) and for two sample trees only (k=2): 346 

λM =
2

π × ∑ rj2
2
j=1

 347 

Then the point values for any sampling design can be Cottam corrected (κ × λM). For 348 

example, the basic Morisita equation for two sectors assumes trees are located in opposite 349 

halves, so if the actual design is the nearest tree in the two nearest quadrants, the density 350 

from equation 2 will be overestimated and must be correspondingly corrected by 351 

multiplying by κ = 0.857. 352 

Further corrections account for the restriction of trees to less than the full sector (θ), 353 

censoring of trees near the cardinal azimuths (ζ), and undersampling of trees smaller than 354 

a certain diameter limit (ϕ). These parameters are derived from analyses of measurements 355 

of bearing angles and diameters actually observed in surveys of witness trees within a 356 

subset of townships across the upper Midwest. 357 

Sector bias (θ). Although the density model for two tree points assumes that the trees are 358 

on opposite sides of a sample line (point halves), the actual sample is often more restricted 359 
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(< 180o) within the sector, or is a less restricted (> 180o) angle beyond the sector (see 360 

Supplement 3). This deviation from the equation's assumption of equal distribution of 361 

angles across the 180o sector is quantified using the empirical angle between the bearings 362 

of the two trees (pair angle). The pair angle frequencies (Supplement 3) that the observed 363 

proportion of trees (p) within any restricted sector divided by the proportion of that angle 364 

within the circle (α) are an estimate of the bias imposed by the actual sampling [55]. The 365 

factor (θ = p/α) indicates bias associated with differences in geometry of two tree samples. 366 

This parameter (θ) varies from 0.71 to 1.27, indicating sampling from effectively 253o to 367 

141o sectors. 368 

Azimuthal censoring (ζ). In addition to sector bias, surveyors did not always sample trees 369 

near the cardinal directions [55,58,59]. This azimuthal censoring is commonly found along 370 

the line of travel on section lines and sometimes on the perpendicular quarter-section lines. 371 

Trees near the cardinal directions were passed over, and a replacement was found within a 372 

more restricted angular region. The correction for this bias is calculated following 373 

Kronenfeld and Wang [55] in a manner similar to the sector bias. The factor ζ is the ratio of 374 

the proportion of trees in the restricted area (p) divided by the proportion of the complete 375 

circle (α) that is used. The azimuthal censoring parameter (ζ) ranges from 1.03 to 1.25 376 

indicating an equivalent to complete elimination of trees from 10o to 72o azimuths adjacent 377 

to the cardinal directions. 378 

Diameter limit (ϕ). Examination of the diameter distributions from settlement era surveys 379 

across the upper Midwest clearly demonstrate witness trees less than 8 inches in diameter 380 

were undersampled [38,57,59]. We have confirmed this bias in our own inspection of plots 381 
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of diameter frequency in the PLSS data, which show a strong mode at 8". This bias can be 382 

accommodated by setting a diameter limit, and only calculating the density for trees with 383 

diameters above this limit. Total density calculated from all trees is reduced to this 384 

reference limit by simply multiplying the total by the percentage of trees above this limit. 385 

This effectively eliminates the smaller trees from the total and normalizes the value of trees 386 

above this standard. The parameter (ϕ) represents diameter size bias is simply the 387 

percentage of trees ≥ 8" and, in practice, ranges from 0.6 - 0.9. 388 

Because all surveyor bias corrections are simple multipliers of the model density and 389 

should be independent, the bias-minimized estimate of the point density of trees ≥ 8" is: 390 

λMcorrected = κ × θ × ζ × ϕ × λM (3) 391 

Estimates for each point i can be averaged for all N points in any region. Correction factors 392 

are calculated separately for different regions, years, internal versus external lines, section 393 

versus quarter-section points, and surveyor sampling designs (Supplement 4). All code to 394 

perform the analyses is included in Supplement 1 and the full rationale for and calculation 395 

of these measures is described further in Cogbillel al. [57]. Further, simulation used stem 396 

mapped stands from the region presented in Cogbillel al. [57] supports the robustness of 397 

this method, as opposed to other methods presented in the literature. 398 

Basal Area and Biomass Estimates 399 

Forest basal area is calculated by multiplying the point-based stem density estimate by the 400 

average stem basal area from the reported diameters at breast height for the closest two 401 
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trees at the point (n=2). Aboveground dry biomass (Mg ha-1) is calculated using the USFS 402 

FIA tree volume and dry aboveground biomass equations for the United States [68]. 403 

Biomass equations share the basic form: 404 

m = Exp(β0 + β1 ∗ lndbh) 405 

where m represents stem biomass for an individual tree in kg. β0 and β1 are parameters 406 

derived from [68] and described in Table 1. dbh is the stem diameter at breast height 407 

(converted to cm) recorded in the survey notes. The biomass estimates are summed across 408 

both trees at a survey point and multiplied by the stem density calculated at that point to 409 

produce an estimate of aboveground biomass reported in Mg ha-1 [68]. 410 

Table 1. Biomass parameters used for the calculation of biomass in the pre-settlement 411 

dataset(rounded for clarity). 412 

Jenkins Species Group β0 β1 PalEON Taxa Included (Supp. 2) 

Aspen, Alder, Poplar, 

Willow 

-

2.20 

2.38 Poplar, Willow, Alder 

Soft Maple, Birch -

1.91 

2.36 Birch 

Mixed Hardwood -

2.48 

2.48 Ash, Elm, Maple, Basswood, Ironwood, Walnut, 

Hackberry, Cherries, Dogwood, Buckeye 

Hard Maple, Oak, 

Hickory, Beech 

-

2.01 

2.43 Oak, Hickory, Beech, Other Hardwood 
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Cedar and Larch -

2.03 

2.26 Tamarack, Cedar 

Fir and Hemlock -

2.54 

2.43 Fir, Hemlock 

Pine -

2.54 

2.43 Pine 

Spruce -

2.08 

2.33 Spruce 

Matching PLSS tree genera to the species groups defined by Jenkins et al. [68] is 413 

straightforward, placing the 22 genera used in this study into 9 allometric groups (Table 1). 414 

However, all maples are assigned to the generic "Hardwood" group since separate 415 

allometric relationships exist for soft and hard maple (Table 1). Biomass estimates for "Non 416 

tree" survey points are assigned 0 Mg ha-1. 417 

We use the stem density thresholds of Anderson and Anderson [69] to discriminate prairie, 418 

savanna, and forest. 419 

FIA Stem Density, Basal Area and Biomass 420 

The United States Forest Service has monitored the nation's forests through the FIA 421 

Program since 1929, with an annualized state inventory system implemented in 1998 [70]. 422 

On average there is one permanent FIA plot per 2,428 ha of land in the United States 423 

classified as forested. Each FIA plot consists of four 7.2m fixed-radius subplots in which 424 

measurements are made of all trees >12.7cm dbh [70]. We used data from the most recent 425 
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full plot inventory (2007-2011). The FIA plot inventory provides a median of 3 FIA plots 426 

per cell using the 64km2 grid. 427 

We calculated mean basal area (m2 ha-1), stem density (stems ha-1), mean diameter at 428 

breast height (cm) for all live trees with dbh greater than 20.32cm (8in). Biomass 429 

calculations (mean biomass: Mg ha-1) used the same set of allometric regression equations 430 

as for the PLSS data [68]. All calculations followed instructions in Woudenberg et al [70] 431 

using forested plots only (COND_STATUS_CD 1). 432 

One critical issue is the reliance on forested condition for the FIA sampling. This reduces 433 

our capacity to compare forest state between PLS and FIA cover in regions with historical 434 

prairie and savanna coverage. In addition, it may result in the overestimation of modern 435 

density, basal area and biomass at the mesoscale in these same regions by drawing from a 436 

sample biased specifically towards regions with > 10% forest cover [70], however, the 10% 437 

cover theshold is fairly low, but more likely in line with "open forest" [69] than savanna. 438 

Gridding and Analysing PLSS and FIA Data 439 

Maps of stem density, basal area and biomass were generated by averaging all PLSS point 440 

or FIA plot estimates within a 64km2 raster cell. Differences in sampling design between 441 

PLSS and FIA data combined with spatially structured forest heterogeneity will affect the 442 

partitioning of within-cell versus between-cell variance, but not the expected estimates. 443 

Most 64km2 cells have one or a few intensively sampled FIA plots. Therefore at this scale of 444 

aggregation, the low density of FIA plots in heterogeneous forests could result in high 445 

within-cell variance and high between-cell variability. For the PLSS plotless (point based) 446 

estimates, stem density estimates are sensitive to trees close to the plot center. Point-level 447 
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estimates with very high stem densities can skew the rasterized values, and it is difficult to 448 

distinguish artifacts from locations truly characterized by high densities. To accommodate 449 

points with exceptionally high densities we carry all values through the analysis, but 450 

exclude the top 2.5 percentile when reporting means and standard deviations in our 451 

analysis. PLS-based estimates are highly variable from point to point due to the small 452 

sample size, but have low variance among 64 km2 raster cells due to the uniform sampling 453 

pattern of the data. Thus within-cell variance is expected to be high for the PLSS point data, 454 

but spatial patterns are expected to be robust at the cell level. The base raster and all 455 

rasterized data are available as Supplement 3. 456 

Standard statistical analysis of the gridded data, including correlations, paired t-tests and 457 

regression, was carried out in R [61], and is documented in supplementary material that 458 

includes a subset of the raw data to allow reproducibility. Analysis and presentation uses 459 

elements from the following R packages: cluster [71], ggplot2 [72,73], gridExtra [74], 460 

igraph [75], mgcv [76], plyr [77], raster [78], reshape2 [79], rgdal [62], rgeos [80], sp 461 

[81,82], and spdep [83]. 462 

We identify analogs and examine differences in composition between and within PLSS and 463 

FIA datasets using Bray-Curtis dissimilarity [84] for proportional composition within 464 

raster cells using basal area measurements. For the analog analysis we are interested only 465 

in the minimum compositional distance between a focal cell and its nearest compositional 466 

(not spatial) neighbor. The distribution of compositional dissimilarities within datasets 467 

indicates forest heterogeneity within each time period, while the search for closest analogs 468 

between datasets indicates whether contemporary forests lack analogs in pre-settlement 469 
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forests ('novel forests'), or vice versa ('lost forests'). For the analog analyses, we compute 470 

Bray-Curtis distance between each 64km2 cell in either the FIA or the PLSS periods to all 471 

other cells within the other dataset (FIA to FIA, PLSS to PLSS), and between datasets (PLSS 472 

to FIA and FIA to PLS), retaining only the minimum. For within era analyses (FIA - FIA and 473 

PLSS - PLSS), cells were not allowed to match to themselves. We define vegetation classes 474 

for lost and novel forests using k-medoid clustering [71]. 475 

The differences in sampling design and scale between the PLSS and FIA datasets, described 476 

above, potentially affect between-era assessments of compositional similarity [47]. The 477 

effects of differences in scale should be strongest in regions where there are few FIA plots 478 

per 64 km2 cell, or where within-cell heterogeneity is high. For the analog analyses, this 479 

effect should increase the compositional differences between the FIA and PLSS datasets. 480 

We test for the importance of this effect on our analog analyses via a sensitivity analysis in 481 

which we test whether dissimilarities between FIA and PLSS grid cells are affected by the 482 

number of PLSS plots per cell. We find a small effect (see below), suggesting that our 483 

analyses are mainly sensitive to the compositional and structural processes operating on 484 

large spatial scales. 485 

To understand the extent to which the processes governing novelty operate at landscape 486 

scales, we relate the novelty of a cell to the spatial distance between individual novel cells 487 

and the nearest 'remnant' forest cell, i.e., how far away can you go from a remnant forest 488 

cell before all cells are predicted to be novel. We examine whether this relationship varies 489 

between forest types, and whether it is different than the relationship we might see if the 490 

dissiminlarity values were distributed randomly on the landscape. The definition of 491 
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"remnant" forest is likely to be arbitrary and, possibly, contentious. We use a threshold, the 492 

lowest 25%ile of compositional dissimilarity within the PLSS data, as our cutoff. This 493 

means that all FIA cells with nearest neighbor dissimilarities to the PLSS era forests below 494 

this cutoff are considered to be representative of the PLSS era forests. The analysis 495 

presented below is robust to higher cutoffs for the remnant forest threshold. 496 

We use a generalized linear model with a binomial family to relate novelty (as a binomial, 497 

either novel or not) to the spatial distance from the nearest 'remnant' cell for each of the 498 

five major forest types within the PLSS data (Oak savanna, Oak/Poplar/Basswood/Maple, 499 

Pine, Hemlock/Cedar/Birch/Maple and Tamarack/Pine/Spruce/Poplar forests). Because 500 

the geographic extent of this region is complex, with islands, peninsulas and political 501 

boundaries, we use permutation, resampling the FIA to PLSS nearest neighbor distances 502 

without replacement, to estimate the expected distance to novelty if FIA to PLSS nearest 503 

neighbor dissimilarities were distributed randomly on the landscape. 504 

We expect that a weak relationship will indicate that novelty, following landscape-scale 505 

land use change, is moderated by a species pool culled from small remnant patches, 506 

individual specimens, or local scale restoration efforts. A significant relationship between 507 

distance from remant forest and novelty indicates that small patches have been insufficient 508 

to restore natural forest cover within the region, and would indicate that greater efforts are 509 

needed to restore landscapes at regional scales. 510 

All datasets and analytic codes presented here are publicly available and open source at 511 

(http://github.com/PalEON-Project/WitnessTrees), with the goal of enabling further 512 

analyses of ecological patterns across the region and the effects of post-settlement land use 513 
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on forest composition and structure. Data are also archived at the Long Term Ecological 514 

Research Network Data Portal (https://portal.lternet.edu/nis/home.jsp). 515 

Results: 516 

Data Standardization 517 

The original PLSS dataset contains 490,818 corner points (excluding line and meander 518 

points), with 166,607 points from Wisconsin, 231,083 points from Minnesota and 93,095 519 

points from Michigan. Standardizing data and accounting for potential outliers, described 520 

above, removed approximately 1.5% points from the dataset, yielding a final total of 521 

366,993 points with estimates used in our analysis. 522 

Rasterizing the PLSS dataset to the Albers 64km2 grid produces 7,939 raster cells with data. 523 

Each cell contains between 1 and 94 corner points, with a mean of 61.8 (σ = 15) and a 524 

median of 67 corners (Supplement 3). Cells with a low number of points were mainly near 525 

water bodies or along political boundaries such as the Canadian/Minnesota border, or 526 

southern Minnesota and Wisconsin borders. Only 2.44% of cells have fewer than 10 points 527 

per cell. 528 

Species assignments to genera were rarely problematic. Only 18 PLSS trees were assigned 529 

to the Unknown Tree category, representing less than 0.01% of all points. These unknown 530 

trees largely consisted of corner trees for which taxon could not be interpreted, but for 531 

which diameter and azimuth data was recorded. A further 0.011% of trees were assigned 532 

to the "Other hardwood" taxon (e.g., hawthorn, "may cherry", and "white thorn"). 533 
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For maple the class has very high within-genera specificity for a number of assignments. A 534 

total of 78478 trees are assigned to "Maple". Of these, surveyors do use common names 535 

that can be ascribed to the species level (e.g., A. saccharum, n = 56331), but a large number 536 

of the remaining assignments are above the species level (n = 21356). This lack of 537 

specificity for a large number of records causes challenges in using the species level data. A 538 

similar pattern is found for pine, where many individual trees (125639) can be identified to 539 

the level of species (P. strobus, n = 41673; P. banksiana, n = 28784; P. resinosa, n = 28766), 540 

but there remains a large class of pine identified only at the genus level, or with unclear 541 

assignment (n = 17606). 542 

For ash the data includes both surveyor attributions to "brown ash" (presumably a 543 

colloquial term used by surveyors as this is not currently an accepted common name in the 544 

region) and black ash (n=9312), and white ash (n = 2350), but again, also includes a large 545 

class of ash for which no distinction is made within the genera (n = 7423). 546 

These patterns are repeated throughout the data. For spruce this within-genera confusion 547 

is even greater, with 50188 assignments to genera-level classes and only 20 to either black 548 

or white spruce. 549 

Spatial Patterns of Settlement-Era Forest Composition: Taxa and PFTs 550 

Stem Density, Basal Area and Biomass 551 

The mean stem density for the region (Fig 2a) is 153 stems ha-1. Stem density exclusive of 552 

prairie is 172 stems ha-1 and is 216 stems ha-1 when both prairie and savanna are excluded. 553 

The 95th percentile range is 0 - 423 stems ha-1, and within-cell standard deviations 554 
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between 0 and 441 stems ha-1. Basal area in the domain (Fig 2c) has a 95th percentile 555 

range between 0 and 63.5 m2 ha-1, a mean of 22.2 m2 ha-1, within-cell standard deviations 556 

range from 0 to 76.7 m2 ha-1. Biomass ranges from 0 to 209 Mg ha-1 (Fig 2d), with cell level 557 

standard deviations between 0 and 569 Mg ha-1. High within-cell standard deviations 558 

relative to mean values within cells for density, basal area and biomass indicate high levels 559 

of heterogeneity within cells, as expected for the PLSS data, given its dispersed sampling 560 

design. 561 

 562 
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Fig 2. Total stem density (a) in the Upper Midwest, along with forest type classification (b) 563 

based on PLSS data and the stem density thresholds defined by Anderson and Anderson [69]; 564 

Table 2). Fine lines represent major rivers. To a first order, basal area (c) and biomass (d) 565 

show similar patterns to stem density (but see Fig 3). 566 

In the PLSS data, stem density is lowest in the western and southwestern portions of the 567 

region, regions defined as prairie and savanna (Fig 2b, Table 2). When the Anderson and 568 

Anderson [69] stem density thresholds (<47 stems ha-1 for Savanna, Table 2) are used, the 569 

extent of area classified as savanna is roughly equivalent to prior reconstructions 570 

[22,85,86] (Fig 2b). The highest stem densities occur in north-central Minnesota and in 571 

north-eastern Wisconsin (Fig 2a), indicating younger forests and/or regions of lower forest 572 

productivity. 573 

Table 2. Forest classification scheme used in this paper for comparison between pre-574 

settlement forests and the Haxeltine and Prentice [87] potential vegetation classes 575 

represented in Ramankutty and Foley [1]. Plant functional types (PFTs) for grasslands (CG, 576 

grassland; Non-Tree samples in the PLS), broad leafed deciduous taxa (BDT) and 577 

needleleaded evergreen taxa (NET) are used, but leaf area index used in Haxeltine and 578 

Prentice [87] is replaced by stem density classes from Anderson and Anderson [69]. 579 

Forest Class Haxeltine & Prentice Rules Current Study 

Prairie Dominant PFT CG, LAI > 0.4 Stem dens. < 0.5 stem/ha 

Savanna Dominant PFT CG, LAI > 0.6 1 < Stem dens. < 47 stems ha-1 

Temperate Dominant PFT BDT, LAI > 2.5 Stem dens. > 48 stems ha-1, BDT > 70% 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2015. ; https://doi.org/10.1101/026575doi: bioRxiv preprint 

https://doi.org/10.1101/026575
http://creativecommons.org/licenses/by/4.0/


Deciduous composition 

Temperate 

Conifer 

Dominant PFT (NET + NDT), 

LAI > 2.5 

Stem dens. > 47 stems ha-1, NET + NDT 

> 70% composition 

Mixedwood Both BDT (LAI > 1.5) & NET 

(LAI > 2.5) present 

Stem dens. > 47 stems ha-1, BDT & NET 

both < 70% composition 

Forest structure during the settlement era can be understood in part by examining the 580 

ratio of stem density to biomass, a measure that incorporates both tree size and stocking. 581 

Regions in northern Minnesota and northwestern Wisconsin have low biomass and high 582 

stem densities (Fig 3, blue). This indicates the presence of young, small-diameter, even-583 

aged stands, possibly due to frequent stand-replacing fire disturbance in the pre-584 

EuroAmerican period or to poor edaphic conditions. Fire-originated vegetation is 585 

supported by co-location with fire-prone landscapes in Wisconsin [88]. High-density, low-586 

biomass regions also have shallower soils, colder climate, and resulting lower productivity. 587 

High-biomass values relative to stem density (Fig 3, red) are found in Michigan and 588 

southern Wisconsin. These regions have higher proportions of deciduous species, with 589 

higher tree diameters than in northern Minnesota. 590 
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 591 

Fig 3. The major forest types in the pre-settlement Upper Midwest. Five clusters are shown 592 

using k-medoid clustering. These clusters represent (b) the ratio between biomass and stem 593 

density as an indicator of forest structure. Regions with high stem density to biomass ratios 594 

(blue) indicate dense stands of smaller trees, while regions with low stem density to biomass 595 

ratios (red) indicate larger trees with wider spacings. 596 

Taxon composition within settlement-era forests is spatially structured along dominant 597 

gradients from south to north (deciduous dominated to conifer dominated forests) and 598 

from east to west (mixed wood forests to open prairie) (Fig 4). Oak is dominant in the 599 

south of the region, with an average composition of 21%, however, that proportion drops 600 

to 8% when only forested cells (cells with stem density > 48 stems/ha) are considered, due 601 
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to its prevalence as a monotypic dominant in the savanna and prairie. Pine shows the 602 

opposite trend, with average composition of 14% and 17% in unforested and forested cells 603 

respectively. Pine distributions represent three dominant taxa, Pinus strobus, Pinus resinosa 604 

and Pinus banksiana. These three species have overlapping but ecologically dissimilar 605 

distributions, occuring in close proximity in some regions, such as central Wisconsin, and 606 

are typically associated with sandy soils with low water availability. Other taxa with high 607 

average composition in forested cells include maple (10%), birch (10%), tamarack (9%) 608 

and hemlock (8%). 609 

 610 

Fig 4. Forest composition (%) for the 15 most abundant tree taxa. The scale is drawn using a 611 

square-root transform to emphasize low abundances. Shading of the bar above individual 612 

taxon maps indicates plant functional type assignments (dark gray: needleleafed deciduous; 613 

light gray: needleleafed evergreen; white: broadleafed deciduous). 614 
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For a number of taxa, proportions are linked to the total basal area within the cell. For 4 615 

taxa - hemlock, birch, maple and cedar - taxon proportions are positively related to total 616 

basal area. For 17 taxa including oak, ironwood, poplar, tamarack and elm, high 617 

proportions are strongly associated with lower basal areas (Figures 3 and 5). This suggests 618 

that hemlock, birch, maple and cedar occurred in well-stocked forests, with higher average 619 

dbh. These taxa are most common in Michigan and in upper Wisconsin. Taxa with negative 620 

relationships to total basal area (e.g., spruce and tamarack) are more common in the 621 

northwestern part of the domain. 622 

Spruce in the PLSS represents two species (Picea glauca, Picea mariana) with overlapping 623 

distributions, but complex site preferences that vary in space. P. glauca is generally 624 

associated with dry upland to wet-mesic sites, while P. mariana is associated with hydric 625 

sites, but P. mariana also frequently occupies upland sites in northern Minnesota. Both 626 

cedar (Thuja occidentalis) and fir (Abies balsamea) are mono-specific genera in this region. 627 

Northern hardwoods, such as yellow birch and sugar maple, and beech, are much less 628 

common in the lower peninsula of Michigan, and southern Wisconsin, except along Lake 629 

Michigan. Birch has extensive cover in the north, likely reflecting high pre-settlement 630 

proportions of yellow birch (Betula alleghaniensis) on mesic soils, and paper birch on sandy 631 

fire-prone soils and in northern Minnesota (birch proportions reach upwards of 34.1% in 632 

northeastern Minnesota). Hardwoods in the southwest, such as oak, elm, ironwood and 633 

basswood, are most typically mono-specific groupings, with the exception of oak, which 634 

comprises 7 species (see Supplement 2). Hardwoods in the southwest are located primarily 635 

along the savanna and southern forest margins, or in the southern temperate deciduous 636 
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forests. Finally, maple and poplar (aspen) have a broad regional distribution, occupying 637 

nearly the entire wooded domain. Poplar comprises four species in the region, while maple 638 

comprises five species (Supplement 2). Both hardwood classes, those limited to the 639 

southern portions of the region, and those with distributions across the domain, 640 

correspond to well-defined vegetation patterns for the region [85]. 641 

These individual species distributions result in a mosaic of forest classes accross the region 642 

(Fig 5). The dominant class is the Hemlock/Cedar/Birch/Maple assemblage in northern 643 

Wisconsin, and upper Michigan (Fig 5, yellow). This mixedwood assemblage is interspersed 644 

by both Pine dominated landscapes (Fig 5, orange) and, to a lesser degree, the softwood 645 

assemblage Tamarack/Pine/Spruce/Poplar (Fig 5, green), which dominates in north-646 

eastern Minnesota. The softwood assemblage is itself interspersed with Pine dominated 647 

landscapes, and grades into a mixed-hardwood assemblage of 648 

Oak/Poplar/Basswood/Maple (Fig 5, light purple) to the west. Thismixed- softwood forest 649 

assemblage grades south into mono-specific Oak savanna (Fig 5, dark blue). 650 
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 651 

Fig 5. The five dominant forest types in the Upper Midwest as defined by k-medoid clustering. 652 

Forest types (from largest to smallest) include Hemlock/Cedar/Birch/Maple (yellow), 653 

Oak/Poplar/Basswood/Maple (light purple), Tamarack/Pine/Spruce/Poplar (light green), 654 

Oak Savanna (dark purple) and Pine (orange). These forest types represent meso-scale 655 

(64km2) forest associations, rather than local-scale associations. 656 

The broad distributions of most plant functional types results in patterns within individual 657 

PFTs that are dissimilar to the forest cover classes (Fig 5). Thus overlap among PFT 658 

distributions (Fig 6) emerges from the changing composition within the plant functional 659 

type from deciduous broadleaved species associated with the southern, deciduous 660 

dominated region, to broadleafed deciduous species associated with more northern regions 661 

in the upper Midwest. 662 
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 663 

Fig 6. Proportional distribution of Plant Functional Types (PFTs) in the upper Midwest from 664 

PLSS data, for broadleaved deciduous trees (BDT), needleleaved deciduous trees (NDT), and 665 

needleleaved evergreen trees (NET). Distributions are shown as proportions relative to total 666 

basal area, total biomass, and composition (Fig 2). The grassland PFT is mapped onto non-667 

tree cells with the assumption that if trees were available surveyors would have sampled 668 

them. 669 
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Structural Changes Between PLSS and FIA Forests 670 

Differences between PLSS and FIA data shows strong spatial patterns, but overall estimates 671 

can be examined. By cell, modern forests (FIA) have higher stem densities (146 stems ha-1, 672 

t1,5177 = 51.8, p < 0.01) than PLSS forests, but slightly lower basal areas (-4.5 m2 ha-1, t1,5177 673 

= -16.4, p < 0.01) and lower biomass (-8.72 Mg ha-1, t1,5177 = -6.55, p < 0.01) (Fig 7). We use 674 

only point pairs where both FIA and PLSS data occur since non-forested regions are 675 

excluded from the FIA and as such cannot be directly compared with PLS estimates. The 676 

similarity in biomass despite lower stem density and total basal area in the PLSS data is 677 

surprising. Two likely factors are shifts in allometric scaling associated with changes in 678 

species composition, or a higher mean diameter of PLSS trees (Fig 7d). Total biomass was 679 

45,080 Mg higher in the PLSS when summed across all cells coincident between the FIA 680 

and PLSS. 681 

  682 
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Table 3. Mean cell-wise change in forest zone density, basal area and biomass since PLSS for 683 

cells with coverage in both PLSS and FIA eras by forest class. All forest zones show increases in 684 

stem density since the PLSS era (positive values). All zones but Oak Savanna most show 685 

declines in mean basal area since the PLSS era, while modern biomass is lower in the FIA-era 686 

for the both Hemlock/Cedar/Birch/Maple and Pine forest zones, but higher in the remaining 687 

three zones. 688 

Forest Type 
Number of 

Cells 

Stem Density 

(stems/ha) 

Basal Area 

(m2/ha) 

Biomass 

(Mg/ha) 

Hemlock/Cedar/Birch/Maple 1780 170.5 -13.8 -56.7 

Tamarack/Pine/Spruce/Poplar  1105 76.1 -4.2 4.7 

Pine  966 191.4 -1.8 -5.2 

Oak/Poplar/Basswood/Maple 708 108.4 -0.2 24.8 

Oak Savanna  577 182.6 13.1 62.2 

 689 

Every one of the five historical PLSS zones shows an increase in stem density (Table 3). The 690 

two forest types bordering the prairie, Oak Savanna and Oak/Poplar/Basswood/Maple 691 

both show increases in density that likely reflect, in part, the issues addressed earlier with 692 

regards to the sampling of forested plots in the FIA (over 10% cover). Density in the Oak 693 

Savanna increases from a mean 27 stems/ha to 217 stems/ha, with a mean biomass 694 

increase of 62 Mg ha-1 per cell (Table 3), the highest of any of the zones. The 695 

Oak/Poplar/Basswood/Maple forest had higher PLSS-era densities (90 stems/ha) 696 

reflecting open forest status rather than savanna (Table 2), but also shows a large increase 697 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2015. ; https://doi.org/10.1101/026575doi: bioRxiv preprint 

https://doi.org/10.1101/026575
http://creativecommons.org/licenses/by/4.0/


in estimated FIA-era stem density (to 218 stems/ha) but with a much lower increase in 698 

biomass than the Oak Savanna, and a negligable increase in basal area (Table 3). The 699 

largest forest zone, Hemlock/Cedar/Birch/Maple shows the largest decline in biomass (a 700 

net loss of 56.7 MG ha01 since the PLSS-era) and basal area (net loss of 13 m2 ha-1 since the 701 

PLSS-era), but with an average increase in FIA era stem density. 702 

 703 
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Fig 7. The relationship between (a) average stem density, (b) total basal area and (c) biomass 704 

values in the PLSS and FIA datasets. Stem density and total basal area are higher in the FIA 705 

than in the PLS, however average cell biomass is higher in the PLSS. A 1:1 line has been added 706 

to panels a-c to indicate equality. 707 

The PLSS has a lower overall mean diameter than the FIA (δdiam = -2.9 cm, 95%CI from -708 

17.3 to 8.18cm). FIA diameters are higher than PLSS diameters in the northwestern parts 709 

of the domain (on average 6.47 cm higher), overlapping almost exactly with regions where 710 

we have shown low biomass-high density stands (Fig 3). At the same time, regions with 711 

high biomass and low density stands, in northeastern Wisconsin, and the Upper and Lower 712 

Peninsulas of Michigan, had higher average diameters during the PLSS than in the FIA, on 713 

average 3.65 cm higher. Thus we are seeing an overal increase in tree size in the sub-boreal 714 

region and a decrease in temperate mixedwood forests, where we find tree species with 715 

much higher dbh:biomass ratios [68]. This is coupled with declining variance in dbh across 716 

the domain (from within cell variance of 37.9 cm the PLSS to 30.7 cm in the FIA). Thus, the 717 

mechanism by which low density and basal area produce roughly equivalent biomass 718 

estimates between the FIA and PLSS is likely due to the differential impacts of land 719 

clearence and subesequent forest management in the south east vs the northwest. The loss 720 

of high biomass southern hardwood forests is balanced by higher biomass in the northeast 721 

due to fire suppression and regeneration of hardwoods in the northwest. Declining 722 

diameters from the PLSS to FIA are most strongly associated with higher abundances of 723 

poplar, ironwood and oak, while declining diameters are associated with maple and 724 

hemlock, further supporting the assertion that much of the loss in diameter, and, 725 
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subsequently biomass, is occuring in southeastern mixedwood/hardwood forest, while 726 

diameter and biomass increases are occuring in the northwest. 727 

Differences between FIA and PLSS data in sampling design are unlikely to be a factor for 728 

most measures (see below); these differences are expected to affect how these datasets 729 

sample local- to landscape-scale heterogeneity, but should not affect the overall trends 730 

between datasets. Differences in variability introduce noise into the relationship, but given 731 

the large number of samples used here, the trends should be robust. 732 

Compositional Changes Between PLSS and FIA Forests: Novel and Lost Forests 733 

Both the PLS- and FIA-era compositional data show similar patterns of within-dataset 734 

dissimilarity, with the highest dissimilarities found in central Minnesota and northwestern 735 

Wisconsin. High within-PLSS dissimilarities are associated with high proportions of maple, 736 

birch and fir while high within-FIA dissimilarities are associated with high proportions of 737 

hemlock, cedar and fir. Dissimilarity values in the FIA dataset are less spatially structured 738 

than in the PLSS. Moran's I for dissimilarities within the FIA (IFIA = 0.198, p < 0.001) are 739 

lower than the dissimilarities within the PLSS (IPLSS = 0.496, p < 0.001), suggesting lower 740 

spatial autocorrelation in the FIA dataset. Cells with identical pairs represent 5.6% of the 741 

PLSS cells and 7.44% of FIA cells. Identical cells in the PLSS are largely located along the 742 

southern margin and most (69.5%) are composed entirely of oak. Cells in the FIA with 743 

identical neighbors are composed of either pure oak (19.4%), pure poplar (26%) or pure 744 

ash (14%). 745 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2015. ; https://doi.org/10.1101/026575doi: bioRxiv preprint 

https://doi.org/10.1101/026575
http://creativecommons.org/licenses/by/4.0/


There is a small but significant positive relationship (F1,5964= 920, p < 0.001) between the 746 

number of FIA plots and within-FIA dissimilarity. The relationship accounts for 13% of 747 

total variance and estimates an increase of δd = 0.0134 for every FIA plot within a cell. This 748 

increase represents only 3.08% of the total range of dissimilarity values for the FIA data. 749 

There is a gradient of species richness that is co-linear with the number of FIA plots within 750 

a cell, where plot number increases from open forest in the south-west to closed canopy, 751 

mixed forest in the Upper Peninsula of Michigan. Hence, differences in within- and 752 

between-cell variability between the PLSS and FIA datasets seem to have only a minor 753 

effect on these regional-scale dissimilarity analyses. 754 

We define no-analog communities as those whose nearest neighbour is beyond the 95%ile 755 

for dissimilarities within a particular dataset. In the PLSS dataset, forests that have no 756 

modern analogs are defined as "lost forests", while forest types in the FIA with no past 757 

analogs are defined as "novel forests". More than 25% of PLSS sites have no analog in the 758 

FIA dataset ('lost forests'; PLS-FIA dissimilarity, Fig 8c), while 29% of FIA sites have no 759 

analog in the PLSS data ('novel forests'; FIA-PLSS dissimilarity, Fig 8d). Lost forests show 760 

strong spatial coherence, centered on the "Tension Zone" [85], the ecotone between 761 

deciduous forests and hemlock-dominated mixed forest (Fig 4). 762 
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 763 

Fig 8. Minimum dissimilarity maps. Distributions of minimum (within dataset) dissimilarities 764 

during the PLSS (a) and FIA (b) show spatially structured patterns of dissimilarity, with 765 

stronger spatial coherence for the PLS. Lost forests (c) show strong compositional and spatial 766 
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coherence, and have more taxa with percent composition > 10% than within Novel forests 767 

during the FIA era (d). 768 

Lost forests are drawn from across the domain, and show strong ecological and spatial 769 

coherence (Fig 8c). Forest classes generally fall into five classes: Tamarack-Pine-Birch-770 

Spruce-Poplar accounts for 28.8% of all lost forests and 7.97% of the total region. This 771 

forest type is largely found in north eastern Minnesota, extending southward to central 772 

Minnesota, into Wisconsin and along the Upper Peninsula of Michigan, as well as in 773 

scattered locations on the Lower Peninsula of Michigan (Fig 8c). This forest likely 774 

represents a mesic to hydric forest assemblage, particularly further eastward. Modern 775 

forests spatially overlapping this lost type are largely composed of poplar (xFIA = 12%) and 776 

oak (xFIA = 12%). Tamarack in these forests has declined significantly, from 23% to only 777 

5% in the FIA, while Poplar has increased from 10% to 22%, resulting in forests that look 778 

less mesic and more like early seral forests. 779 

Cedar/juniper-Hemlock-Pine accounts for 19.8% of all lost forests and 5.49% of the total 780 

region. This forest type is found largely in northeastern Wisconsin, and the Upper and 781 

Lower Peninsulas of Michigan. This lost forest type has been predominantly replaced by 782 

maple, poplar, and pine, retaining relatively high levels of cedar (xPLS = 19%; xFIA = 14%). 783 

The loss of hemlock is widespread across the region, but particularly within this forest 784 

type, declining to only 3% from a pre-settlement average of 18%. 785 

Elm-Oak-Basswood-Ironwood accounts for 19.6% of all lost forests and 5.42% of the total 786 

region. The region is centered largely within savanna and prairie-forest margins, both in 787 

south-central Minnesota and in eastern Wisconsin, but, is largely absent from savanna in 788 
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the Driftless area of southwestern Wisconsin. These forests were historically elm 789 

dominated (xPLS = 25%), not oak dominated savanna, as elsewhere (particularly in the 790 

Driftless). Modern forests replacing these stands are dominated by oak and ash, with 791 

strong components of maple, and basswood. Elm has declined strongly in modern forests 792 

(xFIA = 1%), possibly in part due to Dutch Elm Disease and land use. The increase in ash in 793 

these forests is substantial, from xPLS = 5% to xFIA = 15%. 794 

Hemlock-Birch-Maple-Pine accounts for 19.2% of all lost forests and 5.33% of the total 795 

region. This forest type, dominant in north central Wisconsin, was dominated by hemlock 796 

(_xPLS = 26%) and what was likely late seral yellow birch (xPLS = 24%), replaced largely by 797 

maple (from xPLS = 12% to xFIA = 27%). Poplar increases from 1% to 13% in the FIA, again 798 

indicating a shift to earlier seral forests in the FIA. Hemlock is almost entirely lost from the 799 

forests, declining from 26% to 4% in the FIA. 800 

Lastly, Beech-Maple-Hemlock accounts for 12.6% of all lost forests and 3.49% of the total 801 

region. This forest type is found exclusively on the central, western shore of Lake Michigan 802 

and in the Lower Peninsula, in part due to the limited geographic range of Beech in the 803 

PLSS dataset (Fig 4). Beech is almost entirely excluded from the modern forests in this 804 

region, declining from xPLS = 37% to xFIA = 4%. Pine in the region increases from 9% to 805 

16%, while maple, the dominant taxa in the modern forests, increases from 16 - 25%. 806 

On average lost forests contain higher proportions of ironwood (r = 0.203), beech (r = 0.2), 807 

birch (r = 0.189) and hemlock (r = 0.188) than the average PLSS forest, and lower 808 

proportions of oak (r = -0.28), poplar (r = -0.145), and pine (r = -0.107). 809 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2015. ; https://doi.org/10.1101/026575doi: bioRxiv preprint 

https://doi.org/10.1101/026575
http://creativecommons.org/licenses/by/4.0/


The distribution of novel ecosystems (Fig 8d) is spatially diffuse relative to the lost forest of 810 

the PLSS and the forest types tend to have fewer co-dominant taxa. FIA novel forest types 811 

also have a more uneven distribution in proportion than the PLSS lost forests. Overall, 812 

novel forests are associated with higher proportions of maple (r = 0.02), ash (r = 0.03) and 813 

basswood (r = -0.04), although basswood is dominant in only one forest type (Poplar-814 

Cedar/juniper-Maple). Novel forests are associated with lower proportions of oak (r = -815 

0.28), and pine (r = -0.11). This analysis suggests that the loss of particular forest types 816 

associated with post-settlement land use was concentrated in mesic deciduous forests and 817 

the ecotonal transition between southern and northern hardwood forests, while the gains 818 

in novelty were more dispersed, resulting from an overall decline in seral age. 819 

By far the largest novel forest type is Maple, which accounts for 37.2% of all novel forests 820 

and 2.68% of the total region. As with all novel forest types, this forest type is broadly 821 

distributed across the region. This forest type is associated with co-dominant maple (xFIA = 822 

23%) and ash (xFIA = 22%). Hemlock has declined significantly across this forest type, from 823 

xPLS = 24% to xFIA = 4%. 824 

Poplar-Cedar/juniper-Maple, accounts for 28.8% of all novel forests and 2.08% of the total 825 

region. The broad distributiof these novel forests makes assigning a past forest type more 826 

difficult than for the PLSS lost forests, the distribution replaces two classes of past forest, 827 

one dominated by oak, in southern Wisconsin and Minnesota, the other by mixed hemlock, 828 

beech, birch and cedar forests. 829 

Pine-Cedar/juniper-Poplar-Maple forest accounts for 16.3% of all novel forests and 1.17% 830 

of the total region. This forest type is again broadly distributed, and is widely distributed 831 
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across the region, representing a homogenous, early seral forest type, likely associated 832 

with more mesic sites. Oak forest accounts for 13.3% of all novel forests and 0.96% of the 833 

total region. This grouping again shows a pattern of broad distribution across the region, 834 

associated with cedar/juniper percentages near 40%, with smaller components of poplar 835 

(14%) and maple (13%). 836 

Spatial Correlates of Novelty 837 

Modern compositional dissimilarity from the PLSS data is related to distance from 838 

'remnant' forest. The dissimilarity quantile of FIA-PLSS distances increases with increasing 839 

distance to remnant cells, and this relationship is robust to higher thresholds for remnant 840 

forest classification, up to the 90%ile of within-PLSS near neighbor dissimilarities. Using 841 

the 25%ile for within PLSS dissimilarity, approximately 67% of FIA cells can be classed as 842 

'remnant' forest. The mean distance to remnant forests for cells with dissimilarities above 843 

the 25%ile is 17.7 km, higher than the mean of ~9.6km expected if each 8x8km cell had at 844 

least one adjacent 'remnant' cell. 845 

Table 4. Spatial distance to novelty - modeled as a binomial - from remnant forests (forests 846 

within the first 25th percentile of nearest neighbor distances). The null model uses 847 

permutation (n=100) where quantiles are resampled without replacement. 848 

Zone Min Max Min (Null) Max (Null) 

Tamarack/Pine/Spruce/Poplar 29 43 11 14 

Oak/Poplar/Basswood/Maple 23 33 14 20 
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Pine 32 56 10 12 

Hemlock/Cedar/Birch/Maple 0 undef. 11 13 

Oak Savanna 17 23 13 18 

The GLM shows that distance from remnant forests in the FIA is significantly related to the 849 

probability of a cell being novel (χ1,4=623, p < 0.001). The mean distance to novelty varies 850 

by PLSS forest type, but is between approximately 20 and 60km for the four forest types 851 

examined here (Fig 9), while the null model would predict a distance of 10 - 20km to 852 

novelty from remnant cells if dissimilarities were distributed randomly on the landscape 853 

(Table 4). Novel forests are generally further from remnant patches than expected in the 854 

null model, regardless of forest type, but the distance to novelty is greater for modern 855 

forests that are, generally, more similar to their PLSS state (Pine and Tamarack dominated 856 

forests), and closer for forests that are more dissimilar. 857 
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858 
Fig 9. The model relating novelty to spatial distance from remnant forest. Here the 25%ile is 859 

used to indicate remnant forest, and the 95%ile is defined as novelty. We use a binomial 860 

regression to predict novelty, the red dashed line indicates a response greater than 0.5. The 861 

curves represent the relationship between spatial distance and compositional dissimilarity for 862 

each of the five major historic forest types (Fig 5) defined here as Oak Savanna (blue), 863 

Oak/Poplar/Basswood/Maple (light purple), Tamarack/Pine/Spruce/Poplar (green), 864 

Hemlock/Cedar/Birch/Maple (yellow) and Pine (orange). 865 
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Critically, we see that the Hemlock/Cedar/Birch/Maple forest class (Fig 5 & 10b, yellow), 866 

appearing as a flat line, predicts novelty continuously, from distance 0. This is due, in part, 867 

to the very small proporion of Hemlock/Cedar/Birch/Maple cells that are considered 868 

residual (only 63 of 1780 cells in the Hemlock zone are considered remnant) and the very 869 

high proportion of novel cells in the zone (923 of 1780 cells, or 52% of all cells). 870 

Oak Savanna is the most similar to its null model, with a confidence interval that overlaps 871 

slightly with the null expectation (Table 4). Northern softwood forests 872 

(Tamarack/Pine/Spruce/Poplar, Fig 5, light green) reach novelty at between 29 and 43km, 873 

northern Oak forests (Oak/Poplar/Basswood/Maple; Fig 5, light purple) reach novelty at 874 

23 - 33 km, slightly higher than the 14 - 19km predicted by the null model. Pine forests (Fig 875 

5, orange) are three times further than expected by the null, at 32 - 56km (Table 4). 876 

Compositional Changes Between PLSS and FIA Forests: Ecotone Structure 877 

To understand how the ecotonal structure has been transformed by post-settlement land 878 

use, we constructed two transects of the FIA and PLSS data (Fig 10a), and fitted GAM 879 

models to genus abundances along these transects. Transect One (T1) runs from northern 880 

prairie (in northern Minnesota) to southern deciduous savanna in southeastern Wisconsin 881 

(left to right in Figures 11c-f), while Transect Two (T2) runs from southern prairie in 882 

southwestern Minnesota to northern mixedwood forest in the Upper Peninsula of Michigan 883 

(left to right in Figures 11g-j). In general, these transect analyses show: 1) significant 884 

differences in ecotonal structure between the present and pre-settlement, and 2) steeper 885 

ecotones in the past and more diffuse ecotones today. 886 
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 887 

Fig 10. Transects (a) across the region show clear changes in the ecotonal strength. Transect 888 

One shows shifts in broad-leafed taxon distributions from the PLSS to FIA (b and c) and in 889 

needle-leafed distributions (d and e). Transect Two broadleaf (f and g) and needleleaf (h and 890 

i) taxa show shifts that again appear to represent regional scale homogenization. Ecotones in 891 

the pre-settlement era were stronger in the past than they are in the present. Fitted curves 892 

represent smoothed estimates across the transects using Generalized Additive Models using a 893 

beta family. 894 

For T1, GAM models show significant differences (using AIC) between time periods in 895 

curves for all broadleafed taxa (Fig 10b & c) and for all needleleafed taxa (Figures 10d and 896 

e). The PLSS curves show a rapid transition in the northwest from oak to poplar dominated 897 

open forest that then transitions to a needleleafed forest composed of pine, spruce and 898 

tamarack, with high proportions of tamarack grading to pine further to the south east. 899 
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Tamarack and poplar proportions decline gradually from the east, being replaced first by 900 

pine, then briefly by maple and birch, and then. ultimately by oak as the transect grades 901 

into oak savanna. In the FIA dataset oak and poplar in the northwest appears to decline 902 

simultaneously, grading into needleleafed forests that are absent from the FIA dataset in 903 

the first 100km along the transect. While the PLSS transect shows distinct vegetation types 904 

in the central partof the transect, the FIA shows relatively constant proportions of oak, 905 

pine, spruce, poplar and maple before pine, oak and elm increase in the southeastern 906 

portions of the transect. 907 

The second transect shows a similar pattern, with well defined ecotones in the pre-908 

settlement period(Fig 10f and h), that are largely absent from the FIA data (Fig 10g and i). 909 

Oak forest, with a component of elm and poplar in the southwest grades slowly to a rapid 910 

transition zone where pine, elm, maple (first), then rapidly birch, hemlock and tamarack, 911 

and later, spruce, increase. This region, the Tension Zone, extends from 3 x 105 to 4.5x105 912 

meters East, eventually becoming a forest that shows co-dominance between birch, pine, 913 

maple, spruce and tamarack, likely reflecting some local variability as a result of 914 

topographic and hydrological factors. Missing data at the beginning of the FIA transect 915 

reflects a lack of FIA plots in unforested regions in the west 916 

Contemporary forests show broader homogenization and increased heterogeneity 917 

(evidenced by the lower within-FIA Moran's I estimates for near-neighbor distances) at a 918 

local scale in the region. Homogenization is evident across T1, where Bray-Curtis 919 

dissimilarity between adjacent cells declines from the PLSS to the FIA (δbeta = -0.22, t113 = -920 

7.93, p<0.001), mirroring declines in the pine barrens between the 1950s and the present 921 
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[18]. The PLSS shows strong differentiation in the central region of T2 where maple-pine-922 

oak shifts to pine-poplar-birch forest (Fig 10d). This sharp ecotone is not apparent in the 923 

FIA data, which shows gradual and blurred changes in species composition across the 924 

ecotone (Fig 10i). β-diversity along T2 is lower in the FIA than in the PLSS (δbeta = -0.19, 925 

t65=-7.34, p < 0.01), indicating higher heterogeneity in the PLSS data at the 64 km2 meso-926 

scale. 927 

Across the entire domain, β diversity is lower in the FIA than in the PLSS (δβ = -0.172, t1.3e7 928 

= 2480, p <0.001), lending support to the hypothesis of overall homogenization. Differences 929 

in sampling design between PLSS and FIA data cannot explain this homogenzation, since its 930 

effect would have been expected to increase β-diversity along linear transects and at larger 931 

spatial scales. 932 

Discussion 933 

Many forests of the PLS, are no longer a part of the modern landscape. Forest types have 934 

been lost at the 64 km2 mesoscale, and new forest types have been gained. The joint 935 

controls of broad-scale climatic structuring and local hydrology on forest composition and 936 

density can be seen in the pre-settlement forests, particularly along the Minnesota River in 937 

south-western Minnesota, where a corridor of savanna was sustained in a region mostly 938 

occupied by prairie (Fig 2b), but ecotones in the modern forest composition data are 939 

weaker now than in the past (Fig 10), with clear signs of increased homogenization at local 940 

and regional scales and decreased spatial structure in vegetation assemblages (Fig 8). 941 
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The loss of ecotones in the upper Midwestern United States suggests that our ability to 942 

predict the abiotic controls on species distributions at the landscape scale may be weaker 943 

than in the past, reducing the influence of variables such as climate or edaphic factors, and 944 

increasing the relative influence of recent land use history. Our results suggest that both 945 

recent land use history and historical vegetation cover play a large role in recovery from 946 

the large scale disturbance seen following EuroAmerican settlement. 947 

Work in eastern North America suggests the utility of including spatial structure in species 948 

distribution models to improve predictive ability [89]. The spatial random effects may 949 

improve models by capturing missing covariates within SDMs [89], but if recent land use 950 

history has strongly shaped species distributions, or co-occurence, then the spatial effect is 951 

likely to be non-stationary at longer temporal scales. Given the implicit assumption of 952 

stationarity in many ecological models [21], the need for longer time-scale observations, or 953 

multiple baselines from which to build our distributional models becomes critical if we are 954 

to avoid conflating recent land use effects with the long term ecological processes 955 

structuring the landscape. 956 

Decreased β diversity along regional transects indicates homogenization at meso-scales of 957 

100s of km2, while the overall reduction in Moran's I for dissimilarity in the FIA indicates a 958 

regional reduction in heterogeneity on the scale of 1000s of km2. The selective loss or 959 

weakening of major vegetation ecotones, particularly in central Wisconsin, and the 960 

development of novel species assemblages across the region further suggests that modern 961 

correlational studies, examining regional relationships between species and climate (for 962 

example) may fail to capture the full range of edaphic controls on spcies distributions. 963 
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These changes are the result of land use, both agricultural and logging, but affect forests in 964 

contrasting ways across the domain. Maple has become one of the most dominant taxa 965 

across the region, while in northern Minnesota, forest biomass has increased and species 966 

shifts have reflected increases in poplar and pine, while in central and eastern Wisconsin, 967 

biomass has declined, and hemlock has been lost almost completely. 968 

Anthropogenic shifts in forest composition over decades and centuries seen here and 969 

elsewhere [2,48] are embedded within a set of interacting systems that operate on multiple 970 

scales of space and time [90]. Combining regional historical baselines, long term ecological 971 

studies and high frequency analyses can reveal complex responses to climate change at 972 

local and regional scales [91]. Estimates of pre-settlement forest composition and structure 973 

are critical to understanding the processes that govern forest dynamics because they 974 

represent a snapshot of the landscape prior to major EuroAmerican land-use conversion 975 

[38,52]. Pre-settlement vegetation provides an opportunity to test forest-climate 976 

relationships prior to land-use conversion and to test dynamic vegetation models in a data 977 

assimilation framework [92]. For these reason, the widespread loss of regional forest 978 

associations common in the PLSS (Fig 8d), and the rapid rise of novel forest assemblages 979 

(Fig 8e) have important implications for our ability to understand ecological responses to 980 

changing climate. The loss of historical forest types implies that the modern understanding 981 

of forest cover, climate relationships, realized and potential niches and species associations 982 

may be strongly biased in this region, even though 29% of the total regional cover is novel 983 

relative to forests only two centuries ago. 984 
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Beyond shifts in composition at a meso-scale, the broader shifts in ecotones can strongly 985 

impact models of species responses and co-occurence on the landscape. For example, the 986 

heterogeneity, distribution, and control of savanna-forest boundaries [93] is of particular 987 

interest to ecologists and modelers given the ecological implications of current woody 988 

encroachment on savanna ecosystems [94]. Declines in landscape heterogeneity may also 989 

strongly affect ecosystem models, and predictions of future change. Our data show higher 990 

levels of vegetation heterogeneity at mesoscales during the pre-settlement era, and greater 991 

fine scaled turnover along transects. Lower β diversity shown here and elsewhere [18] 992 

indicate increasing homogeneity at a very large spatial scale, and the loss of resolution 993 

along major historical ecotones. 994 

This study also points to the need for a deeper understanding of some of the landscape- 995 

and regional-scale drivers of novelty, given the likely role for climatic and land use change 996 

(including land abandonment) to continue to drive ecological novelty [95,96]. In particular 997 

the role of regional species pools and remnant patches of forest in driving or mitigating 998 

compositional novelty. This work shows that the baseline forest type, and its structure on 999 

the landscape moderates the degree to which landscape scale patterns can drive 1000 

compositional novelty. To some degree relationships between compositional novelty and 1001 

distance from remnant patches may be dependent on the simplicity or complexity of the 1002 

species pool and the sensitivity of dissimilarity metrics to β diversity [97]. Our results 1003 

indicate that diversity alone cannot be the driving factor in determining post-settlement 1004 

dissimilarity (and novelty), since all forest classes show this pattern of change. 1005 
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Both Pine and the Oak/Poplar/Basswood/Maple forest types are the most fragmented 1006 

across the region. There is strong evidence that in some locations pine forests have 1007 

persisted over very long timescales in the region [98], although there is also evidence, in 1008 

other regions, that these states may shift strongly in response to interactions between 1009 

landscape level processes such as fire and geophysical features [99]. Thus complex 1010 

interactions between landscape scale processes, whether they be fire, land use change, or 1011 

geophysical features, and the species assemblages themselves, point to the difficulty in 1012 

making simplifying assumptions about species assemblages. Caution in simplifying species 1013 

assignments, whether they be plant functional types, species richness, or phylogenetic 1014 

metrics, is neccessary since this region is dominated by forests that respond very 1015 

differently to the settlement-era (and pre-settlement) disturbance, but that are composed 1016 

of different species of the same genera and plant functional type. This caution is clearly 1017 

warranted since recent ecosystem model benchmarking using pre-settlement vegetation 1018 

has shown significant mismatch between climate representations of plant functional types 1019 

across a range of ecosystem models, with no model accurately representing the true 1020 

climate space of plant functional types in the northeastern upper Midwestern United States 1021 

[100]. 1022 

The analysis relating to the distance-to-novelty (Fig 9) points to the possibility that 1023 

landscape-scale restoriation has high likelihood of success if local-scale restoration focuses 1024 

on sites where restoration potential is high, as suggested for Hemlock/Cedar/Birch/Maple 1025 

forests in northern Wisconsin [86]. If some of the novelty is driven by depauparate species 1026 

pools beyond certain threshold distances from remnant forests then it should also be 1027 

possible to restore these forest at a regional scale through the translocation of key species 1028 
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[101]. This work is supported by a number of other studies at smaller scales [102–104], for 1029 

example, the presence of white pine in mesic sites during the PLS era has been attributed to 1030 

its presence as a seed source on marginal sites at scales of of hundreds of meters [105]. 1031 

Computer simulations [106] show that seed source distribution can affect community 1032 

composition over hundreds of years at large spatial scales in a region spatially coincident 1033 

with this current study. Thus land use change has significantly altered the landscape, both 1034 

by "resetting" the sucessional clock, but also, because of the extent of change, by impacting 1035 

the regional species pool and seed source for re-establishing forests that are 1036 

compositionally similar to pre-settlement forests. 1037 

Methodological advances of the current work include 1) the systematic standardization of 1038 

PLSS data to enable mapping at broad spatial extent and high spatial resolution, 2) the use 1039 

of spatially varying correction factors to accommodate variations among surveyors in 1040 

sampling design, and 3) parallel analysis of FIA datasets to enable comparisons of forest 1041 

composition and structure between contemporary and historical time periods. This 1042 

approach is currently being extended to TPS and PLSS datasets across the north-central 1043 

and northeastern US, with the goal of providing consistent reconstructions of forest 1044 

composition and structure for northeastern US forests at the time of EuroAmerican forests. 1045 

Our results support the consensus that robust estimates of pre-settlement forest 1046 

composition and structure can be obtained from PLSS data [39,44,46,107,108]. Patterns of 1047 

density, basal area and biomass are roughly equivalent to previous estimates [16,19], but 1048 

show variability across the region, largely structured by historical vegetation type (Table 1049 

3). Our results for stem density are lower than those estimated by Hanberrry et al. [17] for 1050 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2015. ; https://doi.org/10.1101/026575doi: bioRxiv preprint 

https://doi.org/10.1101/026575
http://creativecommons.org/licenses/by/4.0/


eastern Minnesota, but density and basal area are similar to those in the northern Lower 1051 

Peninsula of Michigan [109] and biomass estimates are in line with estimates of 1052 

aboveground carbon for Wisconsin [19]. 1053 

These maps of settlement-era forest composition and structure can provide a useful 1054 

calibration dataset for pollen-based vegetation reconstructions for time periods prior to 1055 

the historic record [110]. Many papers have used calibration datasets comprised of modern 1056 

pollen samples to build transfer functions for inferring past climates and vegetation from 1057 

fossil pollen records [111–114]. However, modern pollen datasets are potentially 1058 

confounded by recent land use, which can alter paleoclimatic reconstructions using pollen 1059 

data [113]. By linking pollen and vegetation at modern and historical periods we develop 1060 

capacity to provide compositional datasets at broader spatio-temporal scales, providing 1061 

more data for model validation and improvement. Ultimately, it should be possible to 1062 

assimilate these empirical reconstructions of past vegetation with dynamic vegetation 1063 

models in order to infer forest composition and biomass during past climate changes. Data 1064 

assimilation, however, requires assessment of observational and model uncertainty in the 1065 

data sources used for data assimilation. Spatiotemporal models of uncertainty are being 1066 

developed for the compositional data [63]. 1067 

Ultimately the pre-settlement vegetation data present an opportunity to develop and refine 1068 

statistical and mechanistic models of terrestrial vegetation that can take multiple structural 1069 

and compositional forest attributes into account. The future development of uncertainty 1070 

estimates for the data remains an opportunity that can help integrate pre-settlement 1071 

estimates of composition and structure into a data assimilation framework to build more 1072 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2015. ; https://doi.org/10.1101/026575doi: bioRxiv preprint 

https://doi.org/10.1101/026575
http://creativecommons.org/licenses/by/4.0/


complete and more accurate reconstructions of past vegetation dynamics, and to help 1073 

improve predictions of future vegetation under global change scenarios. 1074 
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